Mr. Shuwan J. Barzaniy

Second Order Differential Equations

A second order differential equation is written in general form as

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0,
$$

where F is a function of the given arguments.
If the differential equation can be resolved for the second derivative $y^{\prime \prime}$, it can be represented in the following explicit form:

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Second Order Linear Homogeneous Differential Equations with Constant Coefficients

Consider a differential equation of type

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

where p, q are some constant coefficients.

For each of the equation we can write the so-called characteristic (auxiliary) equation:

$$
k^{2}+p k+q=0
$$

The general solution of the homogeneous differential equation depends on the roots of the characteristic quadratic equation. There are the following options:
$1 \mathrm{k}_{1}$ and k_{2} are real numbers and $\mathrm{k}_{1} \neq \mathrm{k}_{2}$

$$
y(x)=C_{1} e^{k_{1} x}+C_{2} e^{k_{2} x}
$$

where C_{1} and C_{2} are arbitrary real numbers.

Mr. Shuwan J. Barzanjy

$2 \mathrm{k}_{1}$ and k_{2} are real numbers and $\mathrm{k}_{1}=\mathrm{k}_{2}$

$$
y(x)=\left(C_{1} x+C_{2}\right) e^{k_{1} x}
$$

$3 \quad k_{1}$ and k_{2} are complex numbers

$$
y(x)=e^{\alpha x}\left[C_{1} \cos (\beta x)+C_{2} \sin (\beta x)\right] .
$$

Solving Quadratic Equations by Quadratic Formula

A quadratic equation is an equation that could be written as:

$$
a x^{2}+b x+c=0
$$

The method of solving quadratic equations involves the use of the following formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 1.

Solve the differential equation

$$
y^{\prime \prime}-6 y^{\prime}+5 y=0 .
$$

Solution.

First we write the corresponding characteristic equation for the given differential equation:

$$
k^{2}-6 k+5=0 .
$$

Eliminate the constant C from the system of equations:

$$
y(x)=C_{1} e^{x}+C_{2} e^{5 x}
$$

where C_{1} and C_{2} are arbitrary constants.

Mr. Shuwan J. Barzanjy

Example 2.

Find the general solution of the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0 .
$$

Solution.

We write the characteristic equation and calculate its roots:

$$
k^{2}-6 k+9=0, \quad \quad k_{1,2}=3
$$

As it can be seen, the characteristic equation has one root of order $2: k_{1}=3$. Therefore, the general solution of the differential equation is given by

$$
y(x)=\left(C_{1} x+C_{2}\right) e^{3 x}
$$

where C_{1}, C_{2} are arbitrary real numbers.

Example 3.

Solve the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0 .
$$

Solution.

First we write the corresponding characteristic equation and find its roots:

$$
k^{2}-4 k+5=0
$$

$$
k_{1,2}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i
$$

Thus, the differential equation has a pair of complex conjugate roots: $k_{1}=2+i, k_{2}=2-i$. In this case, the general solution is expressed by the formula:

$$
y(x)=e^{2 x}\left[C_{1} \cos x+C_{2} \sin x\right]
$$

where C_{1}, C_{2} are arbitrary constants.

