Area by Double Integrals in Cartesian Coordinates

If f(x,y) = linthe integral [[ f (x, y)dxdy, then the double integral gives the area of the region R.
R

The area of a type I region (Figure 1) can be written in the form:
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Similarly, the area of a type I'I region (Figure 2) is given by the formula
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Volume by Double Integrals in Cartesian Coordinates

If f(x,y) > 0over aregion R, then the volume of the solid below the surface z = f(z,y) and above

V- { f (2,9)dA

If Risa type I region bounded by z = a, z = b, y = g(z), y = h(z), the volume of the solid is

R is expressed as
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Similarly, if R is a type I region bounded by y = ¢,y =d, 2 = p(y), z = ¢ (y), the volume of the

solid is given by
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If f(x,y) > g(x,y) over a region R, then the volume of the cylindrical solid between the surfaces
z1 = g(x,y) and 29 = f(x,y) over Ris given by
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Surface Area by Double Integrals in Cartesian Coordinates

We assume that the surface is given as a graph of function z = g (z, y), and the domain of this

function is a region R. Then the area of the surface over the region R is

_gfv’lw (%)Z (g;) dady,

provided that the derivatives % and % are continuous over the region K.
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Areas and Volumes by Double Integrals in Polar Coordinates

If S'is a region in the xzy-plane bounded by 8 = «, 8 = 3, r = h (0), r = g () (Figure 3), then the
area of the region is defined by the formula
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The volume of the solid below z = f (r, 8) over a region .S in polar coordinates is given by

V= -! f f(r,0)rdrds.



Example 1.
Find the area of the region R bounded by the hyperbolas
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Using the formula for the area of a type I region
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we have

y=—y=—_>0)
and the vertical linesz =1,z = 2.
Solution.
The region R is sketched in Figure 4.
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Example 2.

Find the area of the region R bounded by

v =a’—az,y—a+z.

Solution.

We first determine the points of intersection of the two curves.

y? = a® —azx 2 2 2 2 2 2
N , =(a+z)" =a"—azx, =a"+2ax+z°=0a°—azx, = z°+3ax =0,

= z(zx+3a)=0, = z;0=0; —3a.

So the coordinates of the points of intersection are

=0, ypy=a+0=a,
T9 = —3a, Y3 =a—3a=—2a.

It is simpler to consider R as a type II region (Figure 5).
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Figure 5.

To calculate the area of the region, we transform the equations of the boundaries:
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Then we have
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Example 3.

Find the volume of the solid in the first octant bounded by the planes

y=0,z=0,z=z,z2+x=4.

Solution.

The given solid is shown in Figure 6.

Figure 6.

As it can be seen from the figure, the base R is the square in the first quadrant. For given « and y, the

z-value in the solid varies from z = x to z = 4 — x. Then the volume is
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Example 4.
Describe the solid whose volume is given by the integral

1-z

szdzf (z* +°)dy.

Solution.

The given solid (Figures 7, 8) lies above the triangle R in the zy-plane, bounded by the coordinate
axes Oz, Oy and the straight line y = 1 — 2, and under the paraboloid z = 2 + .
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Figure 8.

The volume of the solid is
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1

1 —_
V=fd::f
0 0

T




