Mechanics of Material 80 Questions

Q.

In the structure shown, a 6 mm diameter pin is used at C and 10 mm diameter at B and D.

If the load P is 15 kN .
Determine Normal stress at link BD and Shearing stress at pins \boldsymbol{C} and \boldsymbol{B}.

Q.

In the structure shown, an 8 mm diameter pin at A, and 12 mm diameter pins at B and
 D.

If the load P is 15 kN .
Determine Normal stress at link BD and Shearing stress at pins \boldsymbol{A} and \boldsymbol{B}.

Q.

1. Rods $A B$ and $B C$ each have a diameter of 10 mm . Determine the angle $\boldsymbol{\theta}$ of $\operatorname{rod} \boldsymbol{B C}$ so that the average normal stress in $\operatorname{rod} A B$ is 1.5 times that in $\operatorname{rod} B C$.
2. What is the load \boldsymbol{P} that will cause this to happen if the average normal stress in each rod is not allowed to exceed 130 MPa ?

Q.
3. The 50 kg chandelier is suspended from the wall and ceiling using rods $A B$ and $B C$, which have diameters of 6 mm and 8 mm respectively. Determine the angle $\boldsymbol{\theta}$ so that the average normal stress in both rods is the same.
4. What is the Maximum weight that will cause this to happen if the average normal stress in each rod is not allowed to exceed 100 MPa ?
Q.

The rectangular plate is deformed into the shape shown by the dashed lines. Determine:

1. The average normal strain along diagonals $A C$ and $D B$.
2. The average shear strain at corners A and B

Q.

A square piece of material is deformed into the dashed position. Determine:

1. The average normal strain along diagonals $\boldsymbol{A C}$ and $\boldsymbol{D B}$.
2. The average shear strain at corners A and C

Q.

An aluminum rod has a length of 75 mm , and a diameter of 15 mm .
When the applied load is 40 kN , the new diameter of the specimen is 14.983 mm .
Compute the shear modulus (G) for the aluminum. Take $E_{a l}=70 \mathrm{GPa}$.
Q.

Q.

The 4-mm-diameter cable $B C$ is made of a steel with $E=200$ GPa. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6 mm , find the maximum load \boldsymbol{P} that can be applied.
Q.

Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that $E s=200 G P a$ and $E b=105 G P a$, determine:
a. The reactions at \mathbf{A} and \boldsymbol{E},
b. The displacement of point C.

Q.

The compound shaft, consisting of steel and aluminium segments, carries the two torques shown. Determine the maximum permissible value of T subject to the following design conditions:
$\tau_{s t} \leq 83 \mathrm{MPa}, \tau_{a l} \leq 55 \mathrm{MPa}$, and $\theta \leq \sigma^{\circ}(\theta$ is the angle of rotation of the free end).

Dimensions in mm

Use $G_{s t}=83 \mathrm{GPa}$, and $G_{a l}=28 \mathrm{GPa}$

Q.

Draw the load and the bending moment diagrams that correspond to the given shear force diagram.

Q.

The beam carries a concentrated load W and a uniformly distributed load that totals $4 W$. Determine the largest allowable value of \mathbf{W}, if the maximum stresses are 60 MPa in tension and 100 MPa in compression.

Q.

For the beam loaded as shown, compute maximum shearing stress at support B.

Q.

Determine the largest weight W that can be supported by the two wires $A B$ and $A C$: The allowable stresses are 100 MPa for $A B$ and 150 MPa for $A C$. The cross-sectional areas of $A B$ and $A C$ are $400 \mathrm{~mm}^{2}$ and $200 \mathrm{~mm}^{2}$, respectively.

Q.

The bracket shown is supported by a 20-mm-diameter pin at D that is in double shear. Determine:
(a) the required diameter of the connecting rod $A B$, given that its allowable stress is 100 MPa .
(b) the shear stress in the pin D

For the shaft loaded as shown, if $\delta=1.4 \mathrm{~mm}$ and $d^{\prime}=19.9837 \mathrm{~mm}$, determine the modulus of rigidity G

Q.

The lever arm is supported by two wires having the same diameter of $\mathbf{4 ~ m m}$. If $\mathbf{P = 3}$ $\boldsymbol{k N}$, diameter is fixed with two red brass of 50 mm diameter, determine the average normal stress in each wire and their elongations. Take $\boldsymbol{E}=\mathbf{2 0 0} \boldsymbol{G P a}$.

Q.

Link $B C$ is 6 mm thick and is made of a steel with a maximum normal stress of 450 MPa in tension.

1. What should be its width w if the structure shown is being designed to support a $20-k N$ load P with a factor of safety of 3 ?
2. Determine shearing stress at pin \mathbf{C} if the bolt is 15 mm diameter and it is in single shear.
Q. The rigid bar $A B C$ is supported by two links, $A D$ and $B E$, of uniform $37.5 \times 6-\mathrm{mm}$ rectangular cross section.

The magnitude of the force Q applied at B is 260 kN and $a=0.640 \mathrm{~m}$. determine:
(a) The normal stress in each link,
(b) The maximum deflection of point \mathbf{B}.

Take $E=200$ GPa.

Q.

A bronze bar is fastened between a steel bar and an aluminum bar as shown. Axial loads are applied at the positions indicated.

Find the largest value of \mathbf{P} that will not exceed an overall deformation of 3.0 mm , or the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80 MPa in the aluminum. Use Est. $=200 \mathrm{GPa}, \mathrm{Eal} .=70 \mathrm{GPa}$, and Ebr. $=83 \mathrm{GPa}$.

Q.

The solid compound shaft, made of three different materials, carries the two torques shown.

1. Calculate the maximum shear stress in each material.
2. Find the angle of rotation of the free end of the shaft.

$$
\text { Gal. }=28 \text { GPa , Gst. }=83 \mathrm{GPa}, \mathrm{Gbr} .=35 \mathrm{GPa} .
$$

Q
For the beam loaded as shown;

1. Draw shear and moment diagram.

2. Determine flexural stress.
3. Determine maximum shearing stress.

Q.

For the overhanging beam shown using double integration method, determine:

1. The equations for the elastic curve and rotation; and
2. The deflection at midway between the supports and at point E.

Take $E=70 \mathrm{GPa}, I=65 \times 10^{6} \mathrm{~mm}^{4}$

Q.

Determine the average normal stress in the $10-\mathrm{mm}$ diameter rod CD and the average shear stress in the $6-\mathrm{mm}$ diameter pin \boldsymbol{B} that is subjected to double shear. $P=1.5 \mathrm{kN}$

Q
Determine the largest load P that can be applied without causing either the average normal stress to exceed 150 MPa or the average shear stress to exceed 60 MPa at section $a-a$. Member $C B$ has a square cross section of 25 mm on each side.

Q

The rigid member $C B D$ and flexible cable $A B$ is subjected to load at D, if the normal strain at cable $A B$ is 0.0035 , determine the displacement of point D.

Q

The rigid horizontal Beam $A B$ rests on two aluminum cylinders having a diameter of 30 mm . Determine the displacement x of the applied load 80 kN so that the beam remain horizontal. What is the new diameter of
 cylinders \boldsymbol{A}, take $\mathrm{u}=\mathbf{0 . 4}, \mathrm{E}=\mathbf{7 0} \mathbf{~ G P a}$
Q.

Find the support reactions and the internal forces at point B

Q
Rods $A B$ and $B C$ have a diameter of 5 mm . If $P=2 \mathrm{kN}$ and $\theta=60^{\circ}$, determine the average normal stress in each rod.

*4-60. The assembly consists of two posts $A D$ and $C F$ made of A-36 steel and having a cross-sectional area of $1000 \mathrm{~mm}^{2}$, and a 2014-T6 aluminum post $B E$ having a crosssectional area of $1500 \mathrm{~mm}^{2}$. If a central load of 400 kN is applied to the rigid cap, determine the normal stress in each post. There is a small gap of 0.1 mm between the post $B E$ and the rigid member $A B C$.

Q

The shaft is made of copper with an allowable shear stress of
$\tau_{\text {all. }}=20 \mathrm{MPa}$, Determine;
The maximum torques $T 1$ and $T 2$ that can be applied.

And angle of twist of end A if $L=0.75 \mathrm{~m}$. Take $G=37 \mathrm{GPa}$.
Q.

A 500 mm long, 16 mm diameter rod is observed to increase in length by $300 \mu \mathrm{~m}$, and to decrease in diameter by $2.4 \mu m$ when subjected to an axial 12 kN load.

Determine the modulus of elasticity and Poisson's ratio.

Q.

The steel bars $A C$ and $B C$, each of crosssectional area 120 mm 2 , are joined at C.

Determine the displacement of point \boldsymbol{C} by the 15 kN load.

Use $E=200 G P a$ for steel.

Q

Find the internal forces at point C

Q Determine average normal and average shear stress along the section $\mathrm{a}-\mathrm{a}$.

The square plate is deformed into the shape shown by the dashed lines.

If $D C$ has a normal strain $\epsilon_{x}=0.004, D A$ has a normal strain $\epsilon_{y}=0.005$ and at $D, \gamma_{x y}=0.02 \mathrm{rad}$,, determine the average normal strain along diagonal CA and the average shear strain at point \boldsymbol{E} with respect to the x ' and y^{\prime} axes.

Q

1. Write shear and moment equations for part DE, then draw shear and moment diagrams for the beam loaded as shown.

Q

1. Draw Load and moment diagrams from the shear diagram shown.

Q.

A rigid block of mass M is supported by three symmetrically spaced rods as shown. Each
copper rod has an area of $900 \mathrm{~mm}^{2} ; E=120$ $G P a$; and the allowable stress is 70 MPa . The steel rod has an area of $1200 \mathrm{~mm}^{2} ; E=200$ $G P a$; and the allowable stress is 140 MPa . Determine the largest mass M that can be supported.

Q.

The steel shaft of 60 mm diameter is fixed at both ends A and B, determine maximum shearing stress in the shaft. take G=80 GPa

Q.

Draw shear and moment diagrams for the beam shown, then:

1. Find maximum flexure stress.
2. Find maximum shearing stress.
3. Find flexure and shearing stress at points A, B, and C, at $x=4.0 \mathrm{~m}$.

Q.

For the beam loaded as shown.
Determine the deflection at location of point load and slope at point A.

Take $E=200 \mathrm{GPa}, I=65 \times 10^{6} \mathrm{~mm}^{4}$.

Q.

Determine normal and shear stresses acting on sections $a-a$ and b \boldsymbol{b}, the cross-section of member $\boldsymbol{A B}$ is square ($50 \mathrm{~mm} \times 50 \mathrm{~mm}$)

Q.

If the allowable shear stress for each of the 10 -mm-diameter steel pins at A, B, and C is $\tau_{\text {allow }}=90 \mathrm{MPa}$, and the allowable normal stress for the 13 -mm-diameter $\operatorname{rod} B C$ is $\sigma_{\text {allow }}=150 \mathrm{MPa}$, determine the largest uniform distributed load w that can be suspended from the beam.

Q.

The steel shaft of $\mathbf{2 0} \mathbf{~ m m}$ diameter is fixed with two red brass of $50 \mathbf{~ m m}$ diameter, determine the average normal stress in each shaft due to applied load and the displacement of point A with respect to point \boldsymbol{B}. Take $\boldsymbol{E}_{s t}=\mathbf{2 0 0} \boldsymbol{G P a}$, $E_{b}=101$ GPa .

Q.

Determine the displacement of point B if the diameter of each support rods A, B, and C is 120 mm and $E=120 \mathrm{GPa}$

Q.

The shaft is made of copper with an allowable shear stress of
tall. $=20 \mathrm{MPa}$, Determine;
a. The maximum torques $T 1$ and $T 2$ that can be applied.

b. Angle of twist of end A if $L=0.75 \mathrm{~m}, G=37 \mathrm{GPa}$.
Q.

The steel rod of 40 mm diameter is bonded to magnesium tube as shown. If a torque of $T=5 \mathrm{kN} . \mathrm{m}$ is applied to end A, determine the maximum shear stress in each material.

Take $\mathrm{G}_{\mathrm{st}}=75 \mathrm{GPa}, \mathrm{G}_{\mathrm{mg}}=18 \mathrm{GPa}$
Q.

For the beam loaded as shown;
a. Write shear and moment equations.
b. Draw shear and moment diagram.
c. Compute maximum flexural stress.
d. Compute maximum shearing stress.

Q
a. Find the flexure stress at point E. b. Find maximum shear stress.

Q Find maximum shear stress.

Q Find the internal forces at points E \& F

Q Find the internal forces at points D \& E

Q Find the support reactions and the internal forces at point C

Q Find the internal forces at points C \& D

Q The uniform 2 Mg bar is supported by a smooth wall at A and by a pin at P that is in double shear, determine the shear stress at pin B if the bolt diameter is 30 mm .

Q If wires $A B$ and $B C$ have allowable stress of 165 MPa , determine the required diameter of each wire if $P=6 \mathrm{kN}$.

Three rods, each of area 250 mm 2 , jointly support a 7.5 kN load, as shown in Fig. P256. Assuming that there was no slack or stress in the rods before the load was applied, find the stress in each rod. Use $\mathrm{E}_{\text {st }}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{br}}=83 \mathrm{GPa}$.

Q

Each of the rods $B D$ and $C E$ is made of brass ($E=105 \mathrm{GPa}$) and has a cross-sectional area of $200 \mathrm{~mm}^{2}$. Determine the deflection of end A of the rigid member $A B C$ caused by the $2-\mathrm{kN}$ load.

Q
The length of the assembly shown decreases by 0.40 mm when an axial force is applied by means of rigid end plates. Determine (a) the magnitude of the applied force, (b) the corresponding stress in the brass core.

Q The rigid bar $A B$ is pinned at O. Compute the stress in the aluminum rod when the lower end of the steel rod is attached to its support, $\Delta=5 \mathrm{~mm}$

Q Find maximum load P that can be applied without exceeding stresses of 150 MPa in the steel rod and 70 MPa in the bronze rod.

Q Compute the load in each rod. The three rods are of the same area and material.

$Q A$ cast-iron beam carries the loads as shown. Determine the maximum shear stress $I_{\text {N.A. }}=40 * 10^{6} \mathbf{m m}^{4}$.

Q For the beam loaded as shown. Determine the maximum shear stress

	8 kN	
$10 \mathrm{kN} / \mathrm{m}$		120 mm
4 m	$1 \mathrm{~m} \text { N.A. }$	${ }^{50 \mathrm{~mm}}$
R1	R2 $\mathrm{I}_{\mathrm{N} . \mathrm{A}}=2$	$0^{6} \mathrm{~mm}^{4}$

Q Steel rods ($A B, A C$ and $A D$) have the same 25 mm diameter and 600 mm length. Determine the forces developed in each rod when the temperature increases $50{ }^{\circ} \mathrm{C}$.

Take $\alpha_{s t}=12 \times 10^{-6} / o c$.

$E_{s t}=200 \mathrm{GPa}$.
Q A stepped brass bar 150 mm length is inserted into a steel link with rigid ends, as shown. Initially, no axial forces exist in the bar. If the temperature increases $40^{\circ} \mathrm{C}$, determine the maximum normal stress produced in the bar. Use $E_{b}=105 \mathrm{GPa}, \alpha_{b}=20 \times 10^{-6} /{ }^{\circ} \mathrm{C}, E_{s}=200$ $\mathrm{GPa}, \alpha_{s}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, and the cross-sectional areas $A_{1}=500 \mathrm{~mm}^{2}, A_{2}=400 \mathrm{~mm}^{2}, A_{3}=900$ mm^{2}.

Q A rigid horizontal bar of negligible mass is connected to two rods as shown. If the system is initially stress-free. Calculate the temperature change that will cause a tensile stress of 90 MPa in the brass rod.

Q The assembly consists of two brass rods ($A B \& C D$) of diameter 30 mm and a steel rod EF of diameter 40 mm and a rigid cap G, if the supports at A, C and F are rigid, determine the normal stress developed in each rod.
Take $E_{\text {brass }}=101 \mathrm{GPa}, \mathrm{E}_{\text {steel }}=193 \mathrm{GPa}$

Q The beam subjected to the load shown. Determine the deflection at mid span between suppots. EI is constant.

Q.

The assembly shown consists of two steel rods $A B$ and $E F$ and aluminum rod $C D$. At temperature $30^{\circ} \mathrm{C}$ the gap between the rod $C D$ and rigid member $A E$ is 0.1 mm . Determine the normal stress in each material if the temperature rises to $130^{\circ} \mathrm{C}$. Take $\alpha_{s t}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
$E_{s t}=200 \mathrm{GPa}, \alpha_{a l}=24 \times 10^{-6} /{ }^{\circ} \mathrm{C}, E_{a l}=70 \mathrm{GPa}$.

Q.

The compound beam is fixed at A, pin connected at B, and supported by a roller at C;
a. Draw shear and moment diagrams.
b. Compute maximum flexural stress.
c. Compute maximum shearing stress.

Q.

The beam sujected to the load shown. Determine the deflection at mid span between supports and at free end, Take $E=200 \mathrm{GPa}, I=$ $100 \times 10^{6} \mathrm{~mm}^{4}$

Q.

The steel bar $A B$ has a rectangular cross section. If it is pin connected at its ends, determine the maximum allowable intensity of the distributed load \boldsymbol{w} that can be applied to $B C$ without causing bar $A B$ to buckle. Use factor of safety of 1.5 .
Take $E=200$ GPa, $\sigma_{y}=360 \mathrm{MPa}$

Problem

The uniform beam is supported by two rods $A B$ and $C D$ have cross-sectional area of $12 \mathrm{~mm}^{2}$ and $8 \mathrm{~mm}^{2}$ respectively. Determine the position \boldsymbol{d} of the 6 kN load that the normal stress in each rod is the same.

Determine the maximum torque \boldsymbol{T} if the allowable shearing stresses are $\boldsymbol{\tau}_{\boldsymbol{s t}}=\mathbf{8 3} \mathbf{G P a}, \boldsymbol{\tau}_{\boldsymbol{a}=\mathbf{5}} \mathbf{5 \mathbf { G P a }}$, and the angle of rotation of the free end is limited to 6°. $G_{s t}=83 \mathrm{GPa}, G_{a l}=28 \mathrm{GPa}$.

Problem

For the beam loaded as shown,
Determine:
a. The maximum flexural stresses.
b. The maximum shearing stress.

Problem

Determine the maximum deflection for the cantilevered beam;

$$
E=200 \mathrm{GPa} \text { and } I=65\left(10^{6}\right) \mathrm{mm}^{4}
$$

Q Write shear and moment equations for part $\boldsymbol{C D}$ and find maximum flexural stress?

Problem

Determine the reaction at the roller support B; take $E=200 \mathrm{GPa}$, and $I=65$

* $10^{-6} \mathrm{~mm}^{4}$

The triangular plate $A B C$ is deformed into the shape shown by the dashed lines. If at $A \varepsilon_{A B}=0.0075$, $\varepsilon_{A C}=0.01$ and $\gamma_{x y}=0.005 \mathrm{rad}$. determine the average normal strain along edge $\boldsymbol{B C}$.

Draw Shear and moment diagram using shear and moment equations, then find maximum shear and moment in the beam.

