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Advanced Calculus

Infinite Sequence and Aeries:

OVERVIEW While everyone knows how to add together two numbers, or even several,
how to add together infinitely many numbers is not so clear. In this chapter we study such

questions, the subject of the theory of infinite series. Infinite series sometimes have a finite
sum, as %+i+%+1—16+ - = 1. Other infinite series do not have a finite sum, as with
14+2+3+4+5+

Sequence

A sequence is a list of numbers a,,a,, as, ...,a, ...in a given order. Each

of a;,a,, as . and so on represents a real number. These are the terms of the sequence.
For example the sequence 2,4,6,8, ... has first term 2, second term 4 and nth term 2n.

The integer n is called the index of a,,, and indicates where occurs in the list. We can think
of the sequence as a function that sends 1 to a4, 2 to a,,3 to a3, and in general sends the

positive integer n to the nth term a,,.
Definition: ( Infinite Sequence )
An infinite sequence of numbers is a function whose domain is the set of positive integers.

The function associated to the sequence 12,14,16,18,20,22,... is described by the formula

a, = 10 + 2n. Sequence can be described by listing terms such as:
{an} = {Vn} = (V1,V2,V3,V4, ..}
b}={-D"={1,-11,-11,-1,..}
Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases.

111

This happens in the sequence {%} = {I'E'E' ...}WhOSE terms approach 0 as n gets large. On
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the other hand, Sequences like {1,2,3,4, ...} have terms that get larger than any number as n
in increases, and sequences like {1,—-1,1,—-1,1, —1, ... } bounce back and forth between 1 and

—1 never converging to a single value.

The following definition captures the meaning of having a sequence converge to a limiting
value. It says that if we go far enough out in the sequence, by taking the index n to be larger
than some value N, the difference between a,, and the limit of the sequence becomes less

than any selected number.
Definitions:( Converges, Diverges, Limit)

The sequence {a,} converges to the number L if to every positive number & there

corresponds an integer N suchthat: n > N = |a, — L| < e.

If no such number L exists, we say that {a,} diverges. If {a,} converges to L, we write

lim,_,,a, = L, orsimply a,, = L, and call L the limit of the sequence.
1
Example:- Show that {;} converges to 0.

Solution:
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Example: Show that {k} convergesto k.

Solution:

Example: Show that the sequence {(—1)"} diverges

Solution:

Calculating Limits of Sequences

Theoreml: Let {a,} and {b,} be sequences of real numbers and let A and B be real
numbers. The following rules hold if lim,,_,a,, = Aand lim,,_, ., b,, = B, then

1. Sum Rule: {a, + b,} Convergesto A+ B

2. Difference Rule: {a, — b,} Convergesto A — B

3. Product Rule {a,.b,} Convergesto A.B

4. Constant Multiple Rule: {ka,} Converges to kA

5. Quotient Rule: {Z—Z} Converges to% ,B # 0.
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Theorem 2: ( The Sandwich Theorem for Sequences )

Let {a,},{b,} and {c,} be sequences of real number. If {a,} < {b,,} < {C,} hold for all n

and if {a,,} and { ¢,, } Converges to L, then {b,,} also Converge to L.
Example: Show that {%} converges to 0.

Solution:

Theorem 3: The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If a,, — L and if f is a function that is continuous
at L and defined at all a,,, Then f(a, ) = f(L).

Example: applying above theorem, Show that /nTH — 1

Solution:
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Theorem 4: The following six sequences converge to the limits listed bellows:

1. um 22— 2 lim%n=1

n-oo N n—oo

3. limx'"=1,x>0 4. limx"=0;|x| <1

n—-oo n—oo

n n
5.lim(1+§) = e* any X 6.limx—=0;anyx

n—oo n—oo n!

Example:

1) lim Vn2 =

n—oo

2) tim (—1)" =

n—-oo

2
3) lim Inn” _

n—->oo n

4) lim n7Z o

n-oco N

Theorem 5: A sequence {a,} converges to 0 if and only if the sequence of absolute values
{la,|} converges to 0.
Bounded Non-decreasing Sequences

The terms of a general sequence can bounce around, sometimes getting larger, sometimes
smaller. An important special kind of sequences is one for which each term is at least as large
as its predecessor.
Definition: Non-decreasing Sequence

A sequence {a,} with property that a,, < a,, + 1 for all n is called a nondecreasing sequence.

2
Example: Show that {%} Is nondecreasing sequence.

Solution:
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Definitions: ( Bounded, Upper Bound, Least Upper Bound )

A sequence {a,} is bounded from above if there exists a number M such that |a,,| < M. The
number M is an upper bound for {a,}. If M is upper bound for {a,,} , but no number less than
M is an upper bound for {a,,}, then M is the least upper bound for {a,,}.

Example: Applying the definition for Boundedness

(@) The sequence {1,2,3, .... } has no upper bound.

(b) The sequence { S } Is bounded above byl.

123
2’374’
Theorem: ( The Non-decreasing Sequence Theorem )

A non-decreasing sequence of real numbers converges if and only if it is bounded from

above. If a non-decreasing sequence converges, if converges to its least upper bound.
. n
Example: Use the non-decreasing sequence theorem to convergence the sequence {E}

Solution:
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Definition: ( Non-increasing Sequence )

A sequence of numbers {a,} in which a, > a,,,; for every n is called a non-increasing
sequence
Definition: ( Bounded from Below and Lower Bounded )

A sequence {a,} is bounded from below if there is a number M with M < a,, for every n,

such a number M is called a lower bound for the sequence.

Example: Let a,, = nTH

Il
[\
-

N W
-

The sequence {a,,} is bounded above by 2 and bounded below by 1.
Example: Show that {HTH} IS non increasing sequence.

Solution:

Infinite Series

An infinite series is the sum of an infinite sequence of a; +a, +az + -+ a, + - . The
goal of this section is to understand the meaning of such an infinite sum and to develop
methods to calculate it. Since there are infinitely many terms to add in an infinite series, we
cannot just keep adding to see what comes out. Instead we look at what we get by summing the
first n terms of the sequence and stopping.
The sum of the first n terms S,, = a; + a, + a3 + --- + a,, is an ordinary finite sum and can be
calculated by normal addition. It is called the nth partial sum. As n gets larger, we expect the
partial sums to get closer and closer to limiting value in the same sense that the terms of a

sequence approach a limit.
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For example, to assign to an expression like 1 + % + i + é + -

we add the terms one at a time from the beginning and look for a pattern in how these partial

sums grow.
S, =1=2-1
S—1+1—2 1
z2- 2 2
5—1+1+1+—2 1
37 2 4 4

1 1 1 1
5n:1+5+1+"'+zn—1=2_2n—1
fim 5, = fim 2= 57 =2

Thus 1+ -4+~ 4=+ =2
Definitions: ( Infinite series, nth term, Partial Sum, Converges )

Given a sequence of numbers {a,}, an expression of the form a, + a, + -+ a, + -+ is an
infinite series. The number a,, is the nth term of the series. The sequence that defined by
S, = a; +a, + -+ a, is the sequence of partial sums of the series, the number S,, being
the nth partial sum. If the sequence of partial sums converges to a limit L, we say that the
series converges and that its sum is L. In this case, we write:

a+a,++a,= Xp-1a, =1L
If the sequence of partial sums of the series does not converge, we say that the series diverges.
Geometric series

are series of the forma + ar + ar?+ -+ ar™ 1+ - = Y% jar™?
in which a and r are fixed real numbers and a # 0.

Theorem7:

1. 1f |r| <1 thenthe geometric seriesar + ar + ar? + ar3 + .- = Y2 ar™?



Lecture: Suham H .Awla

a
converges to —.
1-r

2. |r| =1 theseriesar + ar + ar? + ar3 +--- = Yo, ar™ ! diverges.

Proof: S, =a+ ar+ar’+ ar3+ -+ ar™

rS,=ar+ ar+ar?+ ar3+ -+ ar™! (Multiply by r)

1-7r)S, =a(l—r"1 (Subtraction)
_ a(1—r"+1)
Sn ="
. n+1
1. lim, ., S,, = lim,,_,., “(tlfr) = Liflrl<1

2. lim,,_, S, does not exist if [r| > 1

) . . © 1 1 1 1.
Example: The geometric series Zn:1—3n+1 = 5t 5,1 5; 1S converges.

Solution:

Example: The geometric series Yo, 2™ = 2 + 4 + 8 + --- is diverges.

Solution:

Example: Repeating Decimals
Express the repeating decimal 5232323... as the ratio of two integers

Solution:

H.W: Determine the Geometric series 27?:0% IS converges or diverges.
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Combining Series
Whenever we have to convergent series, we can add them term by subtract them by term, or
multiply them by constant to make new convergent series.

Theorem 8: If }7°-, a,, = A and };;—, b, = B are convergent series, then

1. Sum Rule; Z;oqo=1 a, + Z-?lo=1 b, = Z?:l(an + by)
2. Difference Rules: Y1y — 2iby =Y (a, — by)
3. Constant Multiple Rule: Yo i ka, = kY a,

proof: The three rules for series follow from the analogous rules for sequences in  Theorem 1,
To prove sum Rule for series, let

A, = ay+a, ++a,and

B, = by +b,+:-+b,

Then the partial sum of .5, (a, + b,) is

Sp,=(ay + by) + (ay + by) + -+ (a, + by)

Thesequence S,, = A, + B,=a; ++ a,+ by + -+ b, ..

Convergesto A+ B

Hence Y71 an + Xat1bp = Xn=1(an + b)) = A+ B

Telescoping Series:
1

Example: Find the sum of the series Z"“M'

Solution:

10
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HW. 132, ——

n(n+2)
Theorem 9: If Y7, a,, converges, then lim,,_,,, a,, = 0.
Theorem 8 leads to atest for detecting the kind of divergence.
The nth-Term Test for Divergence
Yo @, diverges if lim,,_,, a,, fails to exist or is different from zero.
Example: Applying the nth-Term Test
a. 22, n?diverges, because
b. Yo g # diverges, because
C. Ym—1(—1)™ diverges, because
d. Z;’{’:l% diverges, because
Theorem 10: ( The Integral Test)

Let {a,} be a sequence of positive terms. Suppose that a,, = f(n) where fis a continuous,
positive, decreasing function of x for all x > N (N a positive integer). Then the series

Ym=n an and the integral f;o f (x)dx both converge or both diverge.

Proof: We establish the test for the case N= 1. The proof for general N is similar.

We start with the assumption that f is a decreasing function with a,, = f(n) for every n.
This leads us to observe that the rectangles in (Fig A) which have areas a,,a,,...,a,
collectively enclose more area than that under the curve from x = 1tox =n+ 1. Thatis

n+1

f f()dx <a; +a, + -+ a, (upper integral)
1

11
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&[5 :
W

Fig A

0

12

3

4

5 6 X

In (Fig B) the rectangles have been faced to the left instead of to the right. If we mentality

disregard the first rectangle, of area a,, we see that

a, +asz +-+a, < flnf(x)dx

If we include, we have

n+1

f fdx <a;+a, + - +a, <a +ff(x)dx
1 1

(lower integral)

y =19

a

az

ds

This inequalities hold for each n, and continue to hold as n — oo.

If [.” £ (x)dx is finite, the right-hand inequality shows that ¥, a,, is finite. If [~ f (x)dx is

infinite, then the left-hand inequality shows that Y’ a,, is infinite. Hence the seires and the

integral are both infinite.

Definition:( P —series) are series of the form Z;‘{;ln—lp, in which p is a real constant.

Example: Applying the Integral Test

Shows that the p-series Z,‘f:lnip (pareal constant) converges if p > 1 and diverges if p < 1.

Solution:

12
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2

Example: By the integral test show that Z%O:li IS converge.

Solution:

Comparison Test:

We have seen how to determine the convergence of geometric series, p-series, and a few
others. We can test the convergence of many more series by combining their terms to those

of a series whose convergence is known.
Theorem 11: ( The Comparison Test )
Let Yo, a,, be a series with no negative terms.

a) Yoy a, converges if there is a convergent series Y.o-4 b, with a,, < b,, foralln > N
for some integer N.
b) Y-, a, diverges if there is a divergent series ),;—, b,, with a,, = b,, forall n > N for

some integer N.

. 5 .
Example: The series Z;‘{;lm diverges, because

13
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The Limit Comparison Test

We now introduce a comparison test that is particulary useful for series in which is a rational

function of n.

Theorem 12: ( Limit Comparison Test )
Suppose that a,, > 0 and b,, > 0 for all n > N(N an integer).

n

1. If limn_,oo‘;— = ¢ > 0, then };°-; a,, and X:7°_, b,, both converges or both diverges.

n
. a
2. Iflim,,_ b—: = 0 and ).;>-; b,, converges, then }:.>°_, a,, converges.
n

3. If limn_)ooZ— = oo and Y.2_, b, diverges, then ¥%_, a,, diverges.

n

Proof: we will prove partl

Since % > 0, there exists an integer N, such that for all n

n>N>= @—c| <= {limit definition with e ==,L = ¢
by 2 2
c _an c a
n>N=>-—-—-<——-c<- and a, replaced by —}
2 by 2 bn

n>No>c—-<2<c4-
2 b, 2
3
n>N:>(§)bn<an<?Cbn
3 .
If Yo b,, cOnverges, then Z;‘{’zlf b,, converges and )..>_, a,, converges by the Direct

Comparison Test. If X.>>_; b, diverges, thenZ;‘{;l%bn diverges and Y.~ a,, diverges by the

Direct Comparison Test.

. 1 .
Example: The series Z;’f:l; IS converges, because

14
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Example: Using the Limit Comparison Test

Which of the following series converge and which diverge?

3+5+7+9+ _°° 2n +1 b
@) zrgtietast = .+ 1)?
n:
1+2In2 1+3In3 _il+nlnn
) 9 14 - 2 +5
n=1
Solution:

8

15
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The Ratio and Root Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio

n+1
an+1 a

o For a geometric series Xar™™1, this rate is a constant (

—— =17 ), and the series
ar

converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a powerful
rule extending that result. We prove it on the next page using the Comparison Test.

Theorem: ( The Ratio Test)

Let X! a,, be a series with positive terms and suppose that lim,,_, % = P. Then

n

(a) The series converges if P <1,
(b) The series diverges if P > 1 or P is infinite,

(c) The test is inconclusive if p = 1.
Proof: (a) P < 1. Let r be a number between 1 and P.

Then the number & = r — p is positive. Since

an+1

—)p,

an

an+1

must lie within e of P when n is large enough, say for all n > N . In particular

an

An+1

<p+e=r, wheren=>N
an

16
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That is
Ant1 < Tap,
an+1 <Tay,
an+z <Tayi <T7ay,

3
an+3 < TAyny42 <T7ay,

m
AN+m < AN4m-1 < T ay.

These inequalities show that the terms of our series, after the Nth term, approach zero more
rapidly than the terms in a geometric series with ratio » < 1. More precisely, consider the series
Y. ¢, Where ¢,, = a,, for all n, and

(00

ch=ay+ay+ +ay_+ay+ray+riay+ -

n=1
=a;+ay+-+ay+tay(l+r+ri+-)

The geometric series 1+ r + 72 + --- converges because |r| < 1, so Y. ¢, converges. Since
a, < c¢,, X a, also converges.

(b) 1 < p < oo. From some index M on,

a
Z_ﬂ > 1 and aM < aM+1 < aM+2 <
n

The terms of the series do not approach zero as n because infinite and the series diverges by
the nth -Term Test.

(c¢) P = 1. The two series
Zn=1; and Zn:lﬁ
Show that some other test for convergence must be used when p = 1.

- 1.

o 1, any_ 1/(n+1) n
For Zn:ln' an,  1/n  n+1

2 2
For 2%021 1 :an+1 _ 1/(n+1) _ ( n ) 51

nz  ap 1/n2 n+1

In both cases, p = 1, yet the first series diverges, whereas the second converge.

17
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Example: Applying the Ratio Test
Investigate the convergence of the following series

S 2m 4 5 = (2n)! 1 4 !
() Z 3n (b) Z n!n! (e) (2n)!

n=1 n=1 n=1
Solution:

18
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Theorem: ( The Root Test )

Let X a, beaserieswith a, =0 for n > N and suppose that

lim /a, = P.

n—oo

Then

a) the series convergesif P <1,
b) the series diverges if P > 1 or P is infinite

c) the series inconclusive if P = 1.
Example: which of the following series converges and which diverges?

n

wyFE  oyn 0l

Solution:

19
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Alternating Series, Absolute and Condition Convergence

A series in which the terms are alternately positive and negative is an alternating series.

. 1+1 1+1 (—1)"+1+
2 3 4 5 n
2+1 1+1 1+ +(_1)n4+
2 4 8 2n

1—-2+4+3-4+45—-6+-+(CD""n+ .
Theorem: ( The Alternating Series Test (Leibniz’s) Theorem )

The series Yo (—1)™u,, = u; — u, + uz — u, + --- converges if all three of the following
conditions are satisfied:

1. the u,'s are all positive.
2. uy, = u, +1 forall n > N, for some positive integer N.

3. u, = 0.
Example: Are the alternating harmonic series

(1) Z;‘f;l(—l)"“% and (2) Z;‘f;l(_zl# are converges or diverges?

Solution:

20
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Definition: (Absolutely Convergent)

A series ), a,, converge absolutely (is absolutely convergent) if the corresponding series of

absolute values }:|a,, | converges.

_4\yn-1
Example: The geometric series 1 — % + i — % + = Z;‘f;l%converges absolutely

n-1
because the corresponding series of absolute values 1 + % + i + % + .-+ converges.
Definition: (Conditionally Convergent)
A series that converges but does not converge absolutely its converges conditionally.

Example: Conditionally Convergent

(="
n+3

Is the series Yo, conditionally convergent?

Solution:

21
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Theorem: ( The Absolute Convergence Test )
If >02, | a,, | converges, then Y.>°_; a,, Converges.
Proof: Foreach n,
lay| € ap < layl, 500 < a, +|a,l < 2la,l.
If X1 |a,| converges, then Y.>°_, 2|a,, | converges and by the Direct Comparison Test, the
nonnegative series Y,n—;(a, + |a,|) converges. The equality a,, = (a, + |a,|) - |a,,| NOW lets us
express Y..—q a, as the difference of two convergent series:

2n=10n = Xp=1(an + lagl — la,]) = X7-1(an + lag]) — Xn-ilanl .
Therefore )7, a,, converges.

="
—— converges?

Example: Is Y-,

Solution:

Power Series

Now that we can test infinite series for convergence. We can study the infinite polynomials
mentioned at the beginning of this chapter. We call this polynomials power series because they
are defined as infinite series of some variable, in our case x. Like polynomials, power series can

be added subtracted, multiplicities differentiated and integrated to give new power series.

22
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Definitions: Power series, Centre, coefficients

A power series about x = 0 is a series of the form

zcnx" =gt ax+cexi+ ot x+ (1)

n=0

A power series about x = a is a series of the form

(00)

zcn(x—a)“ =c+x—a)+tcx—a)y+-+ex—a)t+ (2)

n=0

In which the center a and the coefficients ¢y c; ..., ¢, ... are constants.

Example: Taking all the coefficients to be 1 in Equation (1) gives the geometric series

oo

an=1+x+x2+---+x"+---

n=0
This is the geometric series with first term 1 and ratio x, it converges to i for x| < 1. We

express this fact by writing
Example: Testing for convergence using the Ratio Test

for what values of x do the following power series converge?

o0 _qx™ x2 3
@ S (- e = m T D

3 5

- L x2n-1 X N
() S e s xEE
[e'e) xTL xz x3
(C)Zn=05= 1+x+;+?+...
d) Y on!x™=1+x+2!x% + 31x3 + -

Solution

23



Lecture: Suham H .Awla

Theorem: ( The Convergence Theorem for Power Series )

If the power series Yo_oa,x" = ay + a;x + a,x® + -+ converges at x =c # 0, then it
converges absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for
all x with |x| > |d|.

Corollary to Theorem: The convergence of the series Y o—, ¢, (x — a)™ is described by one of

the following three possiblities:

1. There is a positive number R such that the series diverges for x with |x-a|> R but

converges absolutely for x with |x— a| < R. The series may or may not converge at either of the

endpoints x =a —Rand x = a + R.

2. The series converges absolutely for every x (R = o).

3. The series converges at x = a and diverges elsewhere (R = 0).
Term-by-Term Differentiation

A theorem from advanced calculus says that a power series can be differentiated term by term

at each interior point of its interval of convergence.

24
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Theorem: ( The Term-by-Term Differentiation Theorem)

If . c,, (x —a)™ converges for a- R < x < a + R for some R > 0, It defines a function:
fx) =Xnpch(x—a)"on a-R<x <a+R.

Such a function f has derivatives of all orders inside the interval of convergence.

We can obtain the derivatives by differentiating the original series term by term:

(0e]

flx) = z nc, (x —a)* 1,
n—1

(0e]

f19= Y - Dex-a)"?

n=2

and so on. Each of these derived series converges at every interior point of the interval of

convergence of the original series.
Example: Find series for f'(x) and f"'(x) if
1
f(x) =1=%" T+x+x?+x3+x*++x™+ -

= Yim=oX", —1<x<1.

Solution:

25
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Theorem: The Term-by-Term Integration Theorem

Suppose that f(x) = Yp—o ¢ (x — a)™ Converges fora-R < x < a+ R (R > 0). Then

(x_a)n+1

Y=o Cn , Converges fora-R < x < a+ R and

ff(x)dxzicn%+c

n=0
Fora-R <x<a+R.

Example: A series tan~! x, —1 < x < 1 identify the function
x3  x°
f=x-—+7-,-1<x<1

Solution:

Example: A series for In(1 + x), —1 < x < 1 is the series ﬁ =1—t+t>2—t3+--

Solution:

26
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Theorem : ( The Series Multiplication Theorem for Power Series )

If A(x) = Xy-pa,x™ and B(x) = Y=o b, x™ converge absolutely for [x| < R, and

n
CTl = aobn + albn_l + azbn_z + -4 an_lbl + anbo = Z akbn_k,
k=0

Then X.7>_, ¢,, x™ converges absolutely to A(x)B(x) for |x| < R
(27010:0 anxn)(Z%o:O bnxn) = Z%O:O Cpx™
Example : Multiply the geometric Series
Yo ox"=1+x+x%+ . +x"+ .= i for |x| < 1,

1
(1-x)2 "’

by itself to get a power series for for |x| <1

Solution:
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Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series called

Taylor series. In many cases, these series can provide polynomial approximations of the

generating functions.

fx) = Xqpzo an(x —a)"

=apta;(x—a) +a,(x—a)®* + ..+a,(x—a)" + ..

with a positive radius of convergence. By repeated term-by-term differentiation within the

interval of convergence | we obtain

f,(X) =a + Zaz(x —a) + 3a3(x - a)z + .. 4 nan(x — a)n—l +

f'(x) =120, +23a3(x —a) +34a,(x —a)* + ..

flll(x) — 1.2.3 a3 + 2.3.4‘ a4(x - a) + 3.4.5 as(x - a)z + e

with the nth derivative , for all n, being

f™(x) =n! a, + a sum of terms with (x —a) as a factor.
Since these equations all hold at x = a, we have
f'a) =a
f"(a) =12a,
f""(a) =1.2.3a,4
and in general
f™(a) = n! a,
M@

n!

n

If f has a series representation, then the series must be

F@=f@+f @ &-)+52 a2+t

n!

f™(a) (x

— a)n _|_ cee

28
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Definitions: ( Taylor Series, Maclaurin Series )

Let f be a function with derivatives of all orders throughout some interval containing a as an

interior point. Then the Taylor series generated by f at x = a is.

)
—a)? 4 +1 (a)( —a)" + -

e 0@ (o gy =

k!

The Maclaurin series generated by f is

AR, , £"(0) ™)
kZO K= () + [0 + 5 ek

the Taylor Series generated by f at x = 0.
Convergence of Taylor Series
Theorem: ( Taylor’s Theorem )

If £ and its first n derivative f', f", ..., f™ are continuous on the closed interval between a and
b, and £ is differentiable on the open interval between a and b, then there exists a number c
between a and b such that

f<">( ) F@©)

(@) -
(b=ay+ (n+ 1)!

fB) =f@+f'@b-a)+—= b-a)+-+

(b _ a)n+1

Taylor’s Formula:

If f has derivatives of all orders in an open interval containing a, then for each positive

integer n and for each x in I,

f()(

F0) = f@+f'@ (=) + 52 e = @2 + o+ 52 (e — @) + R, ()

@ o

Where R, (x) = D)

a)™*?1 for some c between a and (x).
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If lim,,_,, R,,(x) = 0 for all x we say that the Taylor series generated by f at x = a converges
to fonl.

Example: Find the Taylor series generated by f(x) = %at a = 2. Where, if anywhere, does the

. 1
series converge to ;?

Solution:

Example: Find the Taylor series and the Taylor polynomials by f(x) = e*atx = 0.

Solution:
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Example: Show that (H.W.)

. (—l)k x2k+1 x3 x5 x7

1 sinx=)0 ———=x——+=———+ -

2o (2k+1)! 3t 51 7
(=1 x?* x? x*t x®

2. COSX =)= 44

Zk_O (2K)! 2! 4! 6!
3 5 7
X X X
3 tantx=x——+T -+, |x[<1

The Binomial Series

The Taylor series generated by f(x) = (1 + x)™, where m is constant, is

14+ mx + —m(';'l) X2 + —m(m_g(’"_z)ﬁ oot m(m'l)(mf')"'(m'k“)x" + (1)

This series called the binomial series, converges absolutely for |x| < 1. To derive the series,
we first list the function and its derivatives:

fG)=AQ+x)™
f'(x) =m@+x)™?!
") =mm—-1)(1+ x)™2
f""(x)=m@lm—-1)(m-2)(1 +x)™3

ff ) =mm-1Dm-2)..(m—k+ 1A +x)™*
we then evaluate these at x = 0 and substitute into the Taylor series formula to obtain Series (1)
The Binomial Series
For—-1<x<1,
1+x)"=1+ Z}?:1(T,?) xk
Where we define

(T) =m, (Tg) _ m(r:!—l) and (7’,{1) _ m(m—l)(m—kz!)...(m—k+1) for k>3
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Example: Evaluating the limits by using power series: llmx—>0( — l)

sinx

Solution:

Frequently used Taylor series

1. %x=1+x+x2+ XM= 0x™, x|l <1

[y

—1<x<1

2. $= 1—x+x2— .+ (=) +-- =32 ,-D"x", |x|<1
3.e¥=1+x+ Z—T+ ...+ﬁ+---=2;‘{’=0£, |x] < o

4, sinx =x — Z—T+ 9;—?— -+ (=D (;C +1)' = 0( (12)n+;nl+1 |x] < o0
5. cosx=1—z—f+ %— 4+ (=)™ é T =D 0( gn)lzn, |x] < oo
6. ln(1+x)=x—x?2+x—3—---+(—1)"_1£+' = Yn= 0(1)7;1 n’

1+ x2n+1

7. ln1—x=2tanh‘1x=2(x+ + + +

—-X

n+1
(_1)11 x2n+1

)

_ x3  x° x2ntl -
8. tan 1x=x—?+?—---+(—1)n + =20

2n+1 2n+1

Binomial series

Atom=1tmet =D o min=Dm=2) ,

w X2
+ ) = 22n=0m, |X| <1

x| <1

+m(m—1)(m 2).(m—k+1)

21 3! k!

xk+
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=1+§:('£) Xk, |xl<1,
k=1

(m) —m, (r]?) _ m(r;z!—l) (lel) _ m(m—l).l.c.!(m—k+1) fork>3.

Fourier series

Suppose we wish to approximate. A function f on the interval [0, 2m] by a sum of Sine and

cosine function,
fn(x) = a- + (ay cos x + by sinx) + (a, cos 2x + b, sin2x) + -+ + (a, cosnx + b, sinnx)
=ag+ Yy-1(axcoskx + by sinkx) .......... (1)

We would like to choose values for the constants ag, a4, a,, ...,a, and by, by, by, ..., by, that
make f,,(x) an "best possible” approximation to f(x). The notion of "best possible" is

defined as follows:

1- fn(x) and f(x) give the same value when integrated from 0 to 2.
2- f(x) coskx and f(x)coskx give the same value when integrate from 0 to
2n(k =1, ...,n).

3- fu(x)sinkx and f(x)sinkx give the Same. value integrated from 0 to
2n(k =1, ...,n).
we chose f,, so that the integrals on the left remain the same when £, is replaced by f,so we can
use these equations to find Ay, Ay, ... Ay, and by, b, ... b, from f:
ap = i foznf(x) dx ....(2)
1 2T

= — ) f(x) cos kx dx ...(3)

by, = %foznf(x) sinkx dx ... (4)

33



Lecture: Suham H .Awla

The only condition needed to find these coefficients is that the integrals above must exist. If we
let n — oo and use these rules to get the coefficients of on infinite series, then the resulting sum
is called the Fourier series for f(x),

ag + Xr=q1(ay cos kx + by, sin kx)
Example: Finding a Fourier series Expansion Fourier series can be used to represent some

functions that cannot be represented by Taylor series; for example

_ 1, if 0<x<m
f(x)—{ 2, if m<x<2m

Solution:
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Functions of several variables:
Definitions: ( Function of n independent variables )

Suppose D is a set of n-tuples of real numbers (x4, x,, ..., x,)A real-valued function fon D is
a rule that assigns a unique (single) real number w = f (x4, x5, ..., x,,) to each elementin D.
The set D is the function’s domain. The set of w-values taken on by f is the function’s range.
The symbol w is the dependent variable of f, and f is said to be a function of the n independent

variables x; to x,We also call the x;’s the function’s input variables and call w the function’s

output variable.

Example: Find the value of f(x,y,z) = +/x2 +y?2 + z2 atthe point p(3,0,4).

Solution:

Example: Find the domain and range of the following function :

@ w=.y—x?

1
() w=2

(c) w=sinxy

Solution :
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Definition: Interior and Boundary Points, Open, Closed

A point (xo,y(,) in a region (set) R in the xy-plane is an interior point of R if it is the center of a
disk of positive radius that lies entirely in R , A point (xojyo) Is a boundary point of R if every

disk centered at(xolyo)contains points that lie outside of R as well as points that lie in R. (The
boundary point itself need not belong to R)

The interior points of a region, as a set, make up the interior of the region. The region’s
boundary points make up its boundary. A region is open if it consists entirely of interior
points. A region is closed if it contains all its boundary points .

(a) Interior point (b) Boundary point

Example:
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- .
L]
L] _
x X
r 0 0
. ;
w2 4yt o . 2
(e, | x2+3y2< 1) (@) | x +y° =1 x> +y>=1)
Open unit disk. Boundary of unit Closed unit disk.
Every point an d_"’kl' (The unit Contains all
circle.) boundary points.

interior point.

Definition: Bounded and Unbounded Regions in the Plane

A region in the plane is bounded if it lies inside a disk of fixed radius. A region

IS unbounded if it is not bounded.

Example: Describe the domain of the function f(x,y) =y — x?2.

Solution:

Definition: ( Level Curve, Graph, Surface )
The set of points in the plane where a function f(x,y) has a constant value f(x,y) = c is
called a level curve of f. The set of all points (x, y, f(x,y)) in space, for (x, y) in the domain of

f, is called the graph of f. The graph of fis also called the surface z = f(x, y).

Example: Graphing a Function of Two Variables
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Graph f(x,y) = 100 —x% — y? and plot the level curves f(x,y) =0, f(x,y) =51 and
f(x,y) =75 inthe domain of f in the plane.

Solution:
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Definition: ( Limit of a Function of Two Variables)
We say that a function f(x, y) approaches the limit L as (x, y) approaches (x,, y,) and write

lim x,y) =1L
(x,y)—>(x0,y0)f( y)

if, for every number ¢ > 0 there exists a corresponding number § > 0 such that for all (x,y)

in the domain of f,

|f(x,y) — L] < e <whenever 0 < /(x — x¢)%2+ (¥ — ¥9)% < 8.

Example:
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Theorem: ( Properties of Limits of Functions of Two Variables )
The following rules hold if L, M and k are real numbers and

M ey royo) £ (6 ) = L and lim e ) x,y0) 9 (6, ) = M.
1.SumRule:  limgyyo ey (f ) + 9(x,9)) = L+ M

2. Difference Rule:  limy )0,y (F (6 9) — g, ) =L — M

3. Product Rule:  1imy ) (x0.90) (f (. ). 9(x, ) = L. M
4. Constant Multiple Rule:  1im . yy- (o y0) (K (6, 7)) = kL

. - fX.y) L
5. QUOtIent Rule: hm(x.y)*(xo,yo) (m) = E ,M *0

6. Power Rule: If r and s are integers with no common factors, and S # 0 then

lim  (f(x,¥)/s = L"/s provided L'/s is a real number.(if s is even we assume that L > 0.
(x,y)—~(x0,Y0)

Example: Calculating limits

. xX—xy+3
A)  limy)501) X2y +5x-y3
B lim x?+y? =
) (x,y)—>(1,4)\/7y
xZ-xy

li =
€) (x.y)lir%0,0) VX—y

Definition ( Continuous Function of Two Variables )
A function f(x, y) is continuous at the point (x, yo) if:

1. f is defined at (xq yo).

2 lim )f(x, y) exists.

' ()= (x0,50
f(x,y) = f(x0,¥0)

A function is continuous if it is continuous at every point of its domain.

3. im
()~ (x0,50)

Example:
2xy

Show that f(x,y) = y¥*+¥?
0 (x,y) = (0,0)

x,vy) # (0,0) . . ) ..
(. y) #( ),IS continuous at every point except the origin .
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Solution:

Two-path test for Nonexistence of a limit
If a function f(x,y) has different limits along two different paths as (x,y) approaches (Xo,Yo),

then  lim _f(x,y) does not exist.
(x¥)—(x0,50)

x2

Example: Show that the function f(x,y) = yz has no limit as (x, y) approaches (0, 0).

2
x*+y

Solution:

41



Lecture: Suham H .Awla

Example: Define £(0,0) in any way that extends f to be continuous at the origin, where

Solution:

42



Lecture: Suham H .Awla

Partial Derivatives

Definition: ( Partial Derivative with repeat to x )
The partial derivative of f(x,y) with respect to x at the point (x,, yo) IS

| _ f(xo + h»)’o) B f(xOJYO) _
a (X0.Y0) — hlLT(l) h - f;f

Provided the limit exists.
Definition: ( Partial Derivative with repeat to y )
The partial derivative of f(x, y) with respect to x at the point (x, y) is

af | — i f(xmyo"l'h)_f(xo'yo)_
E (x0Y0) — im h _fy

Provided the limit exists.

Example: Find the values of Z—iand Z—J; at the point (4, =5) if f(x,y) =x>+3xy+y—1

Example: Find f, and f, if

x
x2+y?

L foy = gy 20603 = 3. f(x,y) = e Inxy

y+cos x
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Higher Order of Partial Derivatives

When we differentiate a function f(x, y) more than one times, we produce its as follows:

62f_ d (0f B
" 0x2 _ax(6x> = fux
5 62f B 0 (6f> _
'ayz_ay ay —Jyy
azf d (0f
3. =_(_)=fyx
dxdy 0x \dy

of  a sof

4. :_(_):fxy
dydx 0dy \0x

c OF 9 (9f)_
"0x0ydx  9x \dyox = Jy

O 0 (0 _
"dydx?  dy \dx2 = Jexy

Example: If f(x,y) = xcosy + y e*, find

9%f 0%f 0%f O0°*f a3f a3f
0x2'0y2’ 0xdy’ 0yox’ 0ydydx’ dxdx0x

Solution:
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Theorem: ( The Mixed Derivative Theorem)

If f(x,y) and its partial derivative f,f,,fx, and f,, are defined throughout an open region

containing a point (a, b) and are all continuous at (a, b) then f,,(a,b) = f,,(a, b)
Theorem: ( Differentiability Implies Continuity )

If a function f(x, y) is differentiable at (x,,y,), then f is continuous at (x,, y,).
Example: Verify that wy,, = w,,, at any point, where

w=e*+xlny+ylnx
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Solution:

Definition: ( Differentiable Function)
A function z = f(x,y) is differentiable at (x,,y,) if £, (x,,¥,) and f,(x,,y,) exist and Az

satisfies an equation of the form.

Az = £, (x5, Yo)Ax + f,, (x5, ¥,)Ay + E;Ax + E;Ay, in which each of &;,&, - 0 as both

Ax, Ay — 0. We call f differentiable if its differentiable at every point in its domain.

Theorem: ( Chain Rule for Functions of two Independent Variables )

Ifw = f(x,y) has continuous partial derivatives f, and f, and if x = x(t),y = y(t) are
differentiable function of t, then the composite w = f(x(t),y(t)) is a differentiable function
of t and

dw

— = f(x(©0,y(0)x'(©) + £, (x(@®), y(0))y' (.

dw Jdfdx Jdfdy dx dy
dt_axdt+6ydt_fxdt+fydt

Proof: The proof consists of showing that if x and y are differentiable at t = t,, then w is

differentiable at t, and
.=, @, G) @
dt/e, \0x/p,\dt/y, \dy/ \dt/

Where p, = (x(to), ¥(t,)) The subscripts indicate where each of the derivatives are to be

evaluated.
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Let Ax, Ay and Aw be the increments that result from changing from t to t, + At.

Since f is differentiable,
ow

ow
A =(—) A +<—) Ay + EAx + E,Ay,

Where &,,E, —» 0 as Ax,Ay — 0. To find Z—V:, we divide this equation through by At and let At
approach zero.

The division gives:
Aw (OW) Ax <6W) Ay Ax Ay

—=(=— +(—) =+&—+&—
At \ox/, At " \ay) At T'At T At

Do
Letting At approach zero gives

(dW) _ 5 Aw_(OW) (dx) +<6W> (d}/) +O(dx) +O(dy)
dt)y, ~ sino At~ \ox/y, \dt),, " \oy) \acl, ™ "\at),” “\dt),,

Example: Find C;—M;Where f(x,y)=x?>+yandx = cost,y = t?

Solution:

Example: Use the Chain Rule to find the derivative of w = xy . with respect to t, the path

x = cost, y = sin t. What is the derivative value at t = %?

Solution:
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Remark: Ifw = f(x,y),x = g(r,s),y = h(r,s) then
ow awa_x a_wa_y

ow owox owad
and — =" =2

ar  ax or dy or ds 9x ds 9y ds’

ow ow .
Example: Express ——and ——interms for r and s, if w = x2+y% x=r—s,y=r+s.

Solution:
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Theorem *: ( A Formula for Implicit Differentiation )

Suppose that F(x,y) is differentiable t of and that the equation F(x,y) = 0 defines y as a

differentiable function of x. Then at any point where FE,#0, Z—z = — i—"
y
dx dy
Proof : Let F(x,y) =0 - FXE"_FJ’E:O
FY gt dy/dt B @y _ _F
Y at dt dx /dt Fy dx Fy
Example: Use theorem * to find Z—z if y2 —x? —sinxy =0

Solution:
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Vectors
A
Definition: Vector. Initial and Terminal point, Length /
A vector in the plane is a directed line segment . A —
—— . i i P
The directed line segment AB has initial point A and terminal /
point B, its length is denoted by |AB|. Two vectors are - ¢
equal if they have the same length and direction. E/v
Y

Definition : ( Component Form)

If VV is a two —dimensional vector in the plane equal to the vector with the initial point at origin

and terminal point(v,, v,),Then the component formof visV =< vy, v, > .

If v is a three dimensional vector equal to the vector with initial point at the origin and terminal

point (v4,v,, v3) , then the component formof visV = < vy, v,,v53 > |

The magnitude or length of the vector V=PQ is the non negative number

V| = (vZ+v2 +v2

=00 —x)% + 01 —¥2)? + (21 — 2)?
The only vector with length 0 is the zero vectors
X
0 =< 0,0 >o0r 0 =<0,0,0 > this vector is also only vector

with no specific direction.
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Example: Find (a) component form and (b) length of the vector with initial point p(—3,4,1)
and terminal point Q (—5,2,2)

Solution:

Vector Algebra Operations

Definitions: ( Vector addition and multiplication of vector by a scalar )
Letu =<uq,u,, uz>andv =< v,,v,,v3 > be vector with k a scalar.
Addition: u+v =<u; +v,uy; + vy, uz; +v3 >

Scalar multiplication: ku =< kuy , ku,, kus >

Example: let u =< —1,3,1 > and v =< 4,7, 0 >. Find

(a) 2u+3v b)u—-v (¢) |1E u|
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Properties of vector operations

Let u, v, w be vectors and a, b be scalars

Dut+v=v+u Du+v)+w=u+@+w)
Hu+(—u)=0 5 0u =0

7)a(bu) = (ab)u 8)alu+v)=au+av
Proof 1:

Proof 2:

Proof 3:

u+0 =u
6)lu=u
9) (a+b)u=au+ bu
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Proof 4:

Proof 5:

Proof 6:

Proof 7:

Proof 8:
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Proof 9:

Definition: ( Unit vectors )
A vector V of length 1 is called a unit vector , the standard unit vectors are :
[ =<100>,j=<0,10> andk =<0,0,1 >any vector v =< v; v,,v3 > can be written
as a linear combination of standard unit vectors as follows:
v =<"v,V,,V3 >
=<v,00>+<0,v,,0>+<0,0,v3 >

=v, <1,00>4v,<0,1,0 >+ v; <0,0,1>

=vi + vyj+v3k
Whenever v # 0, its length |v| is not zero and
1 1

| -

—vy|l=—lv| =1
lv] lv]

That is % IS a unit vector in the direction of , called the direction of non zero vector v.

Example: Find a unit vector u in the direction of the vector form P;(1,0,0) to P,(3,2,0)

Solution:

Definition: ( Midpoint )
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the midpoint M of the line segment joining points P; (x,y;,2,)and P,(x,, y,, z,) in the point

(x1+x2 + y1ty2 + Z1+Zz)
2 2 2

Example: The midpoint of the segment joining P; (3, —2,0) P,(7,4,4) is

Definition: ( Dot product)

the dot product w.v (*“ u dot v”) of vectors u =< u; u,,uz > and
V=<10,,V,,V3 >ISUV=u v; +U U, +U3V3.

Example: Finding dot products of vectors

3 <1,-2,-1>.<—62,—-3>=

b) (Gi+3j+k).(4i—j+2k) =

Theorem :( Angle between Two Vectors)

The angle 6 between two nan zero vectors u =< uq,u,,uz >and v =< vy,v,,v3 > IS

given by
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_q (WaV1 T UV, + U3V3
6 = cos

lul|v]

Proof: Appling the law of cosines to the triangle in Fig 1, we find that

lwl? = |ul? + |v|? = 2|ul|v| cos 6 u
2|lullv| cos 8 = |ul? + |v]|? — |w]|? 0 Vv Fig1

Because w = u — v, the component formof wis < u; — vy, u, — v,,u3 — v3 >. SO

2
|u|2:<\/uf+u§+u§> = uf+ué+uj

2
Ivlzz(\/vlz+v22+u§> =v? + v3 + v2

Wiz = (VG — v + i — w2 + (a3 — 097

= (uy —v)? + (uy — v2)% + (u3 — v3)?

=u? — 2uv; + vZ + us — 2u,v, + v3 + ui — 2uzvs + vi
and |ul? + |v|? — |w|? = 2(u vy + uyv, + uszvs)

Therefore 2|ullv| cos8 = |ul? + |v|? — lw|? = 2(uy vy + uyv, + uzvs)

u,vq + UV, + U3zVj3

cos O =
lullv]

0 — Cos_l U1U1+UZU2+U,3U3 — Cos_l( u.v )
lullv| lul|v|

Example: Find the angle between u =i —2j — 2k and v = 6i + 3j + 2k

Solution:
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Definition: ( perpendicular (orthogonal) vectors)
Vectors u and v are orthogonal (or perpendicular) if and only if u.v = 0.
Example: Appling the definition of orthogonality

(@ u=<3,—-2>and v =< 4,6 > areorthogonal because u.v =

(b)u = 3i — 2j + k and v = 2j + 4k are orthogonal because u.v =
Properties of the Dot Product
If u. v and w are any vectors and c is a scalar, then

1. wv=v.u

2. (cu).v=u.(cv) = c(u.v)
. u(w+w) =uv+uw
4. w.u = |lul?

5. 0.u=0

Proof 1:

Proof 2:

Proof 3:
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Proof 4:

Proof 5:

Vector projection of u onto v:

prost = (42)

Scalar component of u in the direction of v: u
u.v v .
|lu|l cos@ = — =u.— U
[v] [v|

Example: Find the vector projection of u = 6i + 3j + 2k onto v = i — 2j — 2k and the scalar

component of u in the direction of v.

Solution:
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Definition: ( Cross product, Vector Product )
u X v = (Jul|lv|sin 8)n

The cross product is a vector. For this reason it’s also called the vector product of u and v.

Definition: ( parallel vector)

Nonzero vectors u and v are parallel if and only if u X v = 0.
Properties of the cross product:

if w,v and w are any vectorsand r,s are scalars, then

(ru) x (sv) = (rs)(u X v)
vXxu=—(uxv)
uXx@W+w)=uxXxv+uxw

wWH+w)Xu=vXu+wxu

o B~ w0 D> PR

0xu=0.
Calculating Cross Products Using Determinates:

If u = uqyi +uyj + usk and v = vyi + v,j + vk, then
i j k

Uy U Uz
Uy Vy V3

UXv=

Example: Find uxv and v xu if u=2i+j+kandv=—-4i+3j +k

Solution:
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Calculating the triple scalar product

Uy U us
V1 UV V3
Wy Wy W3

(uxv).w=

Example: Find the volume of the box (parallelepiped) determined by
u=i+2j+k ,v=-2i+3k andw = 7j — 4k.

Solution:

Lines and Planes in Space

Suppose that L is a line in space passing through a point p, (x,, v, Z,) parallel to a vector

v = v,i+v,j + v3k. Then L is the set of all points p(x, y, z)for which p,p is parallel to v, thus

p,p = tv for some scalar parameter ¢.
(= x)i+ (v = ¥o)j + (2 — 2o)k = t(vyi + vyj + v3k)
Which can be rewritten as
xXi+yj+zk = x,0 + y,j + 2,k + t(vqi + vyj + v3k)
X =x,+tv; , y=9y, ttv,, zZ=12z,ttvy

Parametric Equation for a line
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The standard parameterization of the line through p,(x,,V,,Z,) parallel to

V=vl+v,)+v3kiS x=x,+tv,y=y,+tvy,,z=2,+tvy,—0 <t <
Example: Find parametric equation for the line through (—2,0,4) parallel to v = 2i + 4j — 2k.

Solution:

Example: Parameterizing a line through two points, Find parametric equation for the line
through p(—3,2,—3) and Q(1,—1,4).

Solution:

An equation for a Plane in Space

Suppose that plane M passes through a point p,(x,, ¥,,2,) and is normal to the nonzero vector
n = Ai + Bj + Ck. Then M is the set of all points p(x, y, z) for which p,p is orthogonal to n

n.pop =0
(Ai+Bj+Ck).[(x—x)i+(y—vy,)j+(z—2,)k] =0
A(X—XO) +B(y _yo) + C(Z_Zo) =0

Equation for a Plane:
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The plane through P, (x,, y,, z,) normal to n = Ai + Bj + Ck
Vector equation: n.p,p =0
Component equation: A(x —x,) + B(y—y,) +C(z—2,) =0
Component equation simplified: Ax + By + Cz = D, where
D = Ax, + By, + Cz,.
Example: Find an equation for the plane through p,(—3,0,7) perpendicular to n = 5i + 2j — k.

Solution:

Example: Find an equation for the plane normal to A(0,0,1), B(2,0,0) and €(0,3,0).

Solution:

Example: Find the point where the line x = g +2t, y =-—2t, z =1+t intersectthe plane

3x +2y + 6z = 6.
Solution:
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Definition: The Distance from a Point to a Line in Space

[PSxv|
lv|

Distance from a point S to a line through P parallel to vis d =

Example: Find the distance from a point S(1,1,5) to the line
Lix=1+t, y=3—-t,z=12t

Solution:

Vector Valued Functions in Space
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When a particle moves through space during a time interval I, we think of the particle’s
coordinates as functions defined on I:

x=f(k), y=9gt), z=ht) te€l......... (1)
The points (x,y,z) = (f(£)g(®), h(t)), t € I make up the curve in space that we call the
particle’s path. The equations and interval in Equation (1) parameterize the curve. A curve in
space can also be represented in vector form. The vector  z T//%/

r() =0P = f(©)i+gt)j + h(Ok...cccooon... 2) 0 (f(£),9(t).h(1))

X xy2)

from the origin to the particle’s position P(f(t), g(t), h(t)) at time t is the particle’s position.

vector (Fig 2). The functions f, g, and h are the component functions (components) of the
position vector. We think of the particle’s path as the curve traced by r during the time
interval 1. Displays several space curves generated by a computer graphing program. It would
not be easy to plot these curves by hand.

Equation (2) defines r as a vector function of the real variable t on the interval I. More
generally, a vector function or vector-valued function on a domain set D is a rule that assigns
a vector in space to each element in D. For now, the domains will be intervals of real numbers
resulting in a space curve. Later, in Chapter 16, the domains will be regions.

Example: Find the value of a component function at ¢ = 0 for the following vector valued

functions

1. r(t) = costi+sintj+ tk
2. (t) = t%i +sintj + tk.

Solution:
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Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits of

real-valued functions.

Definition: ( Limit of Vector Functions)
Let r(¢t) = f(t)i + g(t)j + h(t)kbe a vector function and L a vector. We say that
r has limit L as t approaches t and write

limr(t) =L

t—to
if, for every number € > 0, there exists a corresponding number § > 0 such that
forall ¢
0<|t—tyl<d = [r(t)-L|l<e.
Example: If r(t) = cos ti + sin t + tk, then find the limit of  at t — %.

Solution:

We define continuity for vector functions the some way we define continuity for scalar
function.

Definition: ( Continuous at a Point)
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A vector function r(t) is continuous at a point ¢ = t, in its domain if lim._,;, r(t) = r(&,).
The function is continuous if it is continuous at every point in its domain.
Examples: (a) All the following functions are continuous at every value of t in (—oo, ),
because their component functions are continuous at every value of t in (—oo, o).

1. r(t) = (cost)i + (sint)j + tk

2. 7(t) = (cost)i + (sint)j + 0.3tk

3. r(t) = (cos 3t)(sint)i + (sin 3t)j + t%k

4. r(t) = (cost)i + (sint)j + (sin 2t)k

(b) The function r(t) = (cost)i + (sint)j + |t]k

is discontinuous at every integer, where the greatest integer function [t]is discontinuous.
Definition: ( Derivative)
The vector function r(t) = f(t)i + g(t)j + h(t)k has a derivative (is differentiable)
at t if f, g, and h have derivatives at t. The derivative is the vector function

dr r(t+At) —r(t) df dg dh
'W)=—=1 =—i+—j+—k.
T =g = dim, At ar ' Tac T ae

Example: Derivative the function

r(t) = (3cost)i+ (3sint)j + t2k.

Solution:

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of ¢, C a constant vector, c any

scalar, and f any differentiable scalar function.

1. Constant Function Rule: % [C] =0
2. Scalar Multiple Rules: % [cu(t)] = cu'(t)
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LIFOu®)] = £/(Oule) + FOU'®)

3. Sum Rule: % [u(t) + v(t)] = u'(t) + v'(t)

4. Difference Rule: % [u(t) —v()] =u'(t) —v'(t)

5. Dot Product Rule: = [u(). v(©)] = ' Ov(t) + u(Ov' ()

6. Cross Product Rule: = [u(t) x v(6)] = u'(t) x v() +u(t) X v'(t)
7. Chain Rule: = [u(f(t)] = £/ (O (D).

Proof of the Dot Product Rule:
Suppose that u(t) = u,(t)i + u,(t)j + us (H)k and v(t) = v, (t)i + v,o(t)j + v5(t) k,

Then % (u.v) = % (Uy. V1 + Up. U, + U3.V3)
=(ui . vi+u v+ uz' . v3) + (u. v+ us vy’ + us.v3’)
=u'v+uv
Integral of Vector Functions
Definition: ( Defined Integral )

If the components of r(t) = f(t)i + g(t)j + h(t)k are integrable over [a, b], then so is r,

and the definite integral of r from a to b is

jbr(t)dt = (fbf(t)dt> i+ <fbg(t)dt>j + (fbh(t)dt> k.

Example: Evaluating Definite Integral
Jy [(cost )i + j — 2tk]dt =

Solution:
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Arc Length along a Space Curve
Definition: ( Length of a Smooth Curve )
The Length of a Smooth Curve r(t) = x(t)i + y(t)j + z(t)k,a <t < b

That traced exactly ones as t increases fromt =atot = b is

L R

Example: Find the Length of the curve r(t) = costi + sintj + tk fort € [0,2m].

Solution:

Directional Derivatives and Gradient Vector
If f(x,y) is differentiable, then the rate at which f changes with respect to t along a

i i — — i 4f _ Of ax | 9f dy
differentiable curve x = g(t), y = h(t) is = ox Ty ar
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At any point po(xo, Vo) = po (g (to), h(ty)), this equation gives the rate of change of f with
respect to increasing t and therefore depends, among other things on the direction of motion

along the curve.

Suppose that the function f(x,y) is defined throughout a region R in the xy — plane, that
Po(x0,¥o) 1S @ point in R, and that u =wu, i + u,j IS a unit vector. Then the equation

x=x0+Su1 ) y=y0+Su2
Parameterize the line through p, parallel to u.
Definition: (Directional Derivative)

The Derivative of f at pgo(xo,¥o) in the direction of the unit vector u =u,; i + u,j is the

[ (xo+5uy,yo+suz)— f(x0,y,)
S

d . : N
number (d—]sr)u’p0 = limg_, provided the limit exists.

The directional derivative is also denoted by

(Duf)p, the derivative of f at p, in the direction of w.

Example: Finding a Directional Derivative using the Definition

Find the Derivative of f(x,y) = x? + xy atpy(1,2) in the direction of the unit vector
1. 1..
u=(Ri+(H)

Solution:
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Definition: ( Gradient Vector)

The gradient vector (gradient) of f(x, y) at a point py(xo, yo) IS the vector
of . , of . , : : I
Vf = Pl ) obtained by evaluating the partial derivatives of f at p, .

Example: Find the gradient of f(x,y) = x% + xy at a point p,(1,2).

Solution:

Theorem: ( The Directional Derivative is a Dot Product )

If f(x,y) is differentiable in an open region containing py(xe, o), then

df

(g)u,po = (Vf )Po'u

The dot product of the gradient f at P and w.

Example: find the directional derivative of f(x,y) = x? + xy at po(1,2) and u = —i+ ij.

V2§ V2

Solution:
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Properties of the Directional Derivative D, f
Vf.u=|Vf]| cos@

1. The function f increases most rapidly when cos 8 = 1 or when u is the direction of Vf
that is, at each point p in it is domain, f increases most rapidly in the direction of the
gradient vector Vf at p. The derivative in this direction is

D,f = |Vflcos @ = |Vf|.

2. Similarly, f decreases most rapidly in the direction —Vf. The derivative in this direction is
D,f = |Vflcosm = —|Vf|.

3. Any direction u orthogonal to a gradient Vf = 0 is a direction of zero change in

f because 0 equals g and D,f = |Vf|lcosm =0.|Vf| =0.

as we discuss later, these properties hold in three dimensions as well as two.

2 2
Example: Find the direction derivative in which f (x, y) = x; + y?

a) Increases most rapidly at the point (1, 1).

b) Decreases most rapidly at the point (1, 1).
c) What are the directions of zero change in f at the point (1,1)?

Solution:
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Algebra Rules for Gradients:

1. Constant Multiple Rule: V(kf) = kVf (any number k).

2. Sum Rule: V(f+9)=Vf+Vyg

3. Difference Rule: V(f—g)=Vf—-Vg

4. Product Rule: V(f.g) = fVg + gVf

Vf-fV
5. Quotient Rule: V(L) = M.
9 Y

Example: We illustrate the rules with  f(x,y) =x—y , g(x,y) =3y
Solution:

Tangent plans and Differentials

Tangent plans and Normal lines

Ifr=g@)i+ h(t)j + k(t)kis a smooth curve on the level surface f(x,y,z) =cof a
differentiable function £, then f(g(t),h(t),k(t)) = c. Differentiating both sides of this
equation with respect to t leads to

< Fg(®), h(), k() = =c

0f dg , Of dh  of dk _

axdat " dyadt | oz dt 0 (Chain Rule)

at every point along the curve. Vf is orthogonal to the curve’s velocity vector.

Definition: (Tangent Plane, Normal Line)
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The tangent plane at the point py(xo, Vo, 29) On the level surface f(x,y,z) =c of a
differentiable function f is the plane through p, normal to Vf| Po"

The normal line of the surface at p, is the line through p, parallel to Vf | Po-
Tangent plane to f(x,y, z) = ¢ at po(xg, Vo, Z0)

fx(o)(x — x0) + £, (00) (v — ¥o) + (Do) (z — 20) = 0.
Normal Line to f(x,y,z) = c at py(xg, Vo, Zo)
x =xo+ fr(po)t, ¥y =0+ fy, (0ot z =7y + f(po)t.
Example: Find the tangent plane and normal line of the surface

f(x,y,z) = x*+ y*+ z—9 = 0 (acircular paraboloid ) at the point py(1,2,4).

T

Solution:

Normal Line
Po(x.y.2)

The surface

X2+y2+z-9=o Tangent plane

A’/L
X

Plane Tangent to a Surface z = f(x,y) at (xo, o, f (X0, ¥0))

v

The plane tangent to the surface z = f(x,y) of a differentiable function f at the point
Po (X0, Y0, Z0) = (X0, Y0, f (X0, ¥0)) IS fi (0, ¥0) (x — x0) + fy(xo»)’o)(y —¥) — (z2—12y) = 0.

Example: Find the plane tangent to the surface z = x cosy — ye* at (0,0,0).

Solution:

Example: Tangent line to the curve of intersection of two surfaces. The surfaces
f(x,y,z) = x*+y? — 2 = 0 acylinder and g(x,y,z) = x + z — 4 = 0 a plane. Finding
parametric equations for the line tangent to E at the point p,(1,1,3).
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Solution:

Definition: Total Differential

If we move from (x,, y,) to the point (x, + dx, y, + dy) nearby, the resulting change
df = fi(x0, yo)dx + f,(x0,y0)dy

In the linearization of f is called the total differential of f.
Example: Find the total differential of f(x,y) = x? — xy + iyz + 3 at the point (3,2).

Solution:

Extreme Values and Saddle Points

Derivative Tests for Local Extreme Values
Definition: ( Local Maximum, Local Minimum)
Let f(x,y) be defined on a region R containing the point (a, b). Then

1. f(a,b) is alocal maximum value of f if f(a,b) = f(x, y)for all domain points (x,y) in
an open disk centered at (a, b).
2. f(a,b) is alocal minimum value of f if f(a,b) < f(x,y), for all domain points (x,y) in

an open disk centered at (a, b).

Theorem: (First derivative test for local extreme value)
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If £(x,y) has a local maximum or local minimum value at an interior point (a, b) of it is

domain and if the first partial derivatives exist there, then f,(a, b) = 0 and £, (a, b) = 0.
Definition: (Critical point)

An interior point (a, b) of the domain of a function f(x, y) where both f, and £, are zero or
where one or both f, and f,, do not exist is a critical point of f.

Example: Find the critical point of f(x,y) = }/x + y

Solution:

Definition: ( Saddle point)

A differentiable function f(x,y)has a Saddle point at a critical point (a, b) if in every open
disk centered at (a, b) there are domain points (x, y) where f(x,y) > f(a, b) and domain
points (x,y) where f(x,y) < f(a, b). The corresponding point (a, b, f(a, b)) on the surface
z = f(x,y) is called Saddle point of the surface.

Example: Find the local extreme value of f(x,y) = x? + yZ.

Solution:
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Theorem: Second Derivative Test for Local Extreme Values

Suppose that f(x,y) and its first and second derivatives are continuous throughout a disk

centered at (a, b) and that f,(a,b) = f,(a,b) = 0.Then

I. f has a local maximum at (a, b) if f;,, < 0and f,, fy, — fxy2 > 0at (a,b).
ii.  f hasalocal minimum at at (a,b) if fi, > 0and £, f,, — fxy2 > 0 at (a,b).
iii.  f has asaddle point at (a,b) if and fy.fy, — foy” < 0 at (a, b).

iv.  Thetestisinconclusive at at (a,b) if and fi,fy, — fxy2 =0 at (a, b).

In this case, we must find some other way to determine the behavior of f at (a, b).

The expression fy, f,y — fxy2 Is celled the discriminant hessian or Hessian of f. it is sometimes

fex  fry
f yx f yy

easier to remember in determinant from, f..f,, — fxy2 =

Example: Find the local extreme value of the function
flx,y) =xy —x? —y? —2x — 2y + 4.

Solution:

Example: Find local extreme values of f(x,y) = xy.

Solution:
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Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function f(x, y) on a closed

and bounded region R in to three steps

1. List the interior points of R where f may have local maxima and minima and evaluate f
at these points. These are the critical points of f.

2. List the boundary points of R where f has a local maxima and minima and evaluate f at
these points. We show to do this shortly.

3. Look through the lists for the maximum and minimum values of f. These will be the

absolute maximum and minimum values of f on R. Since absolute maxima

and minima are also local maxima and minima, the absolute maximum and

minimum values of f appear somewhere in the lists in Stepl and 2.

Example: Find the absolute maximum and minimum values of
flx,y) =2+ 2x+ 2y —x* —y2

Solution:

| I RN [ S N . 1 S
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Lagrange Multipliers

The Method of Lagrange Multipliers

Suppose that f(x,y,z) and g(x,y,z) are differentiable. To find the local maximum and
minimum values of subject to the constraint g(x,y,z) = 0, find the values of x,y,zand A that

simultaneously satisfy the equations Vf =AVg and g(x,y,z) = 0

For functions of two independent variables, the condition is similar, but without the variable z.
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Example: Find the greatest and smallest values that the function f(x,y) = xy takes on the

. x? 2
ellipes =+ L =1.
8 2

Solution:
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Example: Find the maximum and minimum values of the function
f(x,y) = 3x + 4y onthe circle x? + y2 = 1.

Solution:
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