Pipe Hydraulic

1. Minimum Diameter --------- 100 mm (4 inch)
2. Velocity range ------------- $(0.6-2) \mathrm{m} / \mathrm{sec}$

Flow in Pipes

Hazen-William's formula is the most used in the design of water distribution systems.

$$
V=k^{*} C^{*} R^{0.63} * S^{0.54}
$$

Where :
$\mathrm{V}=$ mean velocity in pipe $(\mathrm{m} / \mathrm{sec})$
$\mathrm{R}=$ hydraulic radius (m)
$\mathrm{S}=$ hydraulic gradient
$\mathrm{C}=$ constant depend on the roughness of pipe
$\mathrm{k}=0.85$

Mr. ${ }^{\circ} Q=V * \bar{A}^{\text {arzanjy }}$

Where :
A = area of pipe (m2)
$\mathrm{D}=$ diameter of pipe (m)

$$
A=\frac{\Pi * D^{2}}{4} \quad R=\frac{D}{4}
$$

$S=\frac{h L}{L}$

Where :
$\mathrm{hL}=$ head losses in (m)
$\mathrm{L}=$ length of pipe (m)

Hazen-William's formula will be :

$$
\begin{gathered}
Q=\frac{\Pi^{*} D^{2}}{4} * 0.85 * C *\left(\frac{D}{4}\right)^{0.63} *\left(\frac{h L}{L}\right)^{0.54} \\
h L=K * Q^{1.85}
\end{gathered}
$$

Where :

$$
K=\frac{10.62 * L}{C^{1.85} * D^{4.87}}
$$

Values of C in Hazen-William's Formula

Type of pipe	C for new pipe	C for used pipe
Cast iron	130	$\|c\|$
Galvanized iron $>50 \mathrm{~mm}$	120	100
Galvanized iron $=<50 \mathrm{~mm}$	110	100
Concrete	140	90
Asbestos cement	150	110
Plastic	150	120

Relation between Pressure in Supply Pipes and Elevation

AvailableHead $(\mathrm{m})=\operatorname{Pr} \operatorname{essure}\left(\mathrm{Kg} / \mathrm{Cm}^{2}\right) * 10-\operatorname{Elevation}(\mathrm{m})$

