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Abstract. It is proved in this note that if R is an Abelian right pm-ring with a finite

number of minimal prime ideals then R is a clean ring, which extends a main result

in [1]. And some known results in [9] on clean elements of commutative reduced rings

are extended to arbitrary Abelian rings. Also we give some new characterizations of a

(strongly) clean ring.
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1. Introduction

Throughout this note R denotes an associative ring with identity. We use the
symbol U(R) to denote the group of units of R and Id(R) the set of idempotents
of R. The Jacobson radical, the prime radical of R are denoted by J(R), P (R),
respectively. The symbol Max(R) stands for the maximal spectrum of the ring
R, and Maxr(R) its right maximal spectrum.

Following Nicholson [8], an element x of a ring R is called to be clean if
x = u + f where u ∈ U(R) and f ∈ Id(R). And the ring R is clean if every
element of R is clean. In [7], an element x ∈ R is said to be strongly clean if
x = u + f with u ∈ U(R), f ∈ Id(R) and uf = fu. While the ring R is strongly
clean if every element of R is strongly clean. We call an element x of R to be an
exchange element if there exists e ∈ Id(R) such that e ∈ xR and 1−e ∈ (1−x)R.
This definition is left-right symmetric by the proof of [6, Proposition ]. Clearly
the ring R is an exchange ring if and only if every element of R is an exchange
element (cf. [5]). It is known from Nicholson [5, Proposition 1.8] that a clean
element of a ring R is an exchange element and the converse holds when R is
Abelian.

According to Sun [10], a proper right ideal P of a ring R is prime if aRb ⊆ P
implies a ∈ P or b ∈ P . And the ring R is said to be a right pm-ring if every
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right prime ideal is contained in a unique maximal right ideal. This is equivalent
to saying that each prime ideal is contained in a unique maximal right ideal [10,
p. 185]. By Sun [10, p. 184], if R is a right pm-ring then R is a pm-ring (the
ring in which every prime ideal is contained in a unique maximal ideal). And
for a right pm-ring R, Max(R) = Maxr(R) ([10, p. 186]).

Recall that a ring R is reduced if it has no nonzero nilpotent element and a
ring R is Abelian if all idempotents of R are central.

Motivated by the results of Anderson and Camillo [1] on commutative clean
rings, Samei [9] on clean elements in commutative reduced rings. In this note we
continue to study clean rings and clean elements, extending some known results
of [1] and [9]. Also we give some new characterizations of a (strongly) clean ring.

2. Some Results on Abelian Clean Rings

In this section, we wish to extend two main results in [1].
We start with the following lemma which is essentially duo to Anderson and

Camillo [1, Lemma 20]. The new proof is given here for convenience of the
reader.

Lemma 2.1. Let R be any ring. If e, f ∈ Id(R) with ef = fe and e− f ∈ J(R),
then e = f .

Proof. Since e − f ∈ J(R), 1 − e + f ∈ U(R). Let 1 − e + f = u. Then
(1−e)u−1 +fu−1 = 1. Hence efu−1 = e. Since ef = fe, we have fu−1 = u−1f ,
which implies e(1 − f) = 0 and thus e = ef . Similarly f = fe and so e = f as
desired.

Theorem 2.2. Let R be an Abelian ring with a finite number minimal prime
ideals (e.g., R is Noetherian). Then the following conditions are equivalent.

(1) R is a finite direct product of local rings.
(2) R is a clean ring.
(3) R is a right pm-ring.

Proof. (1)⇒ (2) Since a local ring is a clean ring and the cleanness is closed
under the finite direct product, so R is clean.

(2)⇒ (3) It is known by [3, Theorem 1] that if R is an Abelian exchange ring
then R/P is a local ring for every prime ideal P of R. Hence P is contained in
a unique maximal right ideal of R. Note that a clean ring is an exchange ring,
and so we are done.

(3)⇒ (1) Since R is a right pm-ring, it is a pm-ring. So each minimal prime
ideal is contained in a unique maximal ideal. And it is well known that a maximal
ideal is a prime ideal and every prime ideal contains a minimal prime ideal, hence
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R has only finitely many maximal ideals M1,M2, · · ·,Mn. In the case of n = 1,
R is a local ring since Max(R) = Maxr(R), and we are done. Otherwise n > 1,
we can assume that Mi 6= Mj whenever i 6= j. Let P1, P2, · · ·, Ps be all minimal
prime ideals of R. Then clearly s ≥ n. Assume Pt1, Pt2, · · ·, Ptkt be minimal
prime ideals contained in Mt, t = 1, 2, · · ·, n where k1+k2+ · · ·+kn = s. Let It be
the intersection of minimal prime ideals contained in Mt. We claim that Ii and
Ij are comaximal for i 6= j. If not, then Ii+Ij 6= R. There exists a maximal ideal
Mk such that Ii+Ij ⊆ Mk. Hence Ii, Ij ⊆ Mk. Since It = Pt1

⋂
Pt2

⋂ ···⋂ Ptkt,
and Pt1Pt2 · · · Ptkt

⊆ It for each 1 ≤ t ≤ n, there exist minimal prime ideals
Pim, Pjl such that Pim, Pjl ⊆ Mk. Note that Pim ⊆ Mi and Pjl ⊆ Mj . It
yields that k = i = j since R is a pm-ring, which is a contradiction. Thus
Ii and Ij are comaximal. Next we claim that R/It is local for each t. If not,
then R/It contains at least two maximal right ideals and hence It is contained
in two maximal right ideals, say, M ′

1,M
′
2 which are two sided maximal ideals

since R is a pm-ring. It yields that It ⊆ M ′
1

⋂
M ′

2. So there exists a minimal
prime ideal Ptk such that Ptk ⊆ M ′

1

⋂
M ′

2, which contradicts the fact that R
is a pm-ring. Now clearly we have P (R) = I1

⋂
I2

⋂ · · ·⋂ In. By the Chinese
Remainder Theorem, R/P (R) = R/I1

⊕
R/I2

⊕ · · ·⊕ R/In. Hence R/P (R) is
an Abelian clean ring, so is R by [8, Proposition 6]. Since R/P (R) is obviously
orthogonally finite, so is R. In fact, if R is orthogonally infinite then there exist
infinite orthogonal idempotents e1, e2, ··· such that ei 6= ej whenever i 6= j. Since
R/P (R) is orthogonally finite, there must be i 6= j such that ēi = ēj . It follows
that ei−ej ∈ P (R) ⊆ J(R), and so ei = ej by Lemma 2.1, a contradiction. Since
R is orthogonally finite, R is a semiperfect ring by [2, Theorem 9]. Hence there
exist orthogonal local idempotents e1, e2, · · ·, eq such that e1 + e2 + · · ·+ eq = 1
in R. So R = e1R

⊕
e2R

⊕ · · ·⊕ eqR where every elR is a local ring. Thus the
proof is completed.

As an immediate result of the above theorem, we have the following corollary.

Corollary 2.3. ([1, Theorem 5]) Let R be a commutative ring with a finite number
minimal primal ideals (e.g., R is Noetherian) then the following conditions are
equivalent.

(1) R is a finite direct product of local rings.
(2) R is a clean ring.
(3) R is a pm-ring.

We conclude this section with the following theorem, which extends Theorem
14 in [1].

Theorem 2.4. Let R be a ring. Then R = U(R)
⋃

Id(R) if and only if R is a
division ring or a Boolean ring.

Proof. (⇒) Obviously R is reduced and hence Abelian. If R contains only trivial
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idempotents, then R = U(R)
⋃{0} and so R is a division ring. Otherwise there

exists e ∈ Id(R) such that e 6= 0, 1. We claim that 2 = 0 in R. In fact, 2 ∈ Id(R)
certainly implies 2 = 0. If 2 ∈ U(R), then we have 2e ∈ Id(R). Assume to the
contrary, then 2e ∈ U(R) and so e ∈ U(R), which gives e = 1, a contradiction.
Since 2e ∈ Id(R), 2e = 0. It yields that 2 = 2e + 2(1 − e) = 2(1 − e) ∈ U(R).
Thus 1− e ∈ U(R) and so e = 0, again a contradiction. Hence 2 = 0. It follows
that Id(R) is a subring of R. We claim that Id(R) = R. If not, then there exists
r ∈ U(R) but r /∈ Id(R). Note that er ∈ U(R) implies e ∈ U(R), and so e = 1,
which is impossible. Hence we have er ∈ Id(R). Similarly (1 − e)r ∈ Id(R).
Therefore r = er + (1− e)r ∈ Id(R), a contradiction. Hence R = Id(R), and R
is a Boolean ring.

(⇐) Clear.

Corollary 2.5. ([1, Theorem 14]) Let R be a commutative ring. Then R =
U(R)

⋃
Id(R) if and only if R is a field or a Boolean ring.

3. Clean Elements and Clean Rings

We start this section with the following lemma which is essentially duo to Nichol-
son [5, Proposition 1.8].

Lemma 3.1. Let R be an Abelian ring. If x ∈ R is an exchange element, then x
is a clean element.

Proof. To check the proof of [5, Proposition 1.8(2)] case by case.

Lemma 3.2. ([7, Proposition 3]) Let R be a ring and e ∈ Id(R). If a ∈ eRe is
strongly clean in eRe, then a is strongly clean in R.

Recall that a subset B of a ring R is called to be clean if every element of B
is clean (cf. [9, p. 3480]).

Proposition 3.3. Let R be an Abelian ring and x ∈ R. If xn is clean, then x is
clean. In particular, if I is clean then

√
I is clean for any ideal of R.

Proof. First we prove that x is an exchange element. Since xn is a clean element,
there exist u ∈ U(R) and f ∈ Id(R) such that xn = u+ f . Let e = u(1− f)u−1.
Then (xn − e)u = (u + f)u− u(1− f) = x2n − xn, so e = xn + (xn − x2n)u−1.
Now it is easy to check that e ∈ xR and 1 − e ∈ (1 − x)R, so x is an exchange
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element. Hence x is a clean element by Lemma 3.1. The last assertion follows
from the fact that

√
I ⊆ {a ∈ R | an ∈ I for some n ≥ 1}.

Corollary 3.4. Let R be an Abelian ring. If a2 is clean, then a and −a are clean.

It should be note that Proposition 3.3 and Corollary 3.4 are obtained in [9,
Corollary 2.4] only for commutative reduced rings.

The following proposition extends Proposition 2.5 in [9].

Proposition 3.5. Let R be an Abelian ring. Let a ∈ R be clean in R and e ∈
Id(R). Then we have

(1) ae is clean.
(2) If −a is also clean, then a + e is clean.

Proof. (1) Since a is clean in R, a = u + f with u ∈ U(R) and f ∈ Id(R). So
ae = ue + fe. Clearly ue ∈ U(eRe) and fe ∈ Id(eRe) since R is Abelian. And
R is Abelian implies ae is strongly in eRe. By Lemma 3.2, ae is strongly clean
in R and hence ae is clean.

(2) It is known and easy to prove that a is clean if and only if 1− a is clean
for a ∈ R. Since a and −a are clean, so are a and 1 + a. Let a = u + f and
1+a = v+g where u, v ∈ U(R) and f, g ∈ Id(R). Then a+e = ae+a(1−e)+e =
(1 + a)e + a(1− e) = (v + g)e + (u + f)(1− e) = ve + u(1− e) + ge + f(1− e).
Note that R is Abelian, it is easy to check that ve + u(1 − e) ∈ U(R) with
(ve + u(1− e))−1 = v−1e + u−1(1− e) and ge + f(1− e) ∈ Id(R). Hence a + e
is clean in R.

Corollary 3.6. ([9, Proposition 2.5]) Let R be commutative reduced ring. Let
a ∈ R be clean and e ∈ R be idempotent, then

(1) ae is clean.
(2) If −a is also clean, then a + e is clean.

We conclude this note by giving some new characterizations of a (strongly)
clean ring.

Recall that a ring R is an exchange ring if and only if for every x ∈ R there
exist e ∈ Id(R) and a, b ∈ R such that e = xa and e − 1 = (x − 1)b. And it
is known that there exists an exchange ring R which is not clean [2]. So we
naturally ask that what forms of the above a and b have for a clean ring R. The
following theorem answer the question.

Theorem 3.7. Let R be a ring. Then R is clean if and only if for every x ∈ R
there exist e ∈ Id(R), w ∈ U(R) such that e = xwe and e− 1 = (x− 1)w(e− 1).
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Proof. Proof. Suppose R is clean and x ∈ R. Then x = u + f with u ∈
U(R), f ∈ Id(R). Let e = u(1 − f)u−1. Then (x − e)u = (u + f − u(1 −
f)u−1)u = u2 + fu − u + uf = x2 − x. So e − x = (x − x2)u−1, which implies
e = x + x(1 − x)u−1 = x(1 + (1 − x)u−1). Note that 1 − x = 1 − u − f and
u−1e = (1−f)u−1. So we have e = x(1+(1−u−f)u−1) = x(1−f)u−1 = xu−1e.
Since u−1e = (1− f)u−1, we have fu−1 = u−1(1− e). Now e = x + x(1−x)u−1

implies e − 1 = (x − 1)(1 − xu−1). Hence e − 1 = (x − 1)(1 − (u + f)u−1) =
(x− 1)(−fu−1) = (x− 1)u−1(e− 1). Now take w = u−1, then we are done.

Conversely, assume that for every x ∈ R there exist w ∈ U(R), e ∈ Id(R)
such that e = xwe and e − 1 = (x − 1)w(e − 1). We prove that x is clean.
In fact, e − 1 = (x − 1)w(e − 1) implies 1 − e = −xwe + we + xw + −w, so
1− e = −e + we + xw − w since e = xwe. It follows that xw = w + 1− we and
hence x = w−1 + 1− wew−1 = w−1 + w(1− e)w−1, as desired.

Similarly we have the following corollary.

Corollary 3.8. Let R be a ring. Then R is clean if and only if for every x ∈ R
there exist e ∈ Id(R), w ∈ U(R) such that e = ewx and e− 1 = (e− 1)w(x− 1).

Theorem 3.9. Let R be any ring and x ∈ R. The following statements are
equivalent.

(1) x is clean.
(2) There exist e ∈ Id(R) and u ∈ U(R) such that e = uxe and e − 1 =

u(x− 1)(e− 1).
(3) There exist e ∈ Id(R) and u ∈ U(R) such that e = exu and e − 1 =

(e− 1)(x− 1)u.

Proof. (1)⇒(2) If x = v + f with v ∈ U(R) and f ∈ Id(R), then xf = vf + f .
So (x − 1)f = vf , which gives f = v−1(x − 1)f . From x = v + f , we have
x(f − 1) = v(f − 1). Hence f − 1 = v−1x(f − 1). Now take 1− e = f, u = v−1,
then we have e = uxe and e− 1 = u(x− 1)(e− 1).

(2)⇒(1) Since uxe = e and e−1 = u(x−1)(e−1) implies e−1 = uxe−ux−
ue + u, we have ux + ue− u = 1, which gives x = u−1 + 1− e. Thus x is clean.

(1)⇔(3) Similar to the above proof.

Corollary 3.10. Let R be a ring and x ∈ R. Then x is strongly clean if and only
if there exist e ∈ Id(R), u ∈ U(R) such that e = xue, e − 1 = (x − 1)u(e − 1)
and eu = ue. Hence R is strongly clean if and only if every x of R satisfies the
above conditions.
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