
 
Lecture: Suham  H .Awla 
    

 1 
 

                                     Advanced Calculus 

Infinite Sequence and Aeries: 

OVERVIEW While everyone knows how to add together two numbers, or even several, 

how to add together infinitely many numbers is not so clear. In this chapter we study such 

questions, the subject of the theory of infinite series. Infinite series sometimes have a finite 

sum, as 
 

 
 

 

 
 

 

 
 

 

  
       Other infinite series do not have a finite sum, as with 

            

Sequence 

   A sequence is a list of numbers                 in a given order. Each 

of            and so on represents a real number. These are the terms of the sequence.  

For example the sequence           has first term  , second term   and  th term   .  

The integer   is called the index of   , and indicates where occurs in the list. We can think 

of the sequence as a function that sends 1 to      to      to   , and in general sends the 

positive integer   to the  th term   .  

Definition: ( Infinite Sequence ) 

An infinite sequence of numbers is a function whose domain is the set of positive integers.  

The function associated to the sequence                       is described by the formula 

        . Sequence can be described by listing terms such as:  

                                       {  }  {√  }  {√  √  √  √   } 

                                        {  }  {     }  {                } 

Convergence and Divergence 

   Sometimes the numbers in a sequence approach a single value as the index   increases. 

This happens in the sequence {
 

 
}  {

 

 
 
 

 
 
 

 
  } whose terms approach 0 as   gets large. On 
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the other hand, Sequences like {         } have terms that get larger than any number as   

in increases, and sequences like {                } bounce back and forth between   and 

   never converging to a single value. 

The following definition captures the meaning of having a sequence converge to a limiting 

value. It says that if we go far enough out in the sequence, by taking the index   to be larger 

than some value    the difference between    and the limit of the sequence becomes less 

than any selected number. 

Definitions:( Converges, Diverges, Limit ) 

   The sequence {  } converges to the number   if to every positive number   there 

corresponds an integer   such that:       |    |     

If no such number   exists, we say that {  } diverges. If {  } converges to  , we write 

           , or simply     , and call   the limit of the sequence. 

Example:- Show that {
 

 
} converges to 0. 

Solution:  
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Example: Show that { } converges to  . 

Solution:  

 

 

 

 

 

Example: Show that the sequence {     } diverges  

Solution:    

 

 

 

 

 

 

Calculating Limits of Sequences 

Theorem1: Let {  } and {  } be sequences of real numbers and let   and   be real 

numbers. The following rules hold if             and            , then 

1. Sum Rule:                                                 {     }    Converges to      

2. Difference Rule:                                        {     }   Converges to     

3. Product Rule                                              {     }      Converges to     

4. Constant Multiple Rule:                            {   }          Converges to     

5. Quotient Rule:                                           {
  

  
}             Converges to 
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 Theorem 2: ( The Sandwich Theorem for Sequences ) 

Let {  } {  } and {  } be sequences of real number. If {  }  {  }  {  } hold for all    

and if {  } and {    } Converges to  , then {  } also Converge to L. 

 Example:   o       {
    

 
}   on        o    

Solution:  

 

 

 

Theorem 3: The Continuous Function Theorem for Sequences  

Let {  } be a sequence of real numbers. If        and if   is a function that is continuous 

at   and defined at all   , Then            . 

Example: applying above theorem, Show that √
   

 
   

Solution:  
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Theorem 4: The following six sequences converge to the limits listed bellows: 

1 .    
   

 
   

 
                                                     2 .    

   
 √ 
 

   

3 .    
   

                                                 4 .    
   

       | |    

5 .    
   

 (  
 

 
)

 
     n                                6 .    

   
 
  

  
           

Example:  

1)    
   

 √   
   

2)    
   

 ( 
 

 
)

 
  

3)    
   

 
    

 
  

4)    
   

 
   

 
  

Theorem 5: A sequence {  } converges to   if and only if the sequence of absolute values 

{|  |} converges to  . 

Bounded Non-decreasing Sequences  

   The terms of a general sequence can bounce around, sometimes getting larger, sometimes 

smaller. An important special kind of sequences is one for which each term is at least as large 

as its predecessor. 

Definition: Non-decreasing Sequence  

 A sequence {  } with property that         for all   is called a nondecreasing sequence. 

Example: Show that {
  

   
} is nondecreasing sequence. 

Solution:  
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Definitions: ( Bounded, Upper Bound, Least Upper Bound ) 

 A sequence {  } is bounded from above if there exists a number   such that |  |   . The 

number   is an upper bound for {  }. If   is upper bound for {  } , but no number less than  

  is an upper bound for {  }, then   is the least upper bound for {  }. 

Example: Applying the definition for Boundedness 

(a) The sequence {        } has no upper bound. 

(b) The sequence {
 

 
 
 

 
  

 

 
   } is bounded above by1. 

Theorem: ( The Non-decreasing Sequence Theorem ) 

   A non-decreasing sequence of real numbers converges if and only if it is bounded from 

above. If a non-decreasing sequence converges, if converges to its least upper bound. 

Example: Use the non-decreasing sequence theorem to convergence the sequence  {
 

   
}  

Solution: 
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Definition: ( Non-increasing Sequence ) 

   A sequence of numbers {  } in which         for every n is called a non-increasing 

sequence 

Definition: ( Bounded from Below and Lower Bounded ) 

   A sequence {  } is bounded from below if there is a number   with      for every    

such a number   is called a lower bound for the sequence. 

Example: Let    
   

 
    

 

 
  

 

 
  

 

 
    

The sequence {  } is bounded above by   and bounded below by  . 

Example: Show that {
   

 
} is non increasing sequence. 

Solution: 

 

 

 

 

 

 

Infinite Series 

   An infinite series is the sum of an infinite sequence of                 . The 

goal of this section is to understand the meaning of such an infinite sum and to develop 

methods to calculate it. Since there are infinitely many terms to add in an infinite series, we 

cannot just keep adding to see what comes out. Instead we look at what we get by summing the 

first   terms of the sequence and stopping. 

The sum of the first   terms                   is an ordinary finite sum and can be 

calculated by normal addition. It is called the     partial sum. As   gets larger, we expect the 

partial sums to get closer and closer to limiting value in the same sense that the terms of a 

sequence approach a limit. 
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For example, to assign to an expression like   
 

 
 

 

 
 

 

 
    

we add the terms one at a time from the beginning and look for a pattern in how these partial 

sums grow.  

          

      
 

 
   

 

 
 

      
 

 
  

 

 
    

 

 
 

     . 

     . 

     . 

      
 

 
  

 

 
    

 

    
    

 

    
 

   
   

        
   

   
 

    
   

Thus   
 

 
 

 

 
 

 

 
     

Definitions: ( Infinite series,     term, Partial Sum, Converges ) 

  Given a sequence of numbers {  }, an expression of the form                is an 

infinite series. The number    is the     term of the series. The sequence that defined by 

                is the sequence of partial sums of the series, the number    being 

the     partial sum. If the sequence of partial sums converges to a limit L, we say that the 

series converges and that its sum is L. In this case, we write: 

            ∑      
     

If the sequence of partial sums of the series does not converge, we say that the series diverges.  

Geometric series 

 are series of the form                       ∑       
    

in which   and   are fixed real numbers and    .  

Theorem7:   

1. If    | |    ,then the geometric series                    ∑       
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converges to 
 

   
. 

2. | |     the series                    ∑       
    diverges. 

 

Proof:                           

                                        (Multiply by  ) 

                                                          (Subtraction) 

                          
         

     
 

1.                 
         

     
  

 

   
 if | |      

2.          does not exist if | |    

Example: The geometric series ∑
 

    
  

 

 
  

 

  
  

 

  
 
     is converges. 

Solution:  

 

 

Example: The geometric series ∑            
    is diverges. 

Solution: 

   

 

Example: Repeating Decimals  

Express the repeating decimal 5232323... as the ratio of two integers  

Solution: 

 

 

 

 

H.W: Determine the Geometric series ∑
      

 
 
    is converges or diverges. 
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Combining Series 

    Whenever we have to convergent series, we can add them term by subtract them by term, or 

multiply them by constant to make new convergent series. 

Theorem 8: If ∑      
        ∑      

    are convergent series, then 

 1. Sum Rule:                                 ∑     
    ∑    ∑         

     
    

2. Difference Rules:                      ∑     
    ∑    ∑         

     
    

3. Constant Multiple Rule:           ∑       
   ∑   

 
    

proof: The three rules for series follow from the analogous rules for sequences in    Theorem 1, 

To prove sum Rule for series, let  

               and 

               

Then the partial sum of ∑         
    is  

                                 

The sequence                                 

Converges to A + B 

Hence ∑     
    ∑    ∑         

     
        

 

Telescoping Series: 

Example: Find the sum of the series  ∑
 

          
  

   . 

Solution: 
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H.W. 1. ∑
 

      
  

    

Theorem 9: If ∑   
 
    converges, then           . 

Theorem 8 leads to a test for detecting the kind of divergence. 

The    -Term Test for Divergence  

∑   
 
    diverges if          fails to exist or is different from zero. 

Example: Applying the    -Term Test  

a. ∑    
    diverges, because  

b. ∑
 

   
 
    diverges, because 

c. ∑       
    diverges, because 

d. ∑
  

    
 
    diverges, because 

Theorem 10: ( The Integral Test ) 

Let {  } be a sequence of positive terms. Suppose that         where  is a continuous, 

positive, decreasing function of   for all     (  a positive integer). Then the series 

∑   
 
    and the integral ∫       

 

 
 both converge or both diverge. 

Proof: We establish the test for the case N  . The proof for general   is similar. 

We start with the assumption that   is a decreasing function with         for every  . 

This leads us to observe that the rectangles in (Fig A) which have areas            

collectively enclose more area than that under the curve from     to      . That is 

∫       
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                                                                                                                                 Fig A 

 

In (Fig B) the rectangles have been faced to the left instead of to the right. If we mentality 

disregard the first rectangle, of area   , we see that  

           ∫       
 

 
                        

If we include, we have                                                                                         Fig B 

∫       

   

 

               ∫       

 

 

 

This inequalities hold for each    and continue to hold as    . 

If ∫       
 

 
 is finite, the right-hand inequality shows that ∑    is finite. If ∫       

 

 
 is 

infinite, then the left-hand inequality shows that ∑    is infinite. Hence the seires and the 

integral are both infinite. 

Definition:(   series ) are series of the form ∑
 

  
 
   , in which   is a real constant. 

Example: Applying the Integral Test 

Shows that the  -series ∑
 

  
 
      a real constant) converges if     and diverges if    . 

Solution: 
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Example: By the integral test show that ∑
 

    
 
    is converge. 

Solution: 

 

 

 

 

 

 

Comparison Test:  

   We have seen how to determine the convergence of geometric series,  -series, and a few 

others. We can test the convergence of many more series by combining their terms to those 

of a series whose convergence is known. 

Theorem 11: ( The Comparison Test ) 

Let ∑   
 
    be a series with no negative terms. 

a) ∑   
 
    converges if there is a convergent series ∑   

 
    with       for all     

for some integer  . 

b) ∑   
 
    diverges if there is a divergent series ∑   

 
    with       for all     for 

some integer  . 

Example: The series ∑
 

    
 
    diverges, because 
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The Limit Comparison Test 

We now introduce a comparison test that is particulary useful for series in which is a rational 

function of  . 

Theorem 12: ( Limit Comparison Test ) 

Suppose that      and      for all    (  an integer). 

1. If       
  

  
      then ∑   

 
    and ∑   

 
    both converges or both diverges. 

2. If       
  

  
   and ∑   

 
    converges, then ∑   

 
    converges. 

3. If       
  

  
   and ∑   

 
    diverges, then ∑   

 
    diverges. 

Proof: we will prove part1 

Since 
 

 
  ,  there exists an integer  , such that for all   

                                                     |
  

  
  |  

 

 
        {limit definition with   

 

 
      

                                                    
 

 
 

  

  
   

 

 
                                 

  

  
}  

                                                     
 

 
 

  

  
   

 

 
 

                                                  (
 

 
)       

  

 
   

If ∑   
 
    converges, then ∑

  

 
 
      converges and ∑   

 
    converges by the Direct 

Comparison Test. If ∑   
 
    diverges, then∑

 

 
 
       diverges and ∑   

 
    diverges by the 

Direct Comparison Test. 

Example: The series ∑
 

  
 
     is converges, because 
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Example: Using the Limit Comparison Test 

Which of the following series converge and which diverge? 

      
 

 
 

 

 
 

 

  
 

 

  
   ∑

    

      

 

   

                                                    
 

 
 

 

 
 

 

 
   ∑

 

    

 

   

   

        
      

 
 

      

  
   ∑

      

    

 

   

 

Solution:  
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The Ratio and Root Test 

     The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 

    

  
. For a geometric series       , this rate is a constant ( 

     

   
   ), and the series 

converges if and only if its ratio is less than   in absolute value. The Ratio Test is a powerful 

rule extending that result. We prove it on the next page using the Comparison Test.  

Theorem: ( The Ratio Test ) 

Let ∑    be a series with positive terms and suppose that       
    

  
  . Then  

(a) The series converges   if       

(b) The series diverges if     or P is infinite, 

(c) The test is inconclusive if    . 

Proof: (a)    . Let   be a number between   and  . 

        Then the number        is positive. Since  

    

  
  , 

    

  
 must lie within   of   when   is large enough, say for all     . In particular  
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That is 

         ,  

           

                , 

               , 

  

                 . 

These inequalities show that the terms of our series, after the     term, approach zero more 

rapidly than the terms in a geometric series with ratio    . More precisely, consider the series 
∑   , where       for all  , and 

∑   

 

   

                            

                                  

The geometric series          converges because | |   , so ∑    converges. Since 

      ∑    also converges. 

(b)      . From some index M on, 

    

  
         and                    

The terms of the series do not approach zero as   because infinite and the series diverges by 

the     -Term Test. 

          . The two series  

∑
 

 
 
        and    ∑

 

  
 
    

Show that some other test for convergence must be used when     . 

For     ∑
 

 
 
     

    

  
 

       

   
 

 

   
  .  

For      ∑
 

  
 

    

  
 

        

    
 
    (

 

   
)

 
  .  

In both cases,    , yet the first series diverges, whereas the second converge.  
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Example: Applying the Ratio Test  

Investigate the convergence of the following series  

     ∑
    

  

 

   

                                 ∑
     

    

 

   

                                    ∑
      

     

 

   

  

Solution:  
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Theorem: ( The Root Test )  

Let  ∑     be a series with        for       and suppose that  

   
   

√  
     

Then 

a) the series converges if        

b) the series diverges if       or   is infinite  

c) the series inconclusive if     . 

Example: which of the following series converges and which diverges? 

   ∑
  

  
 

 

   

                       ∑
  

  

 

   

                           ∑ (
 

   
)

  

   

 

Solution:                                        
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Alternating Series, Absolute and Condition Convergence  

A series in which the terms are alternately positive and negative is an alternating series. 

  
 

 
 

 

 
 

 

 
 

 

 
  

       

 
   

     
 

 
 

 

 
 

 

 
   

      

  
   

                         

Theorem: ( The Alternating Series Test (Leibniz’s) Theorem )  

The series ∑        
 
                  converges if all three of the following 

conditions are satisfied: 

1. the      are all positive. 

2.          for all    , for some positive integer  . 

3.     . 

Example: Are the alternating harmonic series  

(1) ∑         

 
  

        and    (2)  ∑
      

  
 
        are converges or diverges? 

Solution:  

 

 

 

 

 



 
Lecture: Suham  H .Awla 
    

 21 
 

 

 

Definition: (Absolutely Convergent)   

 A series ∑    converge absolutely (is absolutely convergent) if the corresponding series of 

absolute values ∑|  | converges. 

Example: The geometric series   
 

 
 

 

 
 

 

 
   ∑

       

    
 
    converges absolutely 

because the corresponding series of absolute values   
 

 
 

 

 
 

 

 
   converges. 

Definition: (Conditionally Convergent)  

A series that converges but does not converge absolutely its converges conditionally. 

Example: Conditionally Convergent 

Is the series ∑
     

   
 
    conditionally convergent? 

Solution: 
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Theorem: ( The Absolute Convergence Test )  

If ∑  |    |                ∑   
 
   

 
    Converges. 

Proof:   For each  ,  

-|  |     |  |   so        |   |   |  |  

If ∑ |  | 
    converges, then ∑  |  

 
   | converges and by the Direct Comparison Test, the 

nonnegative series ∑     |  |  
    converges. The equality        |  |  - |  | now lets us 

express ∑   
 
    as the difference of two convergent series: 

∑     ∑      |  |   |  |   ∑      |  |  
   

 
   

 
     ∑ |  | 

    . 

Therefore ∑     
   converges. 

Example: Is ∑
     

  
 
    converges?  

Solution: 

 

 

 

 

 

 

Power Series 

 Now that we can test infinite series for convergence. We can study the infinite polynomials 

mentioned at the beginning of this chapter. We call this polynomials power series because they 

are defined as infinite series of some variable, in our case  . Like polynomials, power series can 

be added subtracted, multiplicities differentiated and integrated to give new power series.  
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Definitions: Power series, Centre, coefficients 

A power series about     is a series of the form  

             ∑     

 

   

                                   

A power series about     is a series of the form 

∑   

 

   

                                                

In which the center   and the coefficients              are constants. 

Example: Taking all the coefficients to be   in Equation (1) gives the geometric series 

∑   

 

   

               

This is the geometric series with first term 1 and ratio    it converges to 
 

   
 for |x| < 1. We 

express this fact by writing  

Example: Testing for convergence using the Ratio Test 

for what values of   do the following power series converge? 

(a) ∑         
   

  

 
   

  

 
 

  

 
   

(b) ∑         
   

     

    
   

  

 
 

  

 
   

(c) ∑
  

  
 
        

  

  
 

  

  
   

(d) ∑      
                    

Solution 
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Theorem: ( The Convergence Theorem for Power Series ) 

 If the power series ∑      
                  converges at        then it 

converges absolutely for all   with | |  | |  If the series diverges at    , then it diverges for 

all   with | |  | |  

Corollary to Theorem: The convergence of the series ∑          
    is described by one of 

the following three possiblities: 

1. There is a positive number   such that the series diverges for   with | –  |    but 

converges absolutely for   with | –  |   . The series may or may not converge at either of the 

endpoints       and      . 

2. The series converges absolutely for every          

3. The series converges at     and diverges elsewhere        

Term-by-Term Differentiation 

A theorem from advanced calculus says that a power series can be differentiated term by term 

at each interior point of its interval of convergence. 
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Theorem: ( The Term-by-Term Differentiation Theorem ) 

If ∑          converges for  –         for some      It defines a function: 

     ∑          
    on   –        . 

Such a function   has derivatives of all orders inside the interval of convergence.  

We can obtain the derivatives by differentiating the original series term by term:  

       ∑    

 

   

           

       ∑  

 

   

                  

and so on. Each of these derived series converges at every interior point of the interval of 

convergence of the original series. 

Example: Find series for       and        if  

     
 

   
                     

                        ∑                      
     

Solution:  
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Theorem: The Term-by-Term Integration Theorem 

 Suppose that       ∑          
    Converges for  –                Then  

∑   
 
   

        

   
 , Converges for  –         and  

∫        ∑   

 

   

        

   
   

For  –        . 

Example: A series       ,        identify the function 

        
  

 
 

  

 
           

Solution: 

 

 

 

 

 

 

 

Example: A series for                is the series 
 

   
             

Solution: 
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Theorem : ( The Series Multiplication Theorem for Power Series ) 

If       ∑      
     and      ∑      

    converge absolutely for | |   , and  

                                    ∑       

   

 

  

Then ∑   
 
      converges absolutely to          for | |    

 ∑       
     ∑      

     ∑      
     

Example : Multiply the geometric Series 

                     ∑         
                

 

   
  ,for | |   , 

by itself to get a power series for 
 

      
  ,for  | |     

Solution:   
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Taylor and Maclaurin Series 

This section shows how functions that are infinitely differentiable generate power series called 

Taylor series. In many cases, these series can provide polynomial approximations of the 

generating functions. 

                        ∑          
    

                                                 
 
            

 
    

with a positive radius of convergence. By repeated term-by-term differentiation within the 

interval of convergence I we obtain 

                            
 
              

 
    

                                                         

                                                               

with the nth derivative , for all   , being 

                                          as a factor.  

Since these equations all hold at     , we have 

                                                                        

               

                    

and in general 

               

   
       

  
 

If   has a series representation, then the series must be 
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Definitions: ( Taylor Series, Maclaurin Series ) 

Let   be a function with derivatives of all orders throughout some interval containing   as an 

interior point. Then the Taylor series generated by   at     is. 

∑
       

  
       

 
 
                    

      

  
         

       

  
          

The Maclaurin series generated by   is 

∑
       

  
   

 
 

   

             
      

  
     

       

  
     

the Taylor Series generated by   at    . 

Convergence of Taylor Series 

Theorem: ( Taylor’s Theorem ) 

If   and its first   derivative             are continuous on the closed interval between   and 

 , and      is differentiable on the open interval between   and  , then there exists a number    

between   and   such that  

                      
      

  
          

       

  
        

         

      
         

Taylor’s Formula: 

If   has derivatives of all orders in an open interval containing  , then for each positive 

integer   and for each   in  , 

                      
      

  
         

     

  
               

Where       
          

      
           for some   between   and    .                           
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 If               for all   we say that the Taylor series generated by   at     converges 

to   on    

Example: Find the Taylor series generated by      
 

 
 at    . Where, if anywhere, does the 

series converge to 
 

 
  

Solution:  

 

 

 

 

 

 

 

 

 

Example: Find the Taylor series and the Taylor polynomials by          at      

Solution:                         
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Example: Show that (H.W.) 

1.      ∑
           

       
 
      

  

  
 

  

  
 

  

  
   

2.      ∑
         

     
 
      

  

  
 

  

  
 

  

  
   

3.          
  

 
 

  

 
 

  

 
     | |    

The Binomial Series 

The Taylor series generated by             , where   is constant, is  

     
      

  
   

           

  
      

                   

  
           

This series called the binomial series, converges absolutely for  | |    . To derive the series, 

we first list the function and its derivatives: 

                                                   

                                                     

                                                            

                                                               

                                                  

                                                      

we then evaluate these at     and substitute into the Taylor series formula to obtain Series (1) 

The Binomial Series 

For        , 

                                ∑ ( 
 
) 

       

Where we define 

 ( 
 
)     ( 

 
)  

      

  
 and  ( 

 
)  

                   

  
       for      
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Example: Evaluating the limits by using power series:           
 

    
   

 

 
   

Solution:             

 

 

 

 

 

 

 

Frequently used Taylor series 

1. 
 

   
                  ∑    

    |  |    

2. 
 

   
                    ∑          

         | |    

3.         
  

  
     

  

  
   ∑

  

  
 
        | |     

4.         
  

  
  

  

  
         

      

        
   ∑

           

       
 
    | |    

5.        
  

  
  

  

  
         

   

     
   ∑

         

     
 
        | |    

6.           
  

 
 

  

 
           

  

 
   ∑

          

 
 
              

7.   
   

   
            (  

  

 
 

  

 
   

     

    
  )   ∑

     

    

 
       | |    

8.          
  

 
 

  

 
         

     

    
   ∑

           

    
     | |    

    

Binomial series 
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   ∑ (
 
 )          | |      

 

   

 

Where 

             (
 
 

)      (
 
 

)  
      

  
   (

 
 

)  
              

  
    for        

 

Fourier series 

Suppose we wish to approximate. A function   on the interval [    ] by a sum of Sine and 

cosine function, 

                                                                 

                ∑                    
      ……….(1  

We would like to choose values for the constants                 and               that 

make       an                  approximation to       The notion of                 is 

defined as follows: 

1-       and       give the same value when integrated from   to   . 

2-            and            give the same value when integrate from 0 to         

               

3-             and            give the Same. value integrated from 0 to              

               

we chose    so that the integrals on the left remain the same when    is replaced by  ,so we can 

use these equations to find           and          from  :                         

                            
 

  
 ∫     

  

 
     …..(2  

                            
 

 
∫           

  

 

       

                         
 

 
∫            
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The only condition needed to find these coefficients is that the integrals above must exist. If we 

let     and use these rules to get the coefficients of on infinite series, then the resulting sum 

is called the Fourier series for        

    ∑    
 
                   

Example: Finding a Fourier series Expansion Fourier series can be used to represent some 

functions that cannot be represented by Taylor series; for example 

     {
            

                     
 

Solution: 
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Functions of several variables: 

Definitions: ( Function of   independent variables )  

Suppose   is a set of n-tuples of real numbers             A real-valued function   on   is 

a rule that assigns a unique (single) real number                  to each element in  .                                                     

The set   is the function’  domain. The set of w-values taken on by   i      fun  ion’  range. 

The symbol   is the dependent variable of    and   is said to be a function of the   independent 

variables     to    We also call the   ’      fun  ion’  input variables and call       fun  ion’  

output variable. 

Example: Find the value of            √          at the point          . 

Solution:        

 

 

Example: Find the domain and range of the following function : 

(a)   √      

(b)   
 

  
 

(c)          

Solution :  
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Definition:  Interior and Boundary Points, Open, Closed 

A point (     ) in a region (set)   in the xy-plane is an interior point of R if it is the center of a 

disk of positive radius that lies entirely in   , A point (     ) is a boundary point of R if every 

disk centered at(     )contains points that lie outside of   as well as points that lie in R. (The 

boundary point itself need not belong to  ) 

 The interior points of a region, as a set, make up the interior of        ion. T      ion’  

boundary points make up its boundary. A region is open if it consists entirely of interior 

points. A region is closed if it contains all its boundary points . 

                     

Example:  
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Definition: Bounded and Unbounded Regions in the Plane  

A region in the plane is bounded if it lies inside a disk of fixed radius. A region 

is unbounded if it is not bounded. 

Example: Describe the domain of the function         √     . 

Solution:  

   

 

 

 

 

 

 

 

 

Definition: ( Level Curve, Graph, Surface ) 

The set of points in the plane where a function        has a constant value           is 

called a level curve of ƒ. The set of all points              in space, for       in the domain of 

 , is called the graph of  . The graph of   is also called the surface           

 

Example:  Graphing a Function of Two Variables 
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 Graph                  and plot the level curves                     and 

           in the domain of   in the plane. 

Solution: 

 

 

 

 

 

 

  



 
Lecture: Suham  H .Awla 
    

 39 
 

 

Definition: ( Limit of a Function of Two Variables ) 

We say that a function        approaches the limit L as       approaches         and write 

   
             

         

 if, for every number      there exists a corresponding number     such that for all       

in the domain of  , 

|        |    < whenever    √                 . 

Example: 
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Theorem: ( Properties of Limits of Functions of Two Variables ) 

The following rules hold if     and   are real numbers and  

                         and                         . 

1. Sum Rule:                     (             )      

2. Difference Rule:                    (             )      

3. Product Rule:                   (             )      

4. Constant Multiple Rule:                    (       )     

5. Quotient Rule:                   (
      

      
)  

  

 
       

6. Power Rule:  If r and s are integers with no common factors, and     then 

    
             

        
 

 ⁄   
 

 ⁄  ,provided  
 

 ⁄  is a real number.(if s is even we assume that L > 0. 

Example:    Calculating limits 

A)               
      

         
  

B)    
           

√       

C)    
           

     

√  √ 
  

 

Definition ( Continuous Function of Two Variables ) 

A function        is continuous at the point         if: 

1. ƒ is defined at        . 

2.    
             

       exists. 

3.    
             

                

A function is continuous if it is continuous at every point of its domain. 

 Example:  

  Show that        {

   

     
               

                       
 ,is continuous at every point except the origin . 



 
Lecture: Suham  H .Awla 
    

 41 
 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two-path test for Nonexistence of a limit 

If a function        has different limits along two different paths as (x,y) approaches (x0,y0), 

then    
             

       does not exist.   

Example:  Show that the function           
    

     
  has no limit as (x, y) approaches (0, 0). 

Solution:  
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Example: Define        in any way that extends f to be continuous at the origin, where 

        
    

     
 

Solution: 
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Partial Derivatives 

Definition: ( Partial Derivative with repeat to   )  

The partial derivative of        with respect to   at the point         is 

  

  
            

   

                   

 
    

Provided the limit exists. 

Definition: ( Partial Derivative with repeat to   )  

The partial derivative of        with respect to   at the point       is 

  

  
            

   

                   

 
    

Provided the limit exists. 

Example: Find the values of  
  

  
 and 

  

  
 at the point        if                    

 

 

 

Example: Find    and    if        

1.        
  

      
         2.        

 

     
       3.                
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Higher Order of Partial Derivatives 

When we differentiate a function        more than one times, we produce its as follows: 

  
   

   
 

 

  
(
  

  
)      

  
   

   
 

 

  
(
  

  
)      

  
   

    
 

 

  
(
  

  
)      

  
  

    
 

 

  
(
  

  
)      

  
   

      
 

 

  
(

   

    
)       

  
   

     
 

 

  
(
   

   
)       

                  

Example: If                  , find  

   

   
 
   

   
 

   

    
 

   

    
 

   

      
 

   

      
 

Solution: 
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Theorem: ( The Mixed Derivative Theorem ) 

If        and its partial derivative           and     are defined throughout an open region 

containing a point       and are all continuous at       then                    

Theorem: ( Differentiability Implies Continuity ) 

If a function        is differentiable at        , then   is continuous at        . 

Example: Verify that         at any point, where 
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Solution:  

 

 

 

 

 

Definition: ( Differentiable Function ) 

A function          is differentiable at         if                         exist and    

satisfies an equation of the form. 

                                      in which each of         as both 

         We call   differentiable if its differentiable at every point in its domain. 

Theorem: ( Chain Rule for Functions of two Independent Variables ) 

If          has continuous partial derivatives           and if       ,       are 

differentiable function of  , then the composite    (         ) is a differentiable function 

of   and 

  

  
   (         )        (         )       

  

  
 

  

  

  

  
 

  

  

  

  
   

  

  
   

  

  
 

Proof: The proof consists of showing that if   and   are differentiable at     , then   is 

differentiable at    and 

(
  

  
)

  

 (
  

  
)

  

(
  

  
)

  

 (
  

  
)

  

(
  

  
)

  

   

Where    (           ) The subscripts indicate where each of the derivatives are to be 

evaluated. 
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Let       and    be the increments that result from changing from   to        

Since   is differentiable, 

   (
  

  
)

  

   (
  

  
)

  

              

Where                   . To find 
  

  
, we divide this equation through by    and let    

approach zero. 

The division gives: 

  

  
 (

  

  
)

  

  

  
 (

  

  
)

  

  

  
   

  

  
   

  

  
 

Letting    approach zero gives 

(
  

  
)

  

    
    

  

  
 (

  

  
)

  

(
  

  
)

  

 (
  

  
)

  

(
  

  
)

  

  (
  

  
)

  

  (
  

  
)

  

 

Example: Find 
  

  
 where                             

Solution: 

 

 

 

 

Example: Use the Chain Rule to find the derivative of       . with respect to  , the path 

      ,          hat is the derivative value at   
 

 
 ?  

Solution:    
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Remark: If                               then   

  

  
 

  

  

  

  
 

  

  

  

  
     and     

  

  
 

  

  

  

  
 

  

  

  

  
  

Example: Express 
  

  
 and  

  

  
 in terms for   and   , if                         .  

Solution:  
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Theorem *: ( A Formula for Implicit Differentiation )  

Suppose that        is differentiable   of and that the equation          defines   as a 

differentiable function of  . Then at any point where      , 
  

  
    

  

  
  

Proof  : Let                                          
  

   
   

  

  
        

                             
  

  
    

  

   
                           

     

     
    

  

  
                           

  

  
    

  

  
 

Example: Use theorem * to find  
  

  
   if               

Solution: 
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P  

Z 

X 

V=  𝑉   𝑉  𝑉     

V2 

 

Vectors 

Definition: Vector. Initial and Terminal point, Length 

 A vector in the plane is a directed line segment . 

The directed line segment   ⃗⃗ ⃗⃗  ⃗ has initial point   and terminal  

point  , its length is denoted by |  ⃗⃗ ⃗⃗  ⃗|. Two vectors are 

 equal if they  have the same length and direction. 

                                                                                                        Y 

Definition : ( Component Form ) 

If   is a two –dimensional vector in the plane equal to the vector with the initial point at origin 

and terminal point       ,Then the component form of   is             .  

If   is a three dimensional vector equal to the vector with initial point at the origin and terminal 

point            , then the component form of   is                .  

The magnitude or length of the vector V=  ⃗⃗ ⃗⃗  ⃗ is the non negative number  

                       | |  √  
    

    
  

                              √                              

The only vector with length   is the zero vectors 

         or            this vector is also only vector  

with no specific direction. 
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Example:  Find (a) component form and (b) length of the vector with initial point            

and terminal point            

 Solution: 

   

 

 

 

 

 

Vector Algebra Operations 

Definitions: ( Vector addition and multiplication of vector by a scalar )   

Let               and               be vector with   a scalar.  

Addition:                            

Scalar multiplication:                     

Example: let                          Find 

                                                                      |
  

 
  | 
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Properties of vector operations 

Let       be vectors and     be scalars  

                                                                           

                                                                                                                  

                                                                                          

 

Proof 1:              

 

 

 

 

 

 

 

Proof 2:  

 

 

 

 

 

 

 

Proof 3                    
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Proof 4:        

 

 

 

 

 

 

Proof 5:                   

 

 

 

 

Proof 6:                

 

 

 

 

Proof 7: 

 

 

 

 

 

Proof 8:        
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Proof 9:        

 

 

 

Definition: ( Unit vectors ) 

 A vector V of length 1 is called a unit vector , the standard unit vectors are :  

          ,             and          any vector                 can be written 

as a linear combination of standard unit vectors as follows:  

                                                  

                                  

                                                                         

                                                            

Whenever      its length | | is not zero and  

|
 

| |
 |  

 

| |
 | |    

That is 
 

| |
 is a unit vector in the direction of  , called the direction of non zero vector  .  

Example: Find a unit vector   in the direction of the vector form           to            

Solution:  

 

 

 

Definition: ( Midpoint )  
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the midpoint   of the line segment joining points              and              in the point 

(
     

 
 

     

 
 

     

 
) 

Example: The midpoint of the segment joining                       is  

  

 

 

Definition: ( Dot product )  

 the dot product     (“   dot  ”) of vectors                and 

                is                          

Example: Finding dot products of vectors 

a)                          

b)    (
 

 
      )             

 

 

 

 

 

 

 

 

Theorem :( Angle between Two Vectors ) 

The angle    between two nan zero vectors               and                  is 

given by  
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       (
              

| || |
)  

Proof: Appling the law of cosines to the triangle in Fig  , we find that 

 

| |  | |  | |   | || |                            u             w 

 | || |      | |  | |  | |                                 v             Fig 1  

Because        , the component form of   is                       So  

| |  (√  
    

    
  )

 

     
    

    
  

| |  (√  
    

    
  )

 

   
    

    
  

| |  (√                          )
 
 

                                     

            
          

    
          

    
          

  

and  | |  | |  | |                    

Therefore   | || |      | |  | |  | |                    

     
              

| || |
 

                     

| || |
       

   

| || |
) 

Example: Find the angle between             and            

Solution: 
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Definition:  ( perpendicular (orthogonal) vectors )  

Vectors u and v are orthogonal (or perpendicular) if and only if         

Example: Appling the definition of orthogonality  

(a)                       are orthogonal because        

(b)           and         are orthogonal because       

Properties of the Dot Product  

If     and   are any vectors and c is a scalar, then 

1.         

2.                      

3.                 

4.     | |  

5.       

Proof 1:   

 

 

Proof 2:   

 

 

 

 

 

 Proof 3: 
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Proof 4:     

 

 

 

Proof 5:  

 

 

Vector projection of   onto  : 

                                         
  (

   

| | 
)  

Scalar component of   in the direction of  :                                      u 

                                 | |      
   

| |
   

 

| |
                                                     

                           

Example: Find the vector projection of            on to           and the scalar 

component of   in the direction of  . 

Solution: 
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Definition: ( Cross product, Vector Product  ) 

     | || |        

The cross product is a vector. For this reason i ’   l o   ll d         o  p odu   of     and     

 

Definition: ( parallel vector )  

Nonzero vectors   and   are parallel if and only if       . 

Properties of the cross product: 

if        and    are any vectors and        are scalars, then  

1.                     

2.            

3.                 

4.                 

5.      . 

Calculating Cross Products Using Determinates: 

If                                  , then 

           |
   

      

      

|  

Example: Find       and       if           and            

Solution: 
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Calculating the triple scalar product 

        |

      

      

      

| 

Example:  Find the volume of the box (parallelepiped) determined by 

           ,           and        . 

Solution:   

 

 

 

Lines and Planes in Space 

Suppose that L is a line in space passing through a point              parallel to a vector 

     +       . Then L is the set of all points         for which    ⃗⃗⃗⃗⃗⃗  ⃗ is parallel to  , thus 

   ⃗⃗⃗⃗⃗⃗  ⃗     for some scalar parameter  . 

                                       

Which can be rewritten as 

                                    

                                        

Parametric Equation for a line  
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The standard parameterization of the line through               parallel to                      

              is                                       

Example: Find parametric equation for the line through          parallel to              

Solution: 

 

 

 

 

 

Example: Parameterizing a line through two points, Find parametric equation for the line 

through              and            

Solution: 

 

 

 

 

An equation for a Plane in Space  

Suppose that plane   passes through a point              and is normal to the nonzero vector 

          . Then M is the set of all points          for which    ⃗⃗⃗⃗⃗⃗  ⃗  is orthogonal to n  

     ⃗⃗⃗⃗⃗⃗  ⃗    

           [                       ]    

                          

Equation for a Plane: 
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The plane through              normal to              

Vector equation:         ⃗⃗⃗⃗⃗⃗  ⃗    

Component equation:                           

Component equation simplified:           , where  

             . 

Example: Find an equation for the plane through            perpendicular to          . 

Solution:  

 

 

 

 

 

Example: Find an equation for the plane normal to                                . 

Solution:  

 

 

 

 

 

 

Example: Find the point where the line   
 

 
                         intersect the plane 

            

Solution:  
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Definition: The Distance from a Point to a Line in Space                                              S 

Distance from a point   to a line through   parallel to   is   
|  ⃗⃗⃗⃗  ⃗  |

| |
.                        |  ⃗⃗ ⃗⃗  |      

Example: Find the distance from a point          to the line               P                    

                      

Solution:  

 

 

 

 

 

Vector Valued Functions in Space 
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When a particle moves through space during a time interval         ink of     p   i l ’  

coordinates as functions defined on  : 

                                                 …………….(1  

The points         (             )     make up the curve in space that we call the 

p   i l ’  path. The equations and interval in Equation (1) parameterize the curve. A curve in 

space can also be represented in vector form. The vector      z 

           ⃗⃗ ⃗⃗  ⃗                   ……………..(2)            0    r           P(f(t),g(t),h(t)) 

                                                                                      X       (x,y,z) 

f om     o i in  o     p   i l ’  position                   at time   i      p   i l ’  position. 

vector (Fig 2). The functions           are the component functions (components) of the 

position v   o . W    ink of     p   i l ’  p           curve traced by   during the time 

interval  . Displays several space curves generated by a computer graphing program. It would 

not be easy to plot these curves by hand. 

Equation (2) defines   as a vector function of the real variable   on the interval  . More 

generally, a vector function or vector-valued function on a domain set   is a rule that assigns 

a vector in space to each element in D. For now, the domains will be intervals of real numbers 

resulting in a space curve. Later, in Chapter 16, the domains will be regions. 

Example: Find the value of a component function at     for the following vector valued 

functions 

1.                     

2.                  . 

Solution:  
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Limits and Continuity 

The way we define limits of vector-valued functions is similar to the way we define limits of 

real-valued functions. 

 

Definition: ( Limit of Vector Functions ) 

Let                       be a vector function and   a vector. We say that 

  has limit L as   approaches   and write 

   
    

       

if, for every number      there exists a corresponding number      such that 

for all   

  |    |           |      |     

Example: If                   , then find the limit of   at   
 

 
  

Solution: 

 

 

 

We define continuity for vector functions the some way we define continuity for scalar 

function. 

Definition:  ( Continuous at a Point ) 
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A vector function      is continuous at a point      in its domain if        
          . 

The function is continuous if it is continuous at every point in its domain. 

Examples: (a) All the following functions are continuous at every value of   in       , 

because their component functions are continuous at every value of   in         

1.                         

2.                            

3.                                  

4.                               

(b) The function                      ⌊ ⌋  

is discontinuous at every integer, where the greatest integer function ⌊ ⌋is discontinuous. 

Definition:  ( Derivative ) 

The vector function                        has a derivative (is differentiable) 

at   if      and   have derivatives at  . The derivative is the vector function 

      
  

  
    

    

            

  
 

  

  
  

  

  
  

  

  
   

Example: Derivative the function 

                            

Solution:  

 

 

 

 

Differentiation Rules for Vector Functions 

Let   and   be differentiable vector functions of     a constant vector,   any 

scalar, and   any differentiable scalar function. 

1. Constant Function Rule:                    
 

  
[ ]    

2. Scalar Multiple Rules:                       
 

  
[     ]         
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[        ]                      

3. Sum Rule:                                          
 

  
[         ]              

4. Difference Rule:                               
 

  
[         ]                

5. Dot Product Rule:                            
 

  
[         ]                      

6. Cross Product Rule:                        
 

  
[         ]                        

7. Chain Rule:                                      
 

  
[       ]            . 

Proof of the Dot Product Rule: 

Suppose that                             and                             , 

Then                
 

  
      

 

  
                    

                                                                                             

                                                       

Integral of Vector Functions 

Definition:  ( Defined Integral )  

If the components of                             are integrable over [   ], then so is  , 

and the definite integral of   from   to   is  

∫        
 

 

(∫        
 

 

)   (∫       
 

 

)   (∫       
 

 

)    

Example: Evaluating Definite Integral 

                  ∫ [              ]   
 

 
 

Solution: 
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Arc Length along a Space Curve  

Definition: ( Length of a Smooth Curve )  

The Length of a Smooth Curve                                       

That traced exactly ones as   increases from     to     is  

   ∫ √(
  
  

)

 

 (
  
  

)

 

  (
  
  

)

 

  
 

 
 

Example: Find the Length of the curve                               [    ]. 

Solution:  

 

 

 

 

 

 

 

Directional Derivatives and Gradient Vector 

If        is differentiable, then the rate at which   changes with respect to   along a 

differentiable curve               is 
  

  
  

  

  
 
  

  
 

  

  
 
  

  
. 
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At any point                            , this equation gives the rate of change of   with 

respect to increasing   and therefore depends, among other things on the direction of motion 

along the curve. 

Suppose that the function        is defined throughout a region   in the          , that 

          is a point in  , and that               is a unit vector. Then the equation          

                      

Parameterize the line through    parallel to  . 

Definition: (Directional Derivative) 

The Derivative of   at            in the direction of the unit vector                is the 

number  
  

  
     

       
                           

 
 provided the limit exists. 

The directional derivative is also denoted by 

                   
                            the derivative of   at    in the direction of  .    

 

Example: Finding a Directional Derivative using the Definition 

Find the Derivative of                           in the direction of the unit vector 

    
 

√ 
    

 

√ 
  . 

Solution: 
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Definition: ( Gradient Vector ) 

The gradient vector (gradient) of        at a point           is the vector  

   
  

  
   

  

  
  obtained by evaluating the partial derivatives of   at    . 

Example: Find the gradient of              at a point        . 

Solution: 

 

  

 

 

 

 

Theorem: ( The Directional Derivative is a Dot Product ) 

If        is differentiable in an open region containing          , then  

 
  

  
     

       
   

The dot product of the gradient   at    and  . 

Example: find the directional derivative of               at         and    
 

√ 
  

 

√ 
 . 

Solution:  
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Properties of the Directional Derivative  u   

                 .u = |  | cos  

1. The function   increases most rapidly when        or when   is the direction of     

that is, at each point   in it is domain,   increases most rapidly in the direction of the 

gradient vector    at  . The derivative in this direction is  

     |  |      |  |  

2. Similarly,   decreases most rapidly in the direction       The derivative in this direction is  

     |  |       |  |  

3. Any direction   orthogonal to a gradient      is a direction of zero change in 

  because   equals 
 

 
 and       |  |        |  |     

        as we discuss later, these properties hold in three dimensions as well as two.  

 

 

Example: Find the direction derivative in which         
  

 
  

  

 
 

a) Increases most rapidly at the point        

b) Decreases most rapidly at the point      . 

c) What are the directions of zero change in f at the point        

Solution: 
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Algebra Rules for Gradients: 

1. Constant Multiple Rule:              (any number k). 

2. Sum Rule:                                     

3. Difference Rule:                              

4. Product Rule:                                  

5. Quotient Rule:                  (
 

 
)   

        

  
. 

Example: We illustrate the rules with                                              

Solution:  

 

 

 

 

 

Tangent plans and Differentials 

Tangent plans and Normal lines 

If                     is a smooth curve on the level surface            of a 

differentiable function    then  (              )   . Differentiating both sides of this 

equation with respect to   leads to  

                                    
 

  
  (              )  

 

  
  

                                    
  

  

  

  
 

  

  

  

  
 

  

  

  

  
           (Chain Rule) 

at every point along the curve.    i  o   o on l  o      u   ’    lo i       o . 

Definition: (Tangent Plane, Normal Line) 
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The tangent plane at the point              on the level surface            of a 

differentiable function   is the plane through    normal to      
  

The normal line of the surface at    is the line through    parallel to      
  

Tangent plane to            at              

                                        . 

Normal Line to            at              

                                                      . 

Example: Find the tangent plane and normal line of the surface 

                     ( a circular paraboloid ) at the point          . 

Solution:   

    

 

 

 

 

 

 

Plane Tangent to a Surface             at                  

The plane tangent to the surface          of a differentiable function   at the point 

                              is                                         . 

Example: Find the plane tangent to the surface             at        . 

Solution:  

 

 

 

Example: Tangent line to the curve of intersection of two surfaces. The surfaces       

                   a cylinder and                  a plane. Finding 

parametric equations for the line tangent to   at the point            

x 

y Tangent plane 

P0(x.y.z) 
Normal Line 

 

The surface  

X2+y2+z-9=o 
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Solution:  

 

 

 

 

 

 

 

 

Definition: Total Differential 

If we move from         to the point               nearby, the resulting change  

                           

In the linearization of f is called the total differential of f. 

Example: Find the total differential of              
 

 
     at the point      . 

Solution: 

 

 

Extreme Values and Saddle Points 

Derivative Tests for Local Extreme Values  

Definition: ( Local Maximum, Local Minimum ) 

Let        be defined on a region   containing the point      . Then  

1.        is a local maximum value of   if              for all domain points       in 

an open disk centered at      . 

2.        is a local minimum value of   if                for all domain points       in 

an open disk centered at        

Theorem: (First derivative test for local extreme value) 
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If        has a local maximum or local minimum value at an interior point       of it is 

domain and if the first partial derivatives exist there, then           and          . 

Definition: (Critical point)  

An interior point       of the domain of a function        where both    and    are zero or 

where one or both    and    do not exist is a critical point of  . 

Example: Find the critical point of        √     

Solution: 

 

 

 

 

Definition: ( Saddle point ) 

A differentiable function       has a Saddle point at a critical point       if in every open 

disk centered at       there are domain points       where               and domain 

points       where              . The corresponding point (          ) on the surface 

         is called Saddle point of the surface.   

 

  

Example: Find the local extreme value of               

Solution:  
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Theorem: Second Derivative Test for Local Extreme Values 

Suppose that        and its first and second derivatives are continuous throughout a disk 

centered at       and that                     Then 

i.    has a local maximum  at       if       and           
    at        

ii.   has a local minimum at at       if       and           
    at        

iii.   has a saddle point at       if and           
    at        

iv. The test is inconclusive at  at       if and           
    at        

In this case, we must find some other way to determine the behavior of f at      . 

The expression           
  is celled the discriminant hessian or Hessian of  . it is sometimes 

easier to remember in determinant from,           
  |

      

      
|  

Example: Find the local extreme value of the function  

                         

Solution: 

 

 

 

 

 

Example: Find local extreme values of            

Solution: 
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Absolute Maxima and Minima on Closed Bounded Regions  

We organize the search for the absolute extrema of a continuous function        on a closed 

and bounded region   in to three steps 

1. List the interior points of   where   may have local maxima and minima and evaluate   

at these points. These are the critical points of  . 

2. List the boundary points of   where   has a local maxima and minima and evaluate   at 

these points. We show to do this shortly. 

3. Look through the lists for the maximum and minimum values of    These will be the 

absolute maximum and minimum values of   on    Since absolute maxima 

         and minima are also local maxima and minima, the absolute maximum and                                             

minimum values of   appear somewhere in the lists in Step1 and 2. 

 

Example: Find the absolute maximum and minimum values of  

                      

Solution:  
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Lagrange Multipliers 

The Method of Lagrange Multipliers 

   Suppose that          and          are differentiable. To find the local maximum and 

minimum values of subject to the constraint             , find the values of        and   that 

simultaneously satisfy the equations             and               

For functions of two independent variables, the condition is similar, but without the variable  . 
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Example: Find the greatest and smallest values that the function           takes on the 

ellipes   
  

 
  

  

 
    

Solution:  
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Example: Find the maximum and minimum values of the function  

               on the circle        . 

Solution:  
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