Mechanical Properties of Materials

3.1 The Tension and Compression Test

The strength of a material depends on its ability to sustain a load
without undue deformation or failure. This property is inherent in the
material itself and must be determined by experiment. One of the most
important tests to perform in this regard is the tension or compression
test. Although several important mechanical properties of a material
can be determined from this test, it is used primarily to determine the
relationship between the average normal stress and average normal
strain in many engineering materials such as metals, ceramics, polymers,
and composites.
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3.2 The Stress-Strain Diagram

It is not feasible to prepare a test specimen to match the size, Ay and Ly,
of each structural member. Rather, the test results must be reported so
they apply to a member of any size. To achieve this, the load and
corresponding deformation data are used to calculate various values of
the stress and corresponding strain in the specimen. A plot of the results
produces a curve called the stress—strain diagram. There are two ways in
which it is normally described.

Conventional Stress-Strain Diagram. We can determine the
nominal or engineering stress by dividing the applied load P by the
specimen’s original cross-sectional area Ay. This calculation assumes that
the stress is constant over the cross section and throughout the gauge
length. We have

Likewise, the nominal or engineering strain is found directly from the
strain gauge reading, or by dividing the change in the specimen’s gauge
length, &, by the specimen’s original gauge length L. Here the strain is
assumed to be constant throughout the region between the gauge points,
Thus,

e=— (3-2)
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We will now discuss the characteristics of the conventional stress—strain
curve as it pertains to steel. a commonly used material for fabricating
both structural members and mechanical elements. Using the method
described above, the characteristic stress—strain diagram for a steel
specimen is shown in Fig. 34. From this curve we can identify four
different ways in which the material behaves, depending on the amount
of strain induced in the material.
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3.3 Stress-Strain Behavior of Ductile
and Brittle Materials

Materials can be classified as either being ductile or brittle, depending on 0
their stress—strain characteristics.

Ductile Materials. Any material that can be subjected to large
strains before it fractures is called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit 30
large deformation before failing.

One way to specify the ductility of a material is to report its percent 20F
clongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a 10
percent. Thus, if the specimen’s original gauge length is Ly and its length
at fracture is Ly, then !

0002’

Percent elongation =

As seen in Fig. 3-6, since e, = (.38, this value would be 38% for a mild
steel specimen.
The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:
- Ay
Percent reduction of area = (

—, (100%) (3-4)
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3.4 Hooke's Law

As noted in the previous section, the stress—strain diagrams for most
engineering materials exhibit a finear relationship between stress and
strain within the elastic region. Consequently, an increase in stress causes
a proportionate increase in strain. This fact was discovered by Robert
Hooke in 1676 using springs and is known as Heokes law. It may be

expressed mathematically as
o9

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s moedulus, named after Thomas Young,
who published an account of it in 1807.

Equation 3-5 actually represents the equation of the initial straight-
lined portion of the stress—strain diagram up to the proportional limit.
Furthermore, the modulus of elasticity represents the slope of this line.
Since strain is dimensionless, from Eq. 3-5, E will have the same units as
stress, such as psi. ksi, or pascals. As an example of its calculation,
consider the stress—strain diagram for steel shown in Fig. 3-6. Here

o p = 35 ksiand €,y = 0.0012 in./in.. so that

o p 35 ksi 5
Ee B DI ogii kg
ex  0.0012in./in. LI

- Important Points

* A conventional siress—strain diggram 15 important in engineerng
since it provides a means for obtaining data about a material’s
tensile or compressive strength without regard for the material’s
physical size or shape.

* Engineering stress and sirain are calculated using the original
cross-sectional area and gauge length of the specimen.

* A ductile material, such as mild steel, has four distinct behaviors as
it 1s loaded. They are elastic behavior, vielding, sirain hardening, and
necking.

* A material is linear efastic if the stress is proportional to the strain
within the elastic region. This behavior is described by Hooke's law.,
o = Ee, where the modulus of elasticity E is the slope of the line.

* Important points on the stress—strain diagram are the proportional
limit, elasiic {imit, vield siress, ultimate siress, and fracture siress.
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- Important Points

* The ductility of a material can be specified by the specimen’s
percent elongation or the percent reduction in area.

® If a material does not have a distinct yield point, a vield strength can
be specified using a graphical procedure such as the offset method.

® Rrittle materials, such as gray cast iron, have very little or no
vielding and so they can fracture suddenly.

® Strain hardening is used to establish a higher yield point for a
material. This is done by straining the material beyond the elastic
limit, then releasing the load. The modulus of elasticity remains
the same; however, the material’s ductility decreases.

® Sirain energy is energy stored in a material due to its deformation.
This energy per unit volume is called strain-energy density. If
it 1s measured up to the proportional limit, it 15 referred to as
the modulus of resilience, and if it 1s measured up to the point
of fracture, it is called the modulus of toughness. It can be
determined from the area under the o—e diagram.

An aluminum rod shown in Fig. 3-20g has a circular cross section and is
subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram is shown in Fig. 3-20b, determine the approximate elongation

of the rod when the load is applied. Take E; = 70 GPa.

20 mm 15 mm o (MPa)
A | | ¢
10 kN - 10 kN
—_#’ =l s
! 600 mm ‘ﬂ}ﬁmm—-‘ = ﬁ_ ff_d__f—-“' F
oy = b~
P 10(10°)N il SRR
=—=———"—=73183MP , . .
TAB ™=y =(0.01 mjz 2 0 002 004 006
P 10{10°) N
ope = —=———= 56.59 MPa
A 7(0.0075 m)?
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From the stress—strain diagram, the material in segment AB is
strained elastically since o 45 < oy = 40 MPa. Using Hooke's law,

oap 31.83(10°) Pa
(3 = =
AP Ea 70(10°) Pa

= 0.0004547 mm/mm

The material within segment BC is strained plastically, since
ope = oy = 4 MPa. From the graph, for g = 56.59 MPa, eg. =
0.045 mm/mm. The approximate elongation of the rod is therefore

4 = Zel = 0.0004547(600 mm) + 0.0450(400 mm)
= 18.3 mm i (MPa)

5,5_660 - _,_,—'——"'_'_'_—

0 d_/___.r—""f_ £

GI'Y=4U
30

2“[ ege = 0.0450
10

i 1 L
o 002 004 006

3.6 Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but it also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise, a compressive force acting on a body causes
it to contract in the direction of the force and yet its sides expand laterally.
Consider a bar having an original radius r and length L and subjected
to the tensile force P in Fig. 3-21. This force elongates the bar by an
amount &, and its radius contracts by an amount &'. Strains in the
longitudinal or axial direction and in the lateral or radial direction are,
respectively,
&
e'n"'ng and em=7

In the early 1800, the French scientist 5. D. Poisson realized that within the
elastic range the ratio of these strains is a constant, since the deformations
5 and &" are proportional. This constant is referred to as Poisson’s ratio,
v (nu), and it has a numerical value that is unique for a particular material
that is both homogeneous and isotropic. Stated mathematically it is

p= (3-9)
€lons

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Notice
that these strains are caused only by the axial or longitudinal force P:i.e.,
no force or stress acts in a lateral direction in order to strain the material
in this direction.

When the rubber block is compressed Poisson’s ratio is a dimensionless quantity, and for most nonporous
(negative strain) its sides will expand

(positive strain). The Tatio of thess strains solids it has a value that is generally between _IT and % Typical values of
remains constant. v for common engineering materials are listed on the inside back cover.

10
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For an “ideal material™ having no lateral deformation when it is stretched
or compressed Poisson’s ratio will be 0. Furthermore, it will be shown in
Sec. 10.6 that the maximum possible value for Poisson’s ratio is (1.5,
Therefore 0 = v = 0.5.

11

3-25. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.
E, =270 GPa, v, = 04.

300N 300N
= ; __ O emMPa Pmm“‘A

2(0.015)

o 1678(10°%

=2 00006288
flow = F T 270(10%

5 = €iong L = 0.0006288 (200) = 0.126 mm

Elap = ~VEjgy = —0.4(0.0006288) = —0.0002515

Ad = €,d = —0.0002515 (15) = —0.00377 mm

12
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A bar made of A-36 steel has the dimensions shown in Fig. 3-22. If an
axial force of P = 80 kN is applied to the bar, determine the change
in its length and the change in the dimensions of its cross section after
applying the load. The material behaves elastically.
|Ey = 200 GPa, », =032
P =80kN ’ T

13

P =80 kN

‘\.. i

15m :

The normal stress in the bar is \4/\‘ |

P BO(IO)N
"V_Z_ﬁﬁ?ﬁmﬁﬁf_mmumpa

oz 160(10°) Pa
T E.  200(10°) Pa

The axial elongation of the bar is therefore

= 80(10°") mm/mm

8, = e,L, = [80(107®)](1.5 m) = 120 pm
€x = Ey = —Vy€, = —0.32[80(107%)] = —25.6 pm/m
Thus the changes in the dimensions of the cross section are
8, = e,L, = —[25.6(107%)](0.1 m) = —2.56 pm
5, = e,L, = —[25.6(107%)](0.05 m) = —1.28 um 14

" 100 mm \
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3.7 The Shear Stress-Strain Diagram

In Sec. 1.5 it was shown that when a small element of material is
subjected to pure shear, equilibrium requires that equal shear stresses
must be developed on four faces of the element. These stresses 7, must
be directed toward or away from diagonally opposite corners of the
element, as shown in Fig. 3-23a. Furthermore, if the material is
homogeneous and isotropic, then this shear stress will distort the
element uniformly, Fig. 3-23b. As mentioned in Sec. 2.2, the shear strain
Yxy Measures the angular distortion of the element relative to the sides
originally along the x and y axes.

The behavior of a material subjected to pure shear can be studied in a
laboratory using specimens in the shape of thin tubes and subjecting
them to a torsional loading. If measurements are made of the applied
torque and the resulting angle of twist, then by the methods to be
explained in Chapter 5, the data can be used to determine the shear
stress and shear strain, and a shear stress—strain diagram plotted. An
example of such a diagram for a ductile material is shown in Fig. 3-24.
Like the tension test, this material when subjected to shear will exhibit
linear-elastic behavior and it will have a defined proportional limit 7.
Also, strain hardening will occur until an wltimate shear stress 7, is
reached. And finally, the material will begin to lose its shear strength
until it reaches a point where it fractures, 7.

15

For most engineering materials, like the one just described, the elastic
behavior is linear, and so Hooke’s law for shear can be written as

= Gy (3-10)

Here G is called the shear modulus of elasticity or the modulus of
rigidity. Its value represents the slope of the line on the 7—y diagram,
thatis, G = /v Typical values for common engineering materials are
listed on the inside back cover. Notice that the units of measurement for

¥

G will be the same as those for 7 (Pa or psi), since y is measured in
radians, a dimensionless quantity.

It will be shown in Sec. 10.6 that the three material constants, E, », and
G are actually related by the equation

E

G = WiD 3-11)

Provided E and G are known, the value of v can then be determined
from this equation rather than through experimental measurement.
For example, in the case of A-36 steel, E, =29(10°)ksi and
G, = 11.0(10°) ksi, so that, from Eq.3-11, », = 0.32.

16
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An aluminum specimen shown in Fig. 3-26 has a diameter of
dy = 25 mm and a gauge length of Ly = 250 mm. If a force of 165 kN
elongates the gauge length 1.20 mm. determine the modulus of
elasticity. Also, determine by how much the force causes the diameter
of the specimen to contract. Take G,; = 26 GPa and oy = 440 MPa.

Modulus of Elasticity. The average normal stress in the specimen is
P 165(10°) N

¢=—=———"—=33.1MPa
A (7/4)(0.025 m)

165 kN

a0
and the average normal strain is ’
§ 1.20mm :
Er= I = m = 0'1]480 mim;/ mim L
5T 336.1(10%) Pa —
L e T o A R H.
A% 0.00480
165 kN
17
E
e 2(1 + »)
70.0 GPa
’ =ity
26 GPa 201 + »)
v = 0347

Since €y, = 0.00430 mm/mm, then by
ot Elat
Elong

Elat
0.00480 mm,/mm

€1 = —0.00166 mm/mm

]J=

0.347

The contraction of the diameter is therefore

8" = (0.00166)(25 mm)
= (L0416 mm

18
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3-26. The thin-walled tube is subjected to an axial force of
40 kN. If the tube elongates 3 mm and its circumference
decreases 0.09 mm, determine the modulus of elasticity,
Poisson’s ratio, and the shear modulus of the tube’s
material. The material behaves elastically.

Normal Stress and Strain:

=B 40(103] = 226.35 MP
T4 T 00125 — 001y o VR
8 3
=—=_"_=3, 3
= ol 3333 (107°) mm/mm
Applying Hooke’s law, E 67_91(109]

o = Ee; 226.35(10% = E[3.3333(107)]
E = 67.91(10°) Pa = 67.9 GPa

Poisson’s Ratio: The circumference of the loaded tube is 27(12.5) — 0.09 =
78.4498 mm. Thus, the outer radius of the tube is

78.4498

"n

= 12,4857 mm

lateral strain is

—ra 124857 — 125
e = — 20 = 2 — —1.1459(10%) mm/mm
n 125

=

e —1.1459(107)
= || = 03438 = 0344
3.3333(107%)

€a

T2+ 2L+ 03438)

li.5 mm

= 25.27(10%) Pa = 25.3 Gl

19

3-37. The rigid beam rests in the horizontal position on
two 2014-T6 aluminum cylinders having the wunloaded
lengths shown. If each cylinder has a diameter of 30 mm.
determine the placement x of the applied 80-kN load so
that the beam remains horizontal. What is the new diameter
of cylinder A after the load is applied? »,; = 0.35.

1
210 mm

220 mfn

20
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C+ SM,=0; Fp3)—80(x)=0: Fgz= %
: 80(3 — x)
C+EMp=0. ~F,3)+83-x)=0 F,= e
Since the beam is held horizontally, §, = 8p 180 L7
P2 o %
c=—: e=—==
A E E [ ;
P
P : "
=gk (E) AE ®

BG-0220)  8£210)

84 = O
ATTE AE AE

80(3 — x)(220) = 80x(210)

R L Blat = —VEiong = —0.35(=0.000756) = 0.0002646
From Eq. (2),

d'y = d, + d ey = 30 + 30(0.0002646) = 30.008 mm
F,=3907kN

Fg 39.07(10%)

A

AT Z0.03)

Tq =

= 55.27 MPa

oca  5527(108) )
=-A - T = 0000756
Biong = 5 AT 1000756

21
*3-44, The A-36 steel wire AB has a cross-sectional area
of 10 mm? and is unstretched when @ = 45.0°. Determine
the applied load P needed to cause 8 = 44.9°.
Lag 400
sin 90.2°  sin 44.9°
L4z = 566.67 mm
400
= =565,
Lan = gnase — 09569
Lag — Lag _ 566.67 — 565.69
= = = 0.0

& - - 0.001744

o = Ee = 200(10%) (0.001744) = 348.76 MPa
C+EM, =0

P(400 cos 0.2°) — F 4 sin 44.9° (400) = 0
However,

6 -6 Fre

Fap = oA = 348.76(106)(10)(1076) = 3488 kN ' 44
From Eq. (1), K 400 o

P =246kN M P 22
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3-27. When the two forces are placed on the beam, the
diameter of the A-36 steel rod BC decreases from 40 mm to
39.99 mm. Determine the magnitude of each force P.

C+EM, =0 FM(%)(S} -P2)-P(1)=0

Normal Stress and Strain: The lateral strain of rod BC is

d—dy 3999 — 40 ,3
€y = ——— = ———— = —0.25(107°) mm/mm
lat d[} 40 /
€ = —VEs —0.25(107%) = —(0.32)¢,

€, = 0.78125(107) mm/mm

Assuming that Hooke’s Law applies.

ogc = Eez ope = 200(10%)(0.78125)(107%) = 156.25 MPa

Since o < oy, the assumption is correct.

Frc 125P
ope = A—’;i; 156.25(10%) = — =2

T

%00

P = 157.08(10})N = 157 kN

23
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