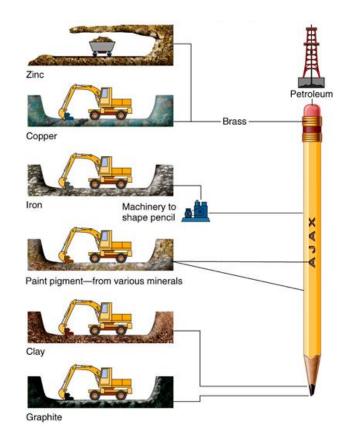
Introducing Geology and an Overview of Important Concepts

Physical Geology,

Srood Naqshabandi

Geology in Today's World


- *Geology* The scientific study of the Earth
 - *Physical Geology* is the study of Earth's materials, changes of the surface and interior of the Earth, and the forces that cause those changes
- Practical Aspects of Geology
 - Natural resources
 - Geological hazards
 - Environmental protection

Practical Aspects of Geology

Natural Resources

- <u>All</u> manufactured objects depend on Earth's resources
- Localized concentrations of useful geological resources are mined or extracted
- If it can't be grown, it must be mined
- Most resources are limited in quantity and *non-renewable*

Resource Extraction and Environmental Protection

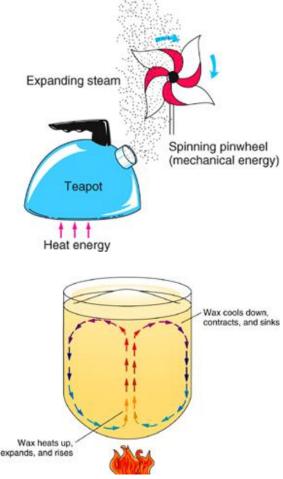
- Coal Mining
 - Careless mining can release acids into groundwater
- Petroleum Resources
 - Removal, transportation and waste disposal can damage the environment

Alaska pipeline

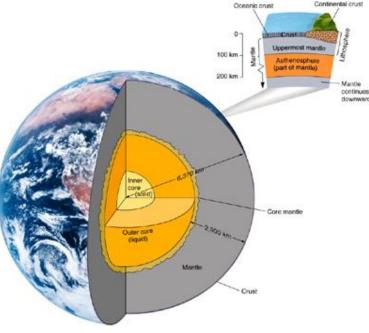
• Dwindling resources can encourage disregard for ecological damage caused by extraction activities

Geologic Hazards

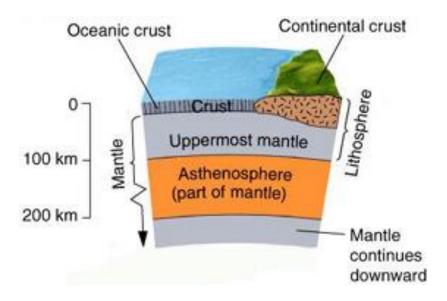
- Earthquakes
 - Shaking can damage buildings and break utility lines; large undersea quakes may generate *tsunamis*
- Volcanoes
 - Ash flows and mudflows can overwhelm populated areas
- Landslides, floods, and wave erosion



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

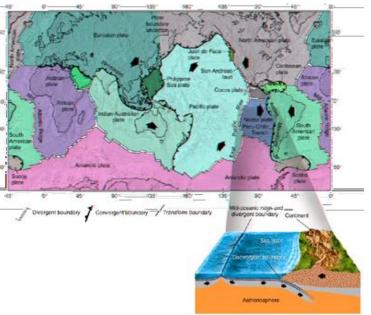

Physical Geology Concepts

- Earth's Heat Engines
 - External (energy from the Sun)
 - Primary driver of atmospheric (weather) and hydrospheric (ocean currents) circulation
 - Controls weathering of rocks at Earth's surface
 - Internal (heat moving from hot interior to cooler exterior)
 - Primary driver of most geospheric phenomena (volcanism, magmatism, tectonism)


Earth's Interior

- Compositional Layers
 - Crust (~3-70 km thick)
 - Very thin outer rocky shell of Earth
 - Continental crust thicker and less dense
 - Oceanic crust thinner and more dense
 - *Mantle* (~2900 km thick)
 - Hot solid that flows slowly over time; Fe-, Mg-, Si-rich minerals
 - *Core* (~3400 km radius)
 - Outer core metallic liquid; mostly iron
 - Inner core metallic solid; mostly iron

Earth's Interior

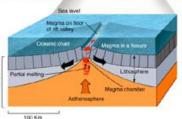

- Mechanical Layers
 - *Lithosphere* (~100 km thick)
 - Rigid/brittle outer shell of Earth
 - Composed of both crust and uppermost mantle
 - Makes up Earth's tectonic "plates"
 - Asthenosphere
 - Plastic (capable of flow) zone on which the lithosphere "floats"

Theory of Plate Tectonics

• Continental Drift Hypothesis

- Originally proposed in early 20th century to explain the "fit of continents", matching rock types and fossils across ocean basins, etc.
- Insufficient evidence found for driving mechanism; hypothesis initially rejected
- Plate Tectonics Theory
 - Originally proposed in the late 1960s
 - Included new understanding of the seafloor and explanation of driving force
 - Describes lithosphere as being broken into *plates* that are in motion
 - Explains origin and distribution of volcanoes, fault zones and mountain belts

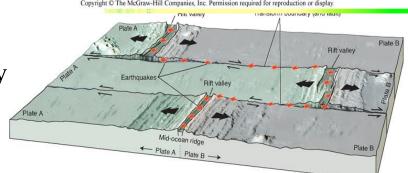
Tectonic Plate Boundaries


• *Divergent* boundaries

- Plates move apart
- Magma rises, cools and forms new lithosphere
- Typically expressed as *mid-oceanic ridges*

• *Transform* boundaries

- Plates slide past one another
- Fault zones, earthquakes mark boundary
- San Andreas fault in California
- Convergent boundaries
 - Plates move toward each other
 - Mountain belts and volcanoes common
 - Oceanic plates may sink into mantle along a *subduction zone*, typically marked by a deep ocean trench

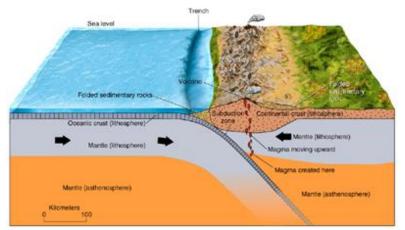

Tectonic Plate Boundaries

• Divergent boundaries

- Plates move apart
- Magma rises, cools and forms new lithosphere
- Typically expressed as *mid-oceanic ridges*

• *Transform* boundaries

- Plates slide past one another
- Fault zones, earthquakes mark boundary
- San Andreas fault in California
- Convergent boundaries
 - Plates move toward each other
 - Mountain belts and volcanoes common
 - Oceanic plates may sink into mantle along a *subduction zone*, typically marked by a deep ocean trench


Tectonic Plate Boundaries

• Divergent boundaries

- Plates move apart
- Magma rises, cools and forms new lithosphere
- Typically expressed as *mid-oceanic ridges*

• *Transform* boundaries

- Plates slide past one another
- Fault zones, earthquakes mark boundary
- San Andreas fault in California
- Convergent boundaries
 - Plates move toward each other
 - Mountain belts and volcanoes common
 - Oceanic plates may sink into mantle along a *subduction zone*, typically marked by a deep ocean trench

Geologic Time

• "Deep" Time

- Most geologic processes occur gradually over millions of years
- Changes typically imperceptible over the span of a human lifetime
- Current best estimate for age of Earth is ~4.56 *billion* years

• Geologic Time and the History of Life

- Complex life forms first became abundant about
 544 million years ago
- Reptiles became abundant ~230 million years ago
- Dinosaurs became extinct (along with *many* other organisms) ~65 million years ago
- Humans have been around for a few million years
- "Nothing hurries geology"

Mark Twain

TABLE 1.2	Some Important Ages in the D	evelopment of Life on E	arth	
Millions of Years before Present	Noteworthy Life	Eras	Periods	
4 65	Earliest hominids First important mammals	Cenoza	oic Quaternary Tertiary	
251	Extinction of dinosaurs	Mesoz	oic {Cretaceous Jurassic Triassic	
300	First reptiles		(Permian Pennsylvanian Mississippian	
400 544	Fishes become abundant	Paleoz	oic {Devonian 15fiilnan- Ordovician Cambrian	
600	Some complex, soft-bodied		(The Precambrian accounts for the	
3,500 4,550	Earliest single-celled fossils Origin of the Earth	Precan	Precambrian accounts for the vast majority of geologic time.)	