$\mathrm{Q} 1 / / \mathrm{A}$ coil spring lies alone $r(t)=\cos 4 t i+\sin 4 t j+t k, \quad 0 \leq t \leq 2 \pi$. The spring density is a constant $\delta(x, y, z)=1$. Find the spring's mass and center of mass and its moment of inertia and radius of gyration about the z-axis.
Q2// A slender metal arch, denser at the bottom than top, lies along the semicircle $y^{2}+z^{2}=1, z \geq 0$,in the $y z$-plane. Find the center of the arch's mass if the density at the point (x, y, z) on the arch is $\delta(x, y, z)=2-z$.
Q3// Solve the system $u=x-y, v=2 x+y$
For x and y in terms of u and v. Then find the value of the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
Q4// Use the transformation $\mathrm{u}=x+y, v=y-2 x$ to evaluate the integral

$$
\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d x d y
$$

Q5// Applying a transformation to: Evaluate

$$
\int_{0}^{4} \int_{x=\frac{y}{2}}^{x=\frac{y}{2}+1} \frac{2 x-y}{2} d x d y
$$

By applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$ and integrating over an appropriate region in the $u v$-plane.
Q6// Evaluate

$$
\int_{0}^{3} \int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1}\left(\frac{2 x-y}{2}+\frac{z}{3}\right) d x d y d z
$$

By applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}, w=\frac{z}{3}$ and integrate over an appropriate region in $u v w$ - plane.
Q7// Give an example of each of the following:
i) A bounded sequence $\left\{a_{n}\right\}$ which is not convergent.
ii) A non-decreasing divergent sequence.

iii) A non-increasing convergent sequence.

Q8// Define a convergent sequence.
Find a formula for the $\boldsymbol{n t h}$ term of the sequences:

1) $1, \frac{-1}{4}, \frac{1}{9}, \frac{-1}{16}, \frac{1}{25}, \ldots$
2) $0,3,8,15,24, \ldots$

Q9// Which of the following sequences $\left\{a_{n}\right\}$ conergs and which diverge?Find the limit of each convergent sequence.

1) $a_{n}=2+(0.1)^{n}$
2) $a_{n}=\frac{1-2 n}{1+2 n}$
3) $a_{n}=\frac{\ln (n+1)}{\sqrt{n}}$
4) $a_{n}=\left(\frac{3}{n}\right)^{\frac{1}{n}}$
5) $a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)$

Q10 // Prove or disprove:

$$
\text { If } \lim _{\mathrm{n} \rightarrow \infty} a_{n}=0 \text {, then } \sum_{\mathrm{n}=1}^{\infty} a_{n} \text { is convergent. }
$$

Q11// Define an infinite series. If $|r|<1$, then the Geometric series

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}
$$

Converges to $\frac{a}{1-r}$.
Q12// If $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$ are convergent series, then $\sum_{n=1}^{\infty} a_{n}+$ $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} a_{n}+b_{n}$.
Q13// Let $\left\{a_{n}\right\}$ be a sequence of positive terms. Suppose that $a_{n}=f(n)$ where f is a continuous, positive, decreasing function of x for all $x \geq N$ (N is a positive integer). Then the series $\sum_{n=N}^{\infty} a_{n}$ and the integral $\int_{N}^{\infty} f(x) d x$ both converge or both diverge.

Q14// Suppose that $a_{n}>0$ and $b_{n}>0$, for all $n>N$ (N is an integer), If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both are convergent or both are divergent.

Q15// State and proof the Ratio Test.
Q16 // Prove or disprove

$$
\text { If } \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 \text {, then } \sum_{n=1}^{\infty} a_{n} \text { is convergent. }
$$

Q17// State the Root Test.
Q18// State and proof the Alternating Series Test(Leibniz's Theorem).
Q19// Define the following statements:

1) Absolutely convergent
2) Conditionally convergent

Q20// Which of the following series are convergent and which are divergent? Justify your answer.

$$
\begin{aligned}
& \text { 1) } \sum_{n=1}^{\infty} \frac{n}{n^{2}+1} \\
& \text { 2) } \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} \\
& \text { 3) } \sum_{n=1}^{\infty} \frac{\cos n \pi}{n \sqrt{n}} \quad \text { 4) } \sum_{n=1}^{\infty} \frac{2}{3 n-1}
\end{aligned}
$$

Q21// Find the radius and interval of convergence of each of the following series:

1) $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n} 3^{n}}$
2) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^{n}}{n 2^{n}}$.

Q22// Show that $\ln \left(\frac{1+x}{1-x}\right)=2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}$, for $|x|<1$.
Q23// Find the Taylor expansion of $f(x)=\sin x$ at $a=0$. Then evaluate the integral.

$$
\int \frac{\sin x}{x} d x
$$

Q24// Which of the following series are convergent and which are divergent? Justify your answer.

1) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{5^{n}}$
2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2}}$
3) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
4) $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$
5) $\sum_{n=1}^{\infty} \frac{2}{3 n-1}$
6) $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{10}\right)^{n}$
7) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
8) $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n \sqrt{n}}$

Q25//Find the Fourier series associated with the given function $f(x)=\left\{\begin{array}{cl}2 & 0 \leq x \leq \pi \\ -x & \pi<x \leq 2 \pi\end{array}\right.$
Q26// Show that $\ln \left(\frac{1+x}{1-x}\right)=2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}$, for $|x|<1$.

