Q1// Find the domain, rang and level curves of the following functions:
a) $f(x, y)=y-x$
b) $f(x, y)=x y$
c) $f(x, y)=\sqrt{y-x}$
d) $f(x, y)=\frac{y}{x^{2}}$
e) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$.

Q2// Find the boundary of the function's domain of the following:
a) $f(x, y)=4 x^{2}+9 y^{2}$
b) $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}$.

Q3// Find an equation for the level curve of the function $f(x, y)$ that passes through the given point
a) $f(x, y)=16-x^{2}-y^{2},(2 \sqrt{2}, \sqrt{2})$
b) $f(x, y)=\sqrt{x^{2}-1},(0,1)$.

Q4// Sketch a typical level surface of the function
a) $f(x, y)=y^{2}$
b) $f(x, y, z)=x^{2}+y^{2}$.

Q5// Find the limit in a-c
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}+}{x^{2}+y^{2}+2}$
b) $\lim _{(x, y) \rightarrow\left(0, \frac{\pi}{4}\right)} \sec x \tan y$
c) $\lim _{(x, y) \rightarrow(0, \ln 2)} e^{x-y}$

Q6// At what points (x, y) in the plane are the function in a-c contiuous?
a) $f(x, y)=\frac{x+y}{x-y}$
b) $f(x, y)=\frac{x+y}{2+\cos x}$
c) $f(x, y)=\frac{1}{x^{2}-y}$

Q7// Graph $f(x, y)=49-x^{2}-y^{2}$ and plot the level curves $f(x, y)=24$, $f(x, y)=-15$ and $f(x, y)=-51$ in the domain of f in the plane.
Q8// Define $f(0,0)$ in a way that extends f to be continuous at the origin .where

$$
f(x, y)=\frac{3 x^{2} y}{x^{2}+y^{2}} .
$$

Q9// Find f_{x} and f_{y} of $f(x, y)$
a) $f(x, y)=2 x^{2}-3 y-4$
b) $f(x, y)=(x y-1)^{2}$.

Q10// Let the function $f(x, y)=y^{2} x^{4} e^{x}+\sin x y$, then Find the followings:
a) $f_{x y x}$
b) $f_{y y x}$.

Q11// Verify that $w_{x y}=w_{y x}$
a) $w=x \sin y+y \sin x+x y$
b) $w=\ln (2 x+3 y)$

Q12// (a) Express $\frac{d w}{d t}$ as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t.
Then (b) evaluate $\frac{d w}{d t}$ at the given value of t .
a) $w=x^{2}+y^{2}, x=\cos t, y=\sin t ; t=\pi$
b) $w=2 y e^{x}-\ln z, x=\ln \left(t^{2}+1\right), y=\tan ^{-1} t, z=e^{t} ; t=1$

Q13// Show that the angle θ between two non-zero vectors $u=<u_{1}, u_{2}, u_{3}>$ and $v=<v_{1}, v_{2}, v_{3}>$ is given by $\theta=\cos ^{-1}\left(\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|u \||v|}\right)$.
Q14// Let u and v be differentiable vector function of t. Prove that

$$
\frac{d}{d t}[u(t) \cdot v(t)]=u^{\prime}(t) \cdot v(t)+u(t) \cdot v^{\prime}(t) .
$$

Q15// Let $=2 i+j+k, v=-4 i+3 j$ and $w=7 j-4 k$. Then
a) Find the angle between u and v.
b) Find the volume of the box determined by u, v and w.

Q16// Find the tangent plane and normal line of the surface

$$
x^{2}+y^{2}-2 x y-x+3 y-z=-4 \text { at } p_{0}(2,-3,18)
$$

Q17// Find the parametric equations for the line through $p(5,3,-2)$ and $Q(-2,3,1)$, and find the point where the line intersects the plane $5 x-2 y+3 z=-2$.

Q18// A: Find equations for the tangent plane and normal line at the point $(0,1,2)$ of the surface

$$
\cos \pi-x^{2} y+e^{x z}+y z=4
$$

B: Find all the local maxima, local minima and saddle points of the function $f(x, y)=3+2 x+2 y-2 x^{2}-2 x y-y^{2}$.
Q19// Find the local extreme values of the function $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$.
Q20// Find the greatest and smallest values of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $\quad x^{2}-2 x+y^{2}-4 y=0$.
Q21// Find the radii of gyration about the y-axis of a thin triangular plate bounded by the $y-$ axis and lines $y=x$ and $=2-x$ if $\delta(x, y)=x+2 y$.
Q22// Find the area of the surface generated by revolving the right-hand loop of the lemniscate

$$
r^{2}=\cos 2 \theta \text { about } y-\text { axis }
$$

Q23// Evaluate the double integral
a) $\int_{0}^{3} \int_{0}^{2}\left(4-y^{2}\right) d y d x$
b) $\int_{0}^{\pi} \int_{0}^{x} x \sin y d y d x$
c) $\int_{1}^{\ln } \int_{0}^{8 \ln y} e^{x+y} d x d y$.

Q24// Change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral.

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x
$$

Q25// Evaluate the integral

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{\ln \sec u} \int_{-\infty}^{2 t} e^{x} d x d t d u
$$

