See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265329459

On clean rings and clean elements

Article in Southeast Asian Bulletin of Mathematics · January 2008

 CITATIONS
 READS

 6
 2,090

 2 authors, including:
 2,090

 Veixing Chen
 Shandong Institute of Business and Technology

 20 PUBLICATIONS 161 CITATIONS
 161 CITATIONS

SEE PROFILE

Southeast Asian Bulletin of Mathematics (2998) 32: 00-6

Southeast Asian Bulletin of Mathematics © SEAMS. 2008

Notes on Clean Rings and Clean Elements

Weixing Chen

Mathematics and Information Science School, Shandong Institute of Business and Technology, Yantai 264005, P. R. China E-mail: wxchen5888@163.com

AMS Mathematics Subject Classification (2000): Primary 16D10, 16D60

Abstract. It is proved in this note that if R is an Abelian right *pm*-ring with a finite number of minimal prime ideals then R is a clean ring, which extends a main result in [1]. And some known results in [9] on clean elements of commutative reduced rings are extended to arbitrary Abelian rings. Also we give some new characterizations of a (strongly) clean ring.

Keywords: Exchange rings; Clean rings; Clean elements; Right pm-rings.

1. Introduction

Throughout this note R denotes an associative ring with identity. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R. The Jacobson radical, the prime radical of R are denoted by J(R), P(R), respectively. The symbol Max(R) stands for the maximal spectrum of the ring R, and $Max_r(R)$ its right maximal spectrum.

Following Nicholson [8], an element x of a ring R is called to be clean if x = u + f where $u \in U(R)$ and $f \in Id(R)$. And the ring R is clean if every element of R is clean. In [7], an element $x \in R$ is said to be strongly clean if x = u + f with $u \in U(R)$, $f \in Id(R)$ and uf = fu. While the ring R is strongly clean if every element of R is strongly clean. We call an element x of R to be an exchange element if there exists $e \in Id(R)$ such that $e \in xR$ and $1 - e \in (1 - x)R$. This definition is left-right symmetric by the proof of [6, Proposition]. Clearly the ring R is an exchange ring if and only if every element of R is an exchange element (cf. [5]). It is known from Nicholson [5, Proposition 1.8] that a clean element of a ring R is an exchange element and the converse holds when R is Abelian.

According to Sun [10], a proper right ideal P of a ring R is prime if $aRb \subseteq P$ implies $a \in P$ or $b \in P$. And the ring R is said to be a right *pm*-ring if every Notes on Clean Rings and Clean Elements

right prime ideal is contained in a unique maximal right ideal. This is equivalent to saying that each prime ideal is contained in a unique maximal right ideal [10, p. 185]. By Sun [10, p. 184], if R is a right pm-ring then R is a pm-ring (the ring in which every prime ideal is contained in a unique maximal ideal). And for a right pm-ring R, $Max(R) = Max_r(R)$ ([10, p. 186]).

Recall that a ring R is reduced if it has no nonzero nilpotent element and a ring R is Abelian if all idempotents of R are central.

Motivated by the results of Anderson and Camillo [1] on commutative clean rings, Samei [9] on clean elements in commutative reduced rings. In this note we continue to study clean rings and clean elements, extending some known results of [1] and [9]. Also we give some new characterizations of a (strongly) clean ring.

2. Some Results on Abelian Clean Rings

In this section, we wish to extend two main results in [1].

We start with the following lemma which is essentially duo to Anderson and Camillo [1, Lemma 20]. The new proof is given here for convenience of the reader.

Lemma 2.1. Let R be any ring. If $e, f \in Id(R)$ with ef = fe and $e - f \in J(R)$, then e = f.

Proof. Since $e - f \in J(R)$, $1 - e + f \in U(R)$. Let 1 - e + f = u. Then $(1-e)u^{-1} + fu^{-1} = 1$. Hence $efu^{-1} = e$. Since ef = fe, we have $fu^{-1} = u^{-1}f$, which implies e(1 - f) = 0 and thus e = ef. Similarly f = fe and so e = f as desired.

Theorem 2.2. Let R be an Abelian ring with a finite number minimal prime ideals (e.g., R is Noetherian). Then the following conditions are equivalent.

- (1) R is a finite direct product of local rings.
- (2) R is a clean ring.
- (3) R is a right pm-ring.

Proof. $(1) \Rightarrow (2)$ Since a local ring is a clean ring and the cleanness is closed under the finite direct product, so R is clean.

 $(2) \Rightarrow (3)$ It is known by [3, Theorem 1] that if R is an Abelian exchange ring then R/P is a local ring for every prime ideal P of R. Hence P is contained in a unique maximal right ideal of R. Note that a clean ring is an exchange ring, and so we are done.

 $(3) \Rightarrow (1)$ Since R is a right *pm*-ring, it is a *pm*-ring. So each minimal prime ideal is contained in a unique maximal ideal. And it is well known that a maximal ideal is a prime ideal and every prime ideal contains a minimal prime ideal, hence

R has only finitely many maximal ideals M_1, M_2, \dots, M_n . In the case of n = 1, R is a local ring since $Max(R) = Max_r(R)$, and we are done. Otherwise n > 1, we can assume that $M_i \neq M_j$ whenever $i \neq j$. Let P_1, P_2, \dots, P_s be all minimal prime ideals of R. Then clearly $s \geq n$. Assume $P_{t1}, P_{t2}, \dots, P_{tk_t}$ be minimal prime ideals contained in $M_t, t = 1, 2, \dots, n$ where $k_1 + k_2 + \dots + k_n = s$. Let I_t be the intersection of minimal prime ideals contained in M_t . We claim that I_i and I_j are comaximal for $i \neq j$. If not, then $I_i + I_j \neq R$. There exists a maximal ideal M_k such that $I_i + I_j \subseteq M_k$. Hence $I_i, I_j \subseteq M_k$. Since $I_t = P_{t1} \bigcap P_{t2} \bigcap \cdots \bigcap Ptk_t$, and $P_{t1}P_{t2}\cdots P_{tk_t} \subseteq I_t$ for each $1 \leq t \leq n$, there exist minimal prime ideals P_{im}, P_{jl} such that $P_{im}, P_{jl} \subseteq M_k$. Note that $P_{im} \subseteq M_i$ and $P_{jl} \subseteq M_j$. It yields that k = i = j since R is a pm-ring, which is a contradiction. Thus I_i and I_j are comaximal. Next we claim that R/I_t is local for each t. If not, then R/I_t contains at least two maximal right ideals and hence I_t is contained in two maximal right ideals, say, M'_1, M'_2 which are two sided maximal ideals since R is a pm-ring. It yields that $I_t \subseteq M'_1 \cap M'_2$. So there exists a minimal prime ideal P_{tk} such that $P_{tk} \subseteq M'_1 \cap M'_2$, which contradicts the fact that R is a *pm*-ring. Now clearly we have $P(R) = I_1 \cap I_2 \cap \cdots \cap I_n$. By the Chinese Remainder Theorem, $R/P(R) = R/I_1 \bigoplus R/I_2 \bigoplus \cdots \bigoplus R/I_n$. Hence R/P(R) is an Abelian clean ring, so is R by [8, Proposition 6]. Since R/P(R) is obviously orthogonally finite, so is R. In fact, if R is orthogonally infinite then there exist infinite orthogonal idempotents e_1, e_2, \cdots such that $e_i \neq e_j$ whenever $i \neq j$. Since R/P(R) is orthogonally finite, there must be $i \neq j$ such that $\bar{e}_i = \bar{e}_j$. It follows that $e_i - e_i \in P(R) \subseteq J(R)$, and so $e_i = e_i$ by Lemma 2.1, a contradiction. Since R is orthogonally finite, R is a semiperfect ring by [2, Theorem 9]. Hence there exist orthogonal local idempotents e_1, e_2, \dots, e_q such that $e_1 + e_2 + \dots + e_q = 1$ in R. So $R = e_1 R \bigoplus e_2 R \bigoplus \cdots \bigoplus e_q R$ where every $e_l R$ is a local ring. Thus the proof is completed.

As an immediate result of the above theorem, we have the following corollary.

Corollary 2.3. ([1, Theorem 5]) Let R be a commutative ring with a finite number minimal primal ideals (e.g., R is Noetherian) then the following conditions are equivalent.

- (1) R is a finite direct product of local rings.
- (2) R is a clean ring.
- (3) R is a pm-ring.

We conclude this section with the following theorem, which extends Theorem 14 in [1].

Theorem 2.4. Let R be a ring. Then $R = U(R) \bigcup Id(R)$ if and only if R is a division ring or a Boolean ring.

Proof. (\Rightarrow) Obviously R is reduced and hence Abelian. If R contains only trivial

Notes on Clean Rings and Clean Elements

idempotents, then $R = U(R) \bigcup \{0\}$ and so R is a division ring. Otherwise there exists $e \in Id(R)$ such that $e \neq 0, 1$. We claim that 2 = 0 in R. In fact, $2 \in Id(R)$ certainly implies 2 = 0. If $2 \in U(R)$, then we have $2e \in Id(R)$. Assume to the contrary, then $2e \in U(R)$ and so $e \in U(R)$, which gives e = 1, a contradiction. Since $2e \in Id(R)$, 2e = 0. It yields that $2 = 2e + 2(1 - e) = 2(1 - e) \in U(R)$. Thus $1 - e \in U(R)$ and so e = 0, again a contradiction. Hence 2 = 0. It follows that Id(R) is a subring of R. We claim that Id(R) = R. If not, then there exists $r \in U(R)$ but $r \notin Id(R)$. Note that $er \in U(R)$ implies $e \in U(R)$, and so e = 1, which is impossible. Hence we have $er \in Id(R)$. Similarly $(1 - e)r \in Id(R)$. Therefore $r = er + (1 - e)r \in Id(R)$, a contradiction. Hence R = Id(R), and R is a Boolean ring.

 (\Leftarrow) Clear.

Corollary 2.5. ([1, Theorem 14]) Let R be a commutative ring. Then $R = U(R) \bigcup Id(R)$ if and only if R is a field or a Boolean ring.

3. Clean Elements and Clean Rings

We start this section with the following lemma which is essentially duo to Nicholson [5, Proposition 1.8].

Lemma 3.1. Let R be an Abelian ring. If $x \in R$ is an exchange element, then x is a clean element.

Proof. To check the proof of [5, Proposition 1.8(2)] case by case.

Lemma 3.2. ([7, Proposition 3]) Let R be a ring and $e \in Id(R)$. If $a \in eRe$ is strongly clean in eRe, then a is strongly clean in R.

Recall that a subset B of a ring R is called to be clean if every element of B is clean (cf. [9, p. 3480]).

Proposition 3.3. Let R be an Abelian ring and $x \in R$. If x^n is clean, then x is clean. In particular, if I is clean then \sqrt{I} is clean for any ideal of R.

Proof. First we prove that x is an exchange element. Since x^n is a clean element, there exist $u \in U(R)$ and $f \in Id(R)$ such that $x^n = u + f$. Let $e = u(1 - f)u^{-1}$. Then $(x^n - e)u = (u + f)u - u(1 - f) = x^{2n} - x^n$, so $e = x^n + (x^n - x^{2n})u^{-1}$. Now it is easy to check that $e \in xR$ and $1 - e \in (1 - x)R$, so x is an exchange

element. Hence x is a clean element by Lemma 3.1. The last assertion follows from the fact that $\sqrt{I} \subseteq \{a \in R \mid a^n \in I \text{ for some } n \ge 1\}$.

Corollary 3.4. Let R be an Abelian ring. If a^2 is clean, then a and -a are clean.

It should be note that Proposition 3.3 and Corollary 3.4 are obtained in [9, Corollary 2.4] only for commutative reduced rings.

The following proposition extends Proposition 2.5 in [9].

Proposition 3.5. Let R be an Abelian ring. Let $a \in R$ be clean in R and $e \in Id(R)$. Then we have

(1) ae is clean.

(2) If -a is also clean, then a + e is clean.

Proof. (1) Since a is clean in R, a = u + f with $u \in U(R)$ and $f \in Id(R)$. So ae = ue + fe. Clearly $ue \in U(eRe)$ and $fe \in Id(eRe)$ since R is Abelian. And R is Abelian implies ae is strongly in eRe. By Lemma 3.2, ae is strongly clean in R and hence ae is clean.

(2) It is known and easy to prove that a is clean if and only if 1 - a is clean for $a \in R$. Since a and -a are clean, so are a and 1 + a. Let a = u + f and 1 + a = v + g where $u, v \in U(R)$ and $f, g \in Id(R)$. Then a + e = ae + a(1-e) + e = (1+a)e + a(1-e) = (v+g)e + (u+f)(1-e) = ve + u(1-e) + ge + f(1-e). Note that R is Abelian, it is easy to check that $ve + u(1-e) \in U(R)$ with $(ve + u(1-e))^{-1} = v^{-1}e + u^{-1}(1-e)$ and $ge + f(1-e) \in Id(R)$. Hence a + e is clean in R.

Corollary 3.6. ([9, Proposition 2.5]) Let R be commutative reduced ring. Let $a \in R$ be clean and $e \in R$ be idempotent, then

(1) ae is clean.

(2) If -a is also clean, then a + e is clean.

We conclude this note by giving some new characterizations of a (strongly) clean ring.

Recall that a ring R is an exchange ring if and only if for every $x \in R$ there exist $e \in Id(R)$ and $a, b \in R$ such that e = xa and e - 1 = (x - 1)b. And it is known that there exists an exchange ring R which is not clean [2]. So we naturally ask that what forms of the above a and b have for a clean ring R. The following theorem answer the question.

Theorem 3.7. Let R be a ring. Then R is clean if and only if for every $x \in R$ there exist $e \in Id(R), w \in U(R)$ such that e = xwe and e - 1 = (x - 1)w(e - 1).

Proof. Proof. Suppose *R* is clean and *x* ∈ *R*. Then *x* = *u* + *f* with *u* ∈ *U*(*R*), *f* ∈ *Id*(*R*). Let *e* = *u*(1 − *f*)*u*⁻¹. Then (*x* − *e*)*u* = (*u* + *f* − *u*(1 − *f*)*u*⁻¹)*u* = *u*² + *fu* − *u* + *uf* = *x*² − *x*. So *e* − *x* = (*x* − *x*²)*u*⁻¹, which implies *e* = *x* + *x*(1 − *x*)*u*⁻¹ = *x*(1 + (1 − *x*)*u*⁻¹). Note that 1 − *x* = 1 − *u* − *f* and $u^{-1}e = (1 - f)u^{-1}$. So we have $e = x(1 + (1 - u - f)u^{-1}) = x(1 - f)u^{-1} = xu^{-1}e$. Since $u^{-1}e = (1 - f)u^{-1}$, we have $fu^{-1} = u^{-1}(1 - e)$. Now $e = x + x(1 - x)u^{-1}$ implies $e - 1 = (x - 1)(1 - xu^{-1})$. Hence $e - 1 = (x - 1)(1 - (u + f)u^{-1}) = (x - 1)(-fu^{-1}) = (x - 1)u^{-1}(e - 1)$. Now take $w = u^{-1}$, then we are done.

Conversely, assume that for every $x \in R$ there exist $w \in U(R), e \in Id(R)$ such that e = xwe and e - 1 = (x - 1)w(e - 1). We prove that x is clean. In fact, e - 1 = (x - 1)w(e - 1) implies 1 - e = -xwe + we + xw + -w, so 1 - e = -e + we + xw - w since e = xwe. It follows that xw = w + 1 - we and hence $x = w^{-1} + 1 - wew^{-1} = w^{-1} + w(1 - e)w^{-1}$, as desired.

Similarly we have the following corollary.

Corollary 3.8. Let R be a ring. Then R is clean if and only if for every $x \in R$ there exist $e \in Id(R), w \in U(R)$ such that e = ewx and e - 1 = (e - 1)w(x - 1).

Theorem 3.9. Let R be any ring and $x \in R$. The following statements are equivalent.

(1) x is clean.

(2) There exist $e \in Id(R)$ and $u \in U(R)$ such that e = uxe and e - 1 = u(x-1)(e-1).

(3) There exist $e \in Id(R)$ and $u \in U(R)$ such that e = exu and e - 1 = (e - 1)(x - 1)u.

Proof. (1) \Rightarrow (2) If x = v + f with $v \in U(R)$ and $f \in Id(R)$, then xf = vf + f. So (x - 1)f = vf, which gives $f = v^{-1}(x - 1)f$. From x = v + f, we have x(f - 1) = v(f - 1). Hence $f - 1 = v^{-1}x(f - 1)$. Now take $1 - e = f, u = v^{-1}$, then we have e = uxe and e - 1 = u(x - 1)(e - 1).

(2) \Rightarrow (1) Since uxe = e and e - 1 = u(x - 1)(e - 1) implies e - 1 = uxe - ux - ue + u, we have ux + ue - u = 1, which gives $x = u^{-1} + 1 - e$. Thus x is clean.

 $(1) \Leftrightarrow (3)$ Similar to the above proof.

Corollary 3.10. Let R be a ring and $x \in R$. Then x is strongly clean if and only if there exist $e \in Id(R), u \in U(R)$ such that e = xue, e - 1 = (x - 1)u(e - 1) and eu = ue. Hence R is strongly clean if and only if every x of R satisfies the above conditions.

Acknowledgement. This work is supported by the Natural Science Foundation of Shan-

 $\mathbf{6}$

dong Province Education Committee (Grant No. J07YH03).

References

- [1] Anderson, D.D. and Camillo, V.P.: Commutative rings whose elements are a sum of a unit and an idempotent, *Comm. Algebra* **30**(7), 3327-3336 (2002).
- [2] Camillo, V.P. and Yu, H.P.: Exchange rings, units and idempotents, Comm. Algebra 22, 4737-4749 (1994).
- [3] Chen, H.Y., On exchange rings with all idempotents central, Algebra Colloq. $6(1)(2001),\,45\text{-}50.$
- [4] Lam, T.Y.: A First Course in Noncommutative Rings, Springer-Verlag (1991), 166-167.
- [5] Nicholson, W.K.: Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278 (1977).
- [6] Nicholson, W.K.: On exchange rings, Comm. Algebra 25(6), 1917-1918 (1997).
- [7] Nicholson, W.K.: Strongly clean rings and Fitting's lemma, Comm. Algebra 27(8), 3583-3592 (1999).
- [8] Nicholson, W.K.: Extensions of clean rings, Comm. Algebra 29(6), 2589-2595 (2001).
- [9] Samei, K.: Clean elements in noncommutative reduced rings, Comm. Algebra 32(9), 3479-3486 (2004).
- [10] Sun, S.H.: Rings in which every prime ideal is contained in a unique maximal right ideal, *J. Pure Appl. Algebra* **78**, 183-194 (1992).