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Introduction  

This book has been prepared for the beginners to help them understand 
basic to advanced functionality of MATLAB. After completing this 
chapter 1 (Which included an explanation of the Matlab language) you 
will find yourself at a moderate level of expertise in using MATLAB 
from where you can take yourself to next levels. 

On other side, in spite of the availability of highly innovative tools in 
statistics, the main tool of the applied statistician remains the linear 
model. The linear model involves the simplest and seemingly most 
restrictive statistical properties: independence, normality, constancy of 
variance, and linearity. However, the model and the statistical methods 
associated with it are surprisingly versatile and robust. More 
importantly, mastery of the linear model is a prerequisite to work with 
advanced statistical tools because most advanced tools are 
generalizations of the linear model. The linear model is thus central to 
the training of any statistician, applied or theoretical. 

This book develops the basic theory of linear models for regression, 
analysis-of variance, and analysis–of–covariance. Applications are 
illustrated by examples and problems using real data. This combination 
of theory and applications will prepare the reader to further explore the 
literature and to more correctly interpret the output from a linear 
models computer package and MATLAB. 

This introductory linear models book is designed primarily for a one-
semester course for advanced undergraduates or MS students. It 
includes more material than can be covered in one semester so as to 
give an instructor a choice of topics and to serve as a reference book 
for researchers who wish to gain a better understanding of regression 
and analysis-of-variance. The book would also serve well as a text for 
PhD classes in which the instructor is looking for a one-semester 
introduction, and it would be a good supplementary text or reference 
for a more advanced PhD class for which the students need to review 
the basics on their own. 

Our overriding objective in the preparation of this book has been 
clarity of exposition. We hope that students, instructors, researchers, 
and practitioners will find this linear models text more comfortable 
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than most. In the final stages of development, we asked students for 
written comments as they read each day’s assignment. They made 
many suggestions that led to improvements in readability of the book. 
We are grateful to readers who have notified us of errors and other 
suggestions for improvements of the text. 

Another objective of the book is to tie up loose ends. There are many 
approaches to teaching regression, for example. Some books present 
estimation of regression coefficients for fixed x’s only, other books use 
random x’s, some use centered models, and others define estimated 
regression coefficients in terms of variances and covariances or in 
terms of correlations. Theory for linear models has been presented 
using both an algebraic and a geometric approach. Many books present 
classical (frequents) inference for linear models, while increasingly the 
Bayesian approach is presented. We have tried to cover all these 
approaches carefully and to show how they relate to each other. We 
have attempted to do something similar for various approaches to 
analysis-of-variance. We believe that this will make the book useful as 
a reference as well as a textbook. An instructor can choose the 
approach he or she prefers, and a student or researcher has access to 
other methods as well. 

The book includes a large number of theoretical problems and a 
smaller number of applied problems using real datasets. The problems, 
along with the extensive set of answers in Appendix A, extend the 
book in two significant ways: (1) the theoretical problems and answers 
fill in nearly all gaps in derivations and proofs and also extend the 
coverage of material in the text, and (2) the applied problems and 
answers become additional examples illustrating the theory. As 
instructors, we find that having answers available for the students 
saves a great deal of class time and enables us to cover more material 
and cover it better. The answers would be especially useful to a reader 
who is engaging this material outside the formal classroom setting. 

Following a brief introduction in Chapters 2, 3, and 4 cover simple and 
multiple linear regression, including estimation and testing hypotheses 
and consequences of misspecification of the model. Chapter 5 provides 
diagnostics for model validation and detection of influential 
observations. Chapter 6 treats multiple regression with random x’s. 
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1.1: Introduction 

This chapter gives you aggressively a gentle introduction of MATLAB 
programming language. It is designed to give students fluency in 
MATLAB programming language. Problem-based MATLAB 
examples have been given in simple and easy way to make your 
learning fast and effective.  

MATLAB is a programming language developed by MathWorks. It 
started out as a matrix programming language where linear algebra 
programming was simple. It can be run both under interactive sessions 
and as a batch job. 

We assume you have a little knowledge of any computer programming 
and understand concepts like variables, constants, expressions, 
statements, etc. If you have done programming in any other high-level 
language like C, C++ or Java, then it will be very much beneficial and 
learning MATLAB will be like a fun for you. 

MATLAB (MATrix LABoratory) is a fourth-generation high-level 
programming language and interactive environment for numerical 
computation, visualization and programming.  

It allows matrix manipulations; plotting of functions and data; 
implementation of algorithms; creation of user interfaces; interfacing 
with programs written in other languages, including C, C++, Java, and 
FORTRAN; analyze data; develop algorithms; and create models and 
applications.  

It has numerous built-in commands and math functions that help you in 
mathematical calculations, generating plots, and performing numerical 
methods. 

1.2: MATLAB's Power of Computational Mathematics  

MATLAB is used in every facet of computational mathematics. 
Following are some commonly used mathematical calculations where 
it is used most commonly:  
- Dealing with Matrices and Arrays  

- 2-D and 3-D Plotting and graphics  

- Linear Algebra  
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- Algebraic Equations  

- Non-linear Functions  

- Statistics  

- Data Analysis  

- Calculus and Differential Equations  

- Numerical Calculations  

- Integration  

- Transforms  

- Curve Fitting  

- Various other special functions  

1.3: Features of MATLAB 

Following are the basic features of MATLAB: 

• High-level language for numerical computation, visualization, and 
application development. 

• Interactive environment for iterative exploration, design, and problem 
solving. 

• Mathematical functions for linear algebra, statistics, Fourier analysis, 
filtering, optimization, numerical integration, and solving ordinary 
differential equations. 

• Built-in graphics for visualizing data and tools for creating custom 
plots. 

• Development tools for improving code quality and maintainability 
and maximizing performance. 

• Tools for building applications with custom graphical interfaces. 
• Functions for integrating MATLAB based algorithms with external 

applications and languages such as C, Java, .NET, and Microsoft 
Excel. 

1.4: Desktop Basics 

MATLAB development IDE can be launched from the icon created on 
the desktop. The main working window in MATLAB is called the 
desktop. When MATLAB is started, the desktop appears in its default 
layout: 
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MATLAB (R2013a) Environment 

 
The desktop has the following panels:  

• Current Folder — Access your files. 

• Command Window — Enter commands at the command line, 
indicated by the prompt (>>). 

• Workspace — Explore data that you create or import from files. 

As you work in MATLAB, you issue commands that create variables 
and call functions. 

For example, create a variable named x by typing this statement at the 
command line: 

>> x = 3 

MATLAB adds variable x to the workspace and displays the result in 
the Command Window. 

x = 
       3 
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Create a few more variables. 

>> y = 5 

y = 

 5 

>> z = x + y 

z = 

 8 

>> d = cos(x) 

d = 

 -0.989995 

When you do not specify an output variable, MATLAB uses the 
variable ans, short for answer, to store the results of your calculation. 

>> sin(x) 

ans  =  

       0.14112 

If you end a statement with a semicolon, MATLAB performs the 
computation, but suppresses the display of output in the Command 
Window. 

>> e = x * y; 

You can recall previous commands by pressing the up- and down-
arrow keys, ↑ and ↓. Press the arrow keys either at an empty command 
line or after you type the first few characters of a command. For 
example, to recall the command y = 5, type b, and then press the up-
arrow key. 

1.5: Matrices and Vectors 

MATLAB is an abbreviation for "matrix laboratory." While other 
programming languages mostly work with numbers one at a time, 
MATLAB is designed to operate primarily on whole matrices and 
Vectors. 
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All MATLAB variables are multidimensional Vectors, no matter what 
type of data. A matrix is a two-dimensional Vectors often used for 
linear algebra. 

Vector Creation 

To create a vector with four elements in a single row, separate the 
elements with either a comma (,) or a space 

>>  a = [1 2 3 4] 

a  =   
 

 4     3     2     1        

This type of array is a row vector. 

To create a matrix that has multiple rows, separate the rows with 
semicolons. 

>>  a = [1 2 3; 4 5 6; 7 8 10] 

a = 

 1    2    3 
 4    5    6 
 7    8    10 
Another way to create a matrix is to use a function, such as ones, zeros, 
or rand. For example, create a 5-by-1 column vector of zeros. 

>> z = zeros(5,1) 

z  = 

 0 
 0 
 0 
 0 
 0 
 

And we have: 

>> y = ones(1,5) 

y  =  

     1     1     1     1          1 
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1.5.1: Assignment and Operators 

Assignment (assign b to a)                            =         a = b 

Addition                                                        +         a + b 

Subtraction                                                    -          a - b 

Multiplication: Matrix                                   *         a * b 

Multiplication: Element-by-Element             .*         a .* b 

Division: Matrix                                            /          a / b 

Division: Element-by-Element                      ./          a ./ b 

Power: Matrix                                               ^          a ^ b 

Power: Element-by-Element                         .^         a .^ b   

1.5.2: Extracting a Sub-Matrix 

A portion of a matrix can be extracted and stored in a smaller matrix 
by specifying the names of both the rows and columns to extract 

sub_matrix = matrix(r1:r2 , c1:c2) 

sub_matrix = matrix(rows, columns) 

Where r1and r2 specify the beginning and ending rows, and c1and r2 
specify the beginning and ending columns to extract 

Colon Operator 

The colon operator helps to specify ranges 

a : b   Goes from a to b in increments of 1. If a > b, results in null vector 

a : n : b  Goes from a to b in increments of n. If n < 0 then a > b 

A( : , b)  The thb  column of A 

A( a , : ) The tha  row of A 

A( : , : )  All of the rows and columns of A (i.e., the A matrix) 

A( a : b) Elements a to b (in increments of 1) of A. NOTE: Elements   
are counted down the columns and then across the rows! 
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A( : , a : b) All rows and columns a to b (in increments of 1) 

A(:) All elements of A in a single column vector 

Matrices 

• Accessing single elements of a matrix: 

A(a , b)   Element in row a and column b 

• Accessing multiple elements of a matrix: 

A(1,4) + A(2,4) + A(3,4) + A(4,4) 
sum(A(1:4,4)) or sum(A(:,end)) 

– In locations, the keyword end refers to the last row or column 

• Deleting rows and columns: 

A( : , 2) = [ ]   Deletes the second column of A 

• Concatenating matrices A and B: 

C = [A ; B] for vertical concatenation 
C = [A , B] for horizontal concatenation 

1.5.3: Matrix Functions in Matlab 

A = ones(m , n)                Creates an m×n matrix of 1’s 

A = zeros(n,m)                  Creates an m×n matrix of 0’s 

A = eye(n)                          Creates an n×n identity matrix 

A = NaN(m,n)                   Creates an m×n matrix of NaN’s 

A = inf(m,n)                      Creates an m×n matrix of inf’s 

A = diag(x)                        Creates a diagonal matrix A of x  

x = diag(A)                        Extracts diagonal elements from A 

[m,n] = size(A)                  Returns the dimensions of A 

n = length(A)                    Returns the largest dimension of A 

n = numel(A)                  Returns number of elements of A 

x= sum(A)                        Vector with sum of columns 
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x = prod(A)                      Vector with product of columns 

B = A'                               Transposed matrix 

d = det(A)                         Determinant 

[x,y] = eig(A)                    Eigenvalues and eigenvectors 

B = inv(A)                        Inverse of square matrix 

B = pinv(A)                      Moore-Penrose pseudoinverse 

B = chol(A)                      Cholesky decomposition 

[Q,R] = qr(A)                  QR decomposition 

[U,D,V] = svd(A)           Singular value decomposition 

1.5.4: Logic in Matrices 

B = any(A)       Determine if any elements in each column of A are                
nonzero 

B = all(A)            Determine if all elements in each column of A are    
nonzero 

B = find(A)          Find indices of all non-zero elements of A Can also 
use logic! 

B = find(A>4 &A<5)       Elements > 4 and< 5 

B = all(A~=9)                   Elements not equal to 9 

B = any(A==3 |A==5)    Elements equal to 3 or 5 

1.6: Pre-Defined Variables 

MATLAB has several pre-defined / reserved variables, (Beware): 
These variables can be overwritten with custom values! 

ans                     Default variable name for results 

pi                       Value of π 

eps                     Smallest incremental number (2.2204e-16) 

Inf/ inf                Infinity 

NaN/ nan           Not a number (e.g., 0/0) 
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realmin             Smallest usable positive real number (2.2251e-308) 

realmax             Largest usable positive real number (1.7977e+308) 

i / j                      Square root of (-1) 

1.7: Plotting in Matlab 

• Matlab has extensive plotting capabilities 

• Basic function is plot to plot one vector vs. another vector (vectors 
must have same length) 

plot(x, y) 

• Can also simply plot one vector vs. its index 

plot(x) 

• Repeat three arguments to plot multiple vectors, different pairs of x 
and y data can have different sizes! 

plot(x1, y1, x2, y2, x3, y3) 

Example 1.1: 

>> x1 = 0:1:2*pi;  
>> y1 = sin(x1);  
>> x2 = 0:0.01:2*pi;  
>> y2 = sin(x2);  
>> plot(x1,y1,x2,y2) 
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• The line style, marker symbol, and color of the plot are specified by 
the Line Spec. 

• Line Spec is specified for each line after the y data and is optional. 

• To see all options in Matlab: doc Line Spec 

• Common formatting: 

Lines Markers Colors 

'-' solid '+' plus 'r' red 

'- -' dashed 'o' circle 'g' green 

':' dotted '*' star 'b' blue 

'.-' dash-dot '.' point 'k' black 

 's' square 'y' yellow 

 'd' diamond 'c' cyan 

 'x' cross 'm' magenta 

Example 1.2: 

>> x1 = 0:1:2*pi; y1 = sin(x1);  
>> x2 = 0:0.01:2*pi; y2 = sin(x2);  
>> plot(x1,y1,'bo',x2,y2,'g--') 
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• Other commands allow you to modify the plot 

–Annotation: title, x label, y label, z label 

–Grid: grid on, grid off, grid minor 

–Axes: axis([xmin xmax ymin ymax]), axis keyword(doc axis for 
full keyword list) 

–Legend: legend('Line 1','Line 2','Location','Position') 

• Another way to plot multiple lines is with the hold command 

hold on 
plot(x1,y1) 
plot(x2,y2) 

hold off 
• Unless a new figure is created using figure(), any plotting function 

will overwrite the current plot  

Example 1.3: 
x1 = 0:1:2*pi; y1 = sin(x1);  
x2 = 0:0.01:2*pi; y2 = sin(x2);  
plot(x1,y1,'bo',x2,y2,'g--') 
legend('7 Data Points','629 Data 
Points','Location','NorthEast') 
title('Some Sine Curves!') 
xlabel('x') 
ylabel('sin(x)') 
grid on 
axis tight 
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• 3-D Plots: Three-dimensional plots typically display a surface 
defined by a function in two variables, z = f(x, y). 

To evaluate z, first create a set of (x,y) points over the domain of the 
function using meshgrid. 

Example 1.4: 

>> [X,Y] = meshgrid(-2: .2: 2); 
>> Z = X .* exp(-X.^2 - Y.^2); 
>> surf(X,Y,Z) 

 
Both the surf function and its companion mesh display surfaces in 
three dimensions. surf displays both the connecting lines and the faces 
of the surface in color. Mesh produces wireframe surfaces that color 
only the lines connecting the defining points. 

• Subplots: You can display multiple plots in different subregions of 
the same window using the subplot function. 

The first two inputs to subplot indicate the number of plots in each row 
and column. The third input specifies which plot is active. As the 
following example shows: 

Example 1.5: create four plots in a 2-by-2 grid within a figure 
window. 

t = 0:pi/10:2*pi; 
[X,Y,Z] = cylinder(4*cos(t)); 
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subplot(2,2,1); mesh(X); title('X'); 
subplot(2,2,2); mesh(Y); title('Y'); 
subplot(2,2,3); mesh(Z); title('Z'); 
subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z'); 

 

• Other plotting functions in Matlab 

– Log scales: semilogx, semilogy, loglog 

– Two y-axes scales: plotyy 

– 3D line plots: plot3 

– Surface and mesh plots: surf, surfc, mesh, meshc, waterfall, ribbon, 
trisurf, trimesh 

– Histograms: hist, histc, area, pareto 

– Bar plots: bar, bar3, barh, bar3h 

– Pie charts: pie, pie3, rose 

– Discrete data: stem, stem3, stairs, scatter, scatter3, spy, plotmatrix 

– Polar plots: polar, rose, compass 

– Contour plots: contour, contourf, contourc, contour3, contourslice 

– Vector fields: feather, quiver, quiver3, compass, streamslice, 
streamline  
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1.8: Logical Subscripting 

The logical vectors created from logical and relational operations can 
be used to reference subarrays. Suppose X is an ordinary matrix and L 
is a matrix of the same size that is the result of some logical operation. 
Then X(L) specifies the elements of X where the elements of L are 
nonzero. 

This kind of subscripting can be done in one step by specifying the 
logical operation as the subscripting expression. Suppose you have the 
following set of data: 

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8]; 

The NaN is a marker for a missing observation, such as a failure to 
respond to an item on a questionnaire. To remove the missing data 
with logical indexing, use isfinite(x), which is true for all finite 
numerical values and false for NaN and Inf: 

x = x(isfinite(x)) 

x = 

      2.1  1.7  1.6  1.5  1.9  1.8  1.5  5.1  1.8  1.4  2.2  1.6  1.8 

Now there is one observation, 5.1, which seems to be very different 
from the others. It is an outlier. The following statement removes 
outliers, in this case those elements more than three standard 
deviations from the mean: 

x = x(abs(x-mean(x)) <= 3*std(x)) 
x = 
 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8 

1.9: Multidimensional Arrays 

Multidimensional arrays in the MATLAB environment are arrays with 
more than two subscripts. One way of creating a multidimensional 
array is by calling zeros, ones, rand, or randn with more than two 
arguments. For example, 

R = randn(3,4,2) 
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Creates a 3-by-4-by-2 array, with a total of (3*4*2 = 24) normally 
distributed random elements.  

A three-dimensional array might represent three-dimensional physical 
data; say the temperature in a room, sampled on a rectangular grid. Or 
it might represent a sequence of matrices,  kA , or samples of a time-
dependent matrix, A(t). In these latter cases, the  thji,  element of the 

thk  matrix, or the ktht  matrix, is denoted by A(i, j, k). 

MATLAB and Dürer's versions of the magic square of order 4 differ 
by an interchange of two columns. Many different magic squares can 
be generated by interchanging columns. The statement 

p = perms(1:4); 

Generates the 4! = 24 permutations of 1:4. The thk  permutation is the 
row vector p(k,:). Then stores the sequence of (24) magic squares in a 
three-dimensional array, M. The size of M is 

size(M) 

ans = 
4 4  24 
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Note: The order of the matrices shown in this illustration might differ 
from your results. The perms function always returns all permutations 
of the input vector, but the order of the permutations might be different 
for different MATLAB versions. 

The statement 

 sum(M,d) 

Computes sums by varying the thd  subscript. So 

 sum(M,1) 

Is a 1-by-4-by-24 array containing 24 copies of the row vector: 

 34  34  34  34 

And 
 sum(M,2) 

Is a 4-by-1-by-24 array containing 24 copies of the column vector 

 34 
 34 
 34 
 34 
Finally, 

S = sum(M,3) 

Adds the (24) matrices in the sequence. The result has size 4-by-4-by-
1, so it looks like a 4-by-4 array: 

S = 
 204  204  204  204 
 204  204  204  204 
 204  204  204  204 
 204  204  204  204 

1.10: Programming in Matlab 

• Elements of Matlabas a programming language: 

– Expressions 
– Flow Control Blocks 

• Conditional 
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• Iterations (Loops) 
– Scripts 
– Functions 
– Objects and classes (not covered here) 

• Be mindful of existing variables and function names! 

– Creating a variable or function that is already used by Matlab will 
cause troubles and errors! 

– Example: Saving a variable as sin = 10 will prevent you from using 
the sine function! Use something more descriptive such as sin_x= 10  

1.10.1: Relational Operators 

• Matlab has six relational Operators 

– Less Than                         < 
– Less Than or Equal          <= 

– Greater Than                     > 
– Greater Than or Equal      >= 

– Equal to                            == 
– Not Equal to                     ~= 

• Relational operators can be used to compare scalars to scalars, scalars 
to matrices/vectors, or matrices/vectors to matrices/vectors of the same 
size 

• Relational operators to precedence after addition / subtraction  

1.10.2: Logical Operators 

• Matlab supports four logical operators 

– Not                          ~ 

– And                         & or && 

– Or                            |    or  || 

– Exclusive Or (xor)  xor() 

• Not has the highest precedence and is evaluated after parentheses and 
exponents 

• And, or, xor have lowest precedence and are evaluated last  
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1.10.3: Conditional Structures 

• If / Then Structure 

     if expression 
        commands 
     end 
 

• Example 

   if (x > 4)  &&  (y < 10) 
       z = x + y; 
   end 

• If / Else Structure 

        if expression 
           commands 
        else 
           commands 
        end 
 

•Example 

   if (x > 4) && (y < 10) 
       z = x + y; 
   else 
       z = x * y; 
   end 

• If / Elseif/ Else Structure 

   if expression 
              commands 
   elseif expression 
             commands 
   else 
             commands 
   end 

• Example 

    if  (x > 4) && (y < 10) 
         z = x + y; 
    elseif (x < 3) 
              z = 10 * x; 
    elseif (y > 12) 
              z = 5 / y; 
    else 
              z = x * y; 
    end 

• Conditional Structures can be nested inside each other 

if (x > 3) 
if (y > 5) 
    z = x + y; 
elseif (y < 5) 
    z = x -y; 
end 
elseif (y < 10) 
          z = x * y; 
else 
          z = x / y; 

        end 
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• Matlab will auto-indent for you, but indentation is not required  

• Switch / Case / Otherwise function used if known cases of a variable 
will exist 

– Used in place of If / Elseif/ Else structure 

• Syntax  

switch switch_expression 
case case_expression 
 statements 
case case_expression 
 statements 
otherwise 
 statements 
end 

if–elseif‐else  switch –case ‐otherwise
if x == 1 
      z = 5; 
elseif x == 2 
      z = 4; 
elseif x == 3 
      z = 3; 
elseif (x == 4) || (x == 5) 
      z = 2; 
else 
      z = 1; 
end 

switch x 
       case 1 
              z = 5; 
       case 2 
              z = 4; 
       case 3 
              z = 3; 
       case{4 , 5} 
              z = 2; 
       otherwise 
              z = 1; 
end 

1.11: Matlab Iteration Structures 

• Definite looping structures (for) 

 for variable = expression 
     commands 
 end   

 
 

• Example 

  for i = 1:1:25 

       A(i) = i^2; 

  end   
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• Can also nest loops! 

– Can mix for / while loops 
 

• Nested For Loop Example

for i = 1:1:25 
     for j = 1:1:4 

          A(i,j) = i*j; 

     end 
end 

• Indefinite looping structures (while) 

    while expression 

           commands 

    end 

• Example 

x = 0; y = 0; 
while x < 10 
        y = y + x; 
        x = x + 1; 
end 
 

• You need to make sure the variable in 
the while loop expression is changed 
during the loop! 

 
– May lead to an infinite loop! 

 
 

•Example for infinite Loop 

x = 0; 

while x < 10 

       y = x; 

end 

1.12: M-Files 

• Text files containing Matlab programs 

– Can be called from the command line or from other M-Files 

• Contain “.m” file extension 

• Two main types of M-Files 

– Scripts 

– Functions 

• Comment character is % 

– % will comment out rest of line  
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1.12.1: M-Files –Scripts 

• Scripts are simply M-Files with a set of commands to run 
– Do not require input values or have output values 

– Execute commands similarly to how they would be done if typed into 
the command window 

– Ctrl + N 

– Select New Script from Menu 
• To run M-File: 

–>> F5 or Run   

Example 1.6:  

figure() % New Figure 
x1 = 0:1:2*pi; y1 = sin(x1); % First Data Set 
x2 = 0:0.01:2*pi; y2 = sin(x2); % Second Data 
Set 
plot(x1,y1,'sk',x2,y2,'r--') % Make Plot 
title('Some Sine Curves!') % Add Title, Labels, 
Legend, etc. 
xlabel('x') 
ylabel('sin(x)') 
legend('7 Data Points','629 Data 
Points','Location','NorthEast') 
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1.12.2: M-Files –Functions 

• Functions typically require input or output values 

• “What happens in the function, stays in the function” 
– Only variables visible after function executes are those variables 

defined as output 
•Usually one file for each function defined 

•Structure: 
 function [outputs] = funcName (inputs) 
 commands; 
 end 

• Function Definition Line Components 

1. Function keyword  Identifies M-File as a function 

2. Output Variables Separated by commas, contained in square 
brackets 

• Output variables must match the name of variables inside the 
function! 

3. Function Name must match the name of the .m file! 

4. Input Variables Separated by commas, contained in parentheses 
• Input variables must match the name of variables inside the 

function! 

• When calling a function, you can use any name for the variable as 
input or output 

– The names do not have to match the names of the .m file  

Example 1.7: Explain function to calculate the area and perimeter of a 
rectangle 

function [area, perimeter] = dF(base, height) 
% "df" Demo func. to calculate the area and perimeter of a rectangle 
% Function can handle scalar and vector inputs 
% Isaac Tetzloff -Aug 2013 
area = base .* height; % Calculate the area 
perimeter = 2 * (base + height); % Calculate the perimeter  
end 
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>> [a, p] = dF(10, 15); % Returns both values as a & p 
>> area = dF(10, 5);% Returns area and saves as area 
>> perim= dF(5, 15);% Returns area and saves as perim! 
>> [perim, area] = dF(5, 15);% Saves area as perim, and vice versa! 
>> x = [1 2 3]; y = [5 4 3]; 
>> [x, y] = dF(x, y);% Returns both and overwrites input! 

• In modified function below, only variables output are area and 
perimeter 

– Matlab and other functions will not have access to depth, mult, 
add, or volume! 

– REMEMBER: What happens in the function stays in the function!  

function [area, perimeter] = dF(base, height) 
depth = 10;                       % Assume 3D prism has depth of 10 
mult= base .* height;         % Multiply base by height 
add = base + height;          % Add base and height 
area = mult;                       % Calculate the area 
perimeter = 2 * add;          % Calculate the perimeter 
volume = mult* depth;      % Calculate the volume 
end 

1.13: Debugging in Matlab 

• Matlab errors are very descriptive and provide specifics about error 

– If a function or script causes an error, Matlab will give the line of 
code and file with the error  
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• The Matlab Editor provides on-the-fly debugging help!  

 

 

• The Matlab Editor provides on-the-fly debugging help!  

 

1.14: Advanced Features to Explore 

Symbolic Math 

• Allows for symbolic manipulation of equations, including solving, 
simplifying, differentiating, etc. 

Inline Functions 

• Creates a workspace variable that is a simple equation 
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>> f =  x^2 + 2*x + 1 
>> y = f(3) y = 16 

Optimization 

• Solve constrained problems with fmincon, unconstrained with 
fminunc, bounded problems with fminbnd, etc. 

Many Others! 

• Matlab is extremely powerful and has a lot of advanced features, too 
many to go through here!  

• Within Matlab: 

–Type help function to provide information about the function in the 
command window 

– Type doc function to open the documentation about the function 

– Type doc to pull up the documentation within Matlab to explore 
 
• Online 

– Documentation: http://www.mathworks.com/help/matlab/ 

– Tutorials:   
http://www.mathworks.com/academia/student_center/tutorials/ 

– Matlab Primer / Getting Started with Matlab(pdf):  
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf  

1.15: Descriptive statistics with the Statistics Toolbox of MATLAB 

Some of the functions to compute the most frequent statistics are the 
following: 

mean(x)                % Mean value of the elements in x. 
median(x)             % Median value of the elements in x. 
std(x),var(x)           % Standard deviation and variance of x normalized 

by n − 1. 
std(x,1),var(x,1)    % Standard deviation and variance of x normalized        

by n. 
range(x)                % Range of x. 
iqr(x)                    % Interquartile range of x. 
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mad(x)                 % Mean absolute deviation of x. 
max(x),min(x)      % Maximum and minimum element of x. 
skewness(x), kurtosis(x)       % Skewness and kurtosis of x. 
moment(x, order)           % Central moment of x specified by order. 
prctile(x,p)        % pth percentile of x (if p=50, returns the median of x) 

Observe that if x is a matrix, then the result of these functions is a row 
vector containing the statistic for each column of x. 

Other two interesting functions are cov and corrcoef. For vectors, the 
command cov returns the variance: 

>> x=rand(100,1); cov(x) 

For matrices, where each row is an observation, and each column a 
variable, returns the covariance matrix: 

>> x=rand(100,5); cov(x) 

For two vectors, z and w, of equal length, cov(z , t) returns a matrix 
with the variances of z and w in the diagonal and the covariance of z 
and w in the two off-diagonal entries. 

>> z=rand(100,1); t=rand(100,1); cov(z , t) 

Observe that cov(z , t) = cov([z t]). For two matrices, 

cov(X,Y)=cov(X(:),Y(:)). Finally, cov(x) or cov(x,y) normalizes   by 
(n − 1) and cov(x,1) or cov(x,y,1) normalizes by n, where n is the 
number of observations. 

The corrcoef(X) command calculates a matrix of correlation 
coefficients for an array X, in which each row is an observation and 
each column is a variable. Observe that corrcoef(X,Y), where X and Y 
are column vectors, is the same as corrcoef([X Y]). 

>> corrcoef(x) 

The Statistics Toolbox and some built-in functions of MATLAB 
allows to plot a number of useful graphics in descriptive statistics. 

hist(x)             % Histogram. 
boxplot(x)       % Boxplots of a data matrix (one per column). 
cdfplot(x)        % Plot of empirical cumulative distribution function. 
normplot(x)     % Normal probability plot (one per column). 
qqplot(x,y)      % Quantile-Quantile plot. 
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You can change the way any toolbox function works by copying and 
renaming the M-file, then modifying your copy. You can also extend 
the toolbox by adding your own M-files. 

For example, imagine we are interested in plotting a variant of the 
histogram where the counts are replaced by the normalized counts, that 
is, the relative histogram. By normalized count, we mean the count in a 
class divided by the total number of observation times the class width. 
For this normalization, the area (or integral) under the histogram is 
equal to one. Now, we can look for the file hist.m and modify it. This 
file is usually in the following path (or something similar): 

c:\MATLAB6p5\toolbox\matlab\datafun 

Open it and let’s try to change it. Observe that the hist command 
produces a histogram bar plot if there are no output arguments, that is, 
we look for the sentences: 

if nargout == 0 

bar(x,nn,’hist’); 

... 

The sentence bar(x,nn,’hist’) draws the values of the vector nn 
(frequency) as a group of vertical bars whose midpoints are the values 
of x, see help bar. For example, we can change the previous sentences 
by the following ones to obtain a white normalized histogram: 

if nargout == 0 

bar(x,nn/(length(y)*(x(2)-x(1))),’hist’,’w’); 
... 
You can also change the help section including for example a sentence 
like this: 

% HIST(...) without output arguments produces a normalized 
histogram bar  
% plot of the results. 

And now, save the changed file as histn.m, for example. If you want 
histn to be a global function, you can save it in the same folder hist.m 
was. Otherwise, you can save it in a different folder and then histn will 
only work if you are in this directory or if you add it to the 
MATLAB’s search path, (see path). 
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1.16: Simulation of linear models 

The reporting of a simulation experiment should receive the same care 
and consideration that would be accorded the reporting of other 
scientific experiments. Hoaglin and Andrews (1975) outline the items 
that should be included in a report of a simulation study. In addition to 
a careful general description of the experiment, the report should 
include mention of the random number generator used, any variance-
reducing methods employed, and a justification of the simulation 
sample size. The Journal of the American Statistical Association 
includes these reporting standards in its style guide for authors. 
Closely related to the choice of the sample size is the standard 
deviation of the estimates that result from the study. The sample 
standard deviations actually achieved should be included as part of the 
report. Standard deviations are often reported in parentheses beside the 
estimates with which they are associated. A formal analysis, of course, 
would use the sample variance of each estimate to assess the 
significance of the differences observed between points in the design 
space; that is, a formal analysis of the simulation experiment would be 
a standard analysis of variance. 

1.16.1: Simulation of simple linear model 

Consider the simple linear regression model: 

Exy ii  10   

Where a response or “dependent variable”, y, is modeled as a linear 
function of a single regressor or “independent variable”, x, plus a 
random variable, E, called the “error”. Because E is a random variable, 
y is also a random variable. The statistical problem is to make 
inferences about the unknown, constant parameters 0  and 1  and 
about distributional parameters of the random variable, E. 

We also generally assume that the realizations of the random error are 
independent and are unrelated to the value of x. 

A bivariate scatter plot is a simple plot of x versus y between two 
variables. A bivariate scatter plot is a convenient first step to visualize 
the relationship between the two variables. 
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Assume that we have two variables that are linearly related, except 
some Gaussian noise term with mean 0 and standard deviation 1: 

y = 3 + 10x + noise  

Assuming that the variable x is a linearly spaced row vector of length 
50, between 0 and 1, generate the y vector: 

n=50; % number of observations 
x=linspace(0,1,n); % linearly spaced vector a 
length n 
beta0=3; 
beta1=10; 
E=randn(1,n); 
y= beta0+beta1*x +E; 
plot(x,y,'.') 
xlabel('x') 
ylabel('y') 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

x

y

 
Each time the command is used, a different number will be generated. 
The “random” numbers generated by Matlab (and others) are actually 
pseudorandom numbers as they are computed using a deterministic 
algorithm. The algorithm, however, is very complicated, and the output 



 54

does not appear to follow a predictable pattern. For this reason the 
output can be treated as random for most practical purposes. The same 
sequence of numbers will not be generated unless the same starting 
point is used. This starting point is called the “seed”. Each time you 
start Matlab, the random number generator is initialized to the same 
seed value. The current seed value can be seen using: 

randn('seed',1)  % specify a seed (optional) 

By setting a seed value, we ensure that the same results will be 
produced each time the script is executed. The seed can be set to a 
value (say, 1234) as follows: 

randn('seed',1234) 

The purpose here is to make sure that the program starts from the same 
seed. The value of the seed is not important. 

In a bivariate scatter plot (x,y), the point with coordinates (mean(x), 
mean(y)) , is known as the point of averages. 

mx=mean(x);  
my=mean(y);  
hold on;  
plot(mx,my, 'ro', 'markerfacecolor','r')  
legend('data', 'point of averages') 
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data

point of averages
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Covariance:  

Covariance between vectors x and y can be computed in “unbiased” 
and “biased” versions as: 

c= mean((x-mx).*(y-my))    % covariance (biased)  
n=length(x);  
cs= c*n/(n-1)                        % sample covariance(unbiased) 

Ans: 

c = 0.85307   cs =0.87048 

Correlation coefficient:  

The correlation coefficient between two variables is a measure of the 
linear relationship between them. The correlation coefficient between 
two vectors can be found using the average of the product of the         
z-scores of x and y. The “biased” version is: 

zx=zscore(x,1);  
zy=zscore(y,1) ; 
r=mean(zx.*zy) 

Ans: 

r = 
       0.94845 

Correlation coefficient can also be computed from the covariance, as 
follows: 

sx=std(x,1);  
sy=std(y,1);  
r=c/(sx*sy) 

Ans: 

r = 
       0.94845 

The “unbiased” version (sample correlation coefficient) is computed 
the same way, except that the flag “1” is replaced by “0”. 

Add a title that shows the correlation coefficient to the previous plot. 
For this, we need to convert the numerical value to a string, using the 
num2str command: 
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title(['Correlation coefficient=',num2str(r)]) 
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Correlation coefficient=0.94845

 

 

data

point of averages

 
The correlation coefficient is sensitive to outliers. To see this, change 
the first element of y to 40 and recomputed the correlation coefficient: 

y(1)=40; 

zx=zscore(x,1)  

zy=zscore(y,1)  

r=mean(zx.*zy) 

Ans: 

r = 
      0.31003 

Notice that a single outlier has significantly reduced the correlation 
coefficient. 
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1.16.2: Ordinary Least Squares Regression 

Regression is a way to understand the mathematical relationship 
between variables. This relationship can then be used to  

- Describe the linear dependence of one variable on another.  

- Predict values of one variable from values of another.  

- Correct for the linear dependence of one variable on another, in order 
to clarify other features of its variability.  

Unlike the correlation coefficient, which measures the strength of a 
linear relationship, regression focuses on the mathematical form of the 
relationship. 

In simple linear regression, the mathematical problem is as follows: 
Given a set of k points ( ix , iy ), i =1,2,…,k, which are related through 
the equation iii nxbby  10 , where 0b  and 1b  are constant (unknown) 
coefficients and in  is a realization of zero-mean Gaussian noise with 
variance 2 . That is,  20,N~ in . As the noise term in  is a realization 
of a random variable, so is iy . Because of the random noise, the 
coefficients 0b  and 1b cannot be determined with certainty. Our goal is 

to find the best fit line ii xbby 10
ˆˆˆ  minimizing the sum of squared 

errors: 

 



k

i
ii yyS

1

2ˆ  

The 1̂b  and 0b̂  values minimizing S are found by setting 0
1




b

S , 0
0




b

S . 

The result is: 

xofVariance

yandxbetweenianceCo
b

var
1̂   

    xofmeanbyofmeanb 10
ˆˆ   

These 1̂b  and 0b̂  values are the Ordinary Least Square (OLS) estimates 
of 1b  and 0b , respectively. The equation of the regression line (also 

known as the “best fit line”) is then ii xbby 10
ˆˆˆ   
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bh1=c/sx^2;              % covariance divided by variance of x  
bh0=my-bh1*mx; 
yhat=bh0+bh1*x;     % regression line 

Ans: 

bh1 = 

       9.8354 

bh0 = 

       2.9617 

Plot the regression line in red, and update the legend and the title: 

plot(x,yhat,'r')  
legend('data', 'point of averages','regression line')  
title(['Regression line: yhat=',num2str(bh1),'*x+',num2str(bh0)]) 
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data

point of averages
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Note that the regression line passes through the point of averages. The 
equation of the regression line shown in the title should be close to the 
original equation from which the data was generated: 

 y = 3 + 10x + noise  
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Because of the noise, the predictions will not exactly coincide with the 
observations. The residuals ie  are defined as the deviations of each 
observation from its estimate: 

iii yye ˆ  
e=y-yhat; %residuals 
figure; 
plot(x,e,'.') 
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Ideally, the residuals should be more or less symmetrically distributed 
around zero (have mean 0): 

M = mean(e) % average residual 

Ans: 

M = 

   -2.1583e-15 

In addition, the amount of scatter should not show a systematic 
increase or decrease with increasing values of x. In other words, the 
scatter plot should be homoscedastic, not heteroscedastic. The variance 
of the noise can be estimated from the residuals (MSE) as follows: 
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2n
ˆMSE

n

1

2

2




i

ie
  

MSE = sum(e.^2)/(n-2)      % OLS estimator of noise variance 

Ans: 

MSE = 
         0.97588 

The n-2 in the denominator is known as the “degrees of freedom”, and 
is computed by subtracting the number of parameters estimated ( 0b  and 

1b ) from the number of observations. 

The estimated noise variance for this particular problem should be 
close to 1, which is the variance of the noise used in generating the 
data. 

The coefficient of determination ( 2R ) is a measure of how well the 
regression line represents the data. It is defined as: 
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yywhere
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e
R  

In simple linear regression, 2R  is equal to the square of the correlation 
coefficient ( 2r ) between x and y. If r = 0.9, then 2R = 2r = 0.81 which 
means that 81% of the total variation in y can be explained by the 
linear relationship between x and y. The other 19% of the total 
variation in y remains unexplained. 

R2=1-sum(e.^2)/sum((y-my).^2)  % coefficient of determination 
r2=r^2                                          % correlation coefficient squared 

Ans: 

R2 = 
      0.89956 
r2 = 
      0.89956 
Save the code as chapter1simsimple.m. This file will be used in future 
chapters. 
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1.16.3: Simple linear regression in matrix form 

Consider the simple linear regression equation ii xbby 10
ˆˆˆ  . 

Note that same equation can be written as   









1

0

ˆ

ˆ
.1ˆ

b

b
xy ii . 

This means that if the two coefficients are combined into a single 

column vector 









1

0

ˆ

ˆ
b̂

b

b ,  and the independent variable is augmented by 

adding a “1” to the front  ii xx 1 , the thi  predicted value can be 

computed as b̂ˆ ii xy
 . For the entire set of observations, we can write 

b̂XŶ  where Ŷ is a column of predicted values, X is the design 
matrix, where the first column consists of ones, the second column is 

the values of the independent variables, and 









1

0

ˆ

ˆ
b̂

b

b .  

The OLS (ordinary least squares) estimate of the regression 
coefficients is given by   YXXXb̂ 1   . Recall the simple linear 
regression data generated from 

 y = 3 + 10x + noise  

n=50; 
x=linspace(0,1,n);                         % linearly spaced vector a length n 
y= 10*x + 3 + randn(1,n); 
mx=mean(x), my=mean(y), sx=std(x,1); 
c= mean((x-mx).*(y-my))            %covariance 
bh1=c/sx^2 
bh0=my-bh1*mx 
yhat=bh0+bh1*x;                          %regression line 
figure; 
plot(x,y,'.') 
hold on 
plot(x,yhat,'r') 
xlabel('x'), ylabel('y') 
title(['Regression yhat=',num2str(bh1),'*x+',num2str(bh0)]) 
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Regression yhat=9.2336*x+3.6672

 
The same estimates of the regression coefficients can be obtained using 
the matrix form: 

x=x(:);                                     % make x a column 
y=y(:);                                     % make y a column 
XX=[ones(n,1),x];                   % create the design matrix 
bh=(XX'*XX)^-1*XX'*y        % OLS estimate of b 

Ans. 

bh = 

       3.6672 

       9.2336 

The b̂  vector should contain the previously computed 0b  and 1b values. 
The new regression line should also coincide with the previous line. 

yhat=XX*bh; 
hold on 
plot(x,yhat,'g+','linewidth',2) 
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The residuals and the estimated noise variance are computed as 

e=y-yhat;                        % residuals 
dof= n-rank(XX);           % degrees of freedom 
MSE=sum(e.^2)/dof       % estimated noise variance 
Ans. 

MSE= 

       1.5741 

Save the code as SIMSIMPLEMATRIX.m. This file will be used in 
future chapters. 

1.16.4: Multiple Linear Regression 

In multiple linear regression, the regression equation is 

ikkiii xxxy  ˆˆˆˆˆ 22110    

And each observation is equal to the predicted value and a residual 
term ie :  iii eyy  ˆ  

The matrix-based analysis presented in the previous section is equally 
applicable to multiple independent variables. For each additional 
independent variable, another column is added to the design matrix, X. 
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With k independent variables, the design matrix contains k+1 columns, 
the first column containing 1’s. One difficulty with multiple 
independent variables is that the entire analysis cannot be summarized 
in a single figure, and the residuals need to be plotted with respect to 
each independent variable separately. 

By using matrices, the multiple linear regression model,  XβY  

Where  nI,0N~ 2  and Y is an n×1 vector of observations, X is 
an n×k matrix of regressors, β is a n×1 vector of parameters and ε is an 
n×1 vector of random disturbances. The least squares estimator of β is 
given by, 

  YXXXβ̂ 1    

Whose variance is, 

    12 XXβ̂Var    

The predicted values are given by, 

β̂XŶ   

The residuals are, 

ŶYe   

And the residual variance is, 

1n
ˆMSE

n

1

2

2






k

e
i

i

  

We can now define the following function to solve the regression 
problem: 

The coefficient of determination ( 2R ) is computed the same way as in 
the simple linear case: 
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R  

The 2R  value in multiple linear regression is often called the 
“coefficient of multiple determination.” 
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randn('seed',1234) % specify a seed (optional) 
n = 50; k = 4; 
X = [ones(n,1) randn(n,k)]; 
b = [5;1;2;3;4]; 
y = X*b + randn(n,1); 
[beta,Var_beta,resid,sR2] = regress(y,X) 
MSE = sum(resid.^2)/(n - k - 1) 
Var_Cov_beta=inv(X'*X)*MSE 
R2=1-sum(resid.^2)/sum((y-mean(y)).^2) 
subplot(2,1,1),plot(resid,'o'),title('residuals versus row number') 
subplot(2,1,2),plot(resid,ypred,'o'),title('residuals versus predicted') 

Ans. 

beta R2 MSE 
5.1611 0.96567 0.87179 
0.78908   
2.1569   
2.9181   
4.0902   

Var_Cov_beta = 

0.018533    -0.002176   -0.0023977    0.0011898    0.0028394 
-0.002176     0.022436    0.0048211    0.0030259   -0.0016523 
-0.0023977    0.0048211     0.020029    0.0066967     0.001665 
0.0011898    0.0030259    0.0066967     0.016782   -0.0006353 
0.0028394   -0.0016523     0.001665   -0.0006353     0.024338 
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Save the code as SIMMULTIPLEMATRIX.m. This file will be used in 
future chapters. 
1.16.5: Multiple linear regression with the Statistics Toolbox of 

MATLAB 

The Statistics Toolbox provides the regress function to address the 
multiple linear regression problems. regress uses QR decomposition of 
X followed by the backslash operator to compute β̂ . The QR 
decomposition is not necessary for computing β̂ , but the matrix R is 
useful for computing confidence intervals. 

b = regress(y,X) returns the least squares estimator β̂ . 

[b, bint, r, rint, stats] = regress(y, X) returns an estimate of β  

Interval for β in the k×2 array bint. The residuals are returned in r and a 
95% confidence interval for each residual is returned in the n × 2 array 
rint. The vector stats contain the 2R  statistic along with the F and p 
values for the regression. 

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)% 
confidence intervals for bint and rint. For example, alpha = 0.2 gives 
80% confidence intervals. Let’s see an example. Suppose the true 

model is,  nI.010,0N~,
1

10
XY 








  

Where I is the identity matrix. Suppose we have the following data: 

randn('seed',1234);n=10; X = [ones(n,1) (1:n)'] 
y = X * [5;2] + normrnd(0,0.1,n,1) 
[b,bint] = regress(y,X,0.05) 

X y 
1  1  6.92063102736475  
1  2  8.95834974723594  
1  3  10.9217439183399  
1  4  13.2145703970460  
1  5 14.9213956160792  
1  6  17.0448135509485  
1  7  19.0098435509121  
1  8  20.9326093816663  
1  9  23.0200396628726  
1  10 24.9311656046701 
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b = 
       4.9845 
       2.0005 
bint = 
       4.8304       5.1386 
       1.9757       2.0254 

Compare b to [10 1]’. Note that bint includes the true model values. 

Another example comes from Chatterjee and Hadi (1986) in a paper on 
regression diagnostics. The data set (originally from Moore (1975)) has 
five predictor variables and one response. 

load moore 

X = [ones(size(moore,1),1) moore(:,1:5)]; 

Matrix X has a column of ones, and then one column of values for 
each of the five predictor variables. The column of ones is necessary 
for estimating the y-intercept of the linear model. 

y = moore(:,6); 
[beta, beta_interval, resid, resid_interval, STATS] = regress(y,X) 

Where regress Multiple linear regression using least squares. 

beta = regress(Y,X) returns the vector beta of regression coefficients in 
the linear model Y = X* beta.  X is an n-by-p design matrix, with rows 
corresponding to observations and columns to predictor variables.  Y is 
an n-by-1 vector of response observations. 

[beta, beta_interval] = regress(Y,X) returns a matrix beta_interval of 
95% confidence intervals for beta.  

[beta, beta_interval, resid] = regress(Y,X) returns a vector resid of 
residuals. 

[beta, beta_interval, resid, resid_interval] = regress(Y,X) returns a 
matrix resid_interval of intervals that can be used to diagnose outliers. 
If RINT(i,:) does not contain zero, then the i-th residual is larger than 
would be expected, at the 5% significance level.  This is evidence that 
the I-th observation is an outlier. 

[beta, beta_interval, resid, resid_interval, STATS] = regress(Y,X) 
returns a vector STATS containing, in the following order, the R-
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square statistic, the F statistic and p value for the full model, and an 
estimate of the error variance. 

Ans.  

beta beta_interval 
-2.1561 -4.11538 -0.19691 

-9.0116e-06 -0.00112 0.001103 
0.0013159 -0.00139 0.004026 
0.0001278 -3.71e-05 0.000293 
0.0078989 -0.02213 0.037926 

1650.00014  -1.65e-05 0.0003 
   

resid resid_interval 
0.562317 0.225802 0.898832 
-0.14555 -0.54763 0.256525 
0.088524 -0.32617 0.50322 
-0.04788 -0.55146 0.455704 
-0.2307 -0.70433 0.242926 

0.170682 -0.28023 0.621592 
-0.34134 -0.83769 0.155007 
-0.07079 -0.62602 0.484439 
-0.01029 -0.47488 0.454305 
-0.10945 -0.63998 0.421089 
0.171722 -0.3311 0.674541 
0.050437 -0.49066 0.591533 
-0.03991 -0.59383 0.514003 
0.022723 -0.49909 0.544541 
-0.39447 -0.87015 0.081217 
0.081334 -0.41688 0.579544 
0.072986 -0.08787 0.233845 
0.011354 -0.4987 0.521405 
-0.22227 -0.66763 0.223093 
0.380568 -0.00711 0.768246 

STATS = 
2R  F p-value error variance 

0.810665 11.98861 0.000118 0.068538 

The y-intercept is 0b , which corresponds to the column index of the 
column of ones. 

The elements of the vector stats are the regression 2R  statistic, the F 
statistic (for the hypothesis test that all the regression coefficients are 
zero), the p-value associated with this F statistic, and error variance  
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2R  is 0.8107 indicating the model accounts for over 80% of the 
variability in the observations. 

The F statistic of about 12 and its p-value of 0.0001 indicate that it is 
highly unlikely that all of the regression coefficients are zero. 
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The plot shows the residuals plotted in case order (by row). The 95% 
confidence intervals about these residuals are plotted as error bars. The 
first observation is an outlier since its error bar does not cross the zero 
reference line. [The program name:  CONFIDENC] 

1.17: Simulation of Stochastic processes 

In this section, we will simulate and represent graphically various 
simple stochastic processes. 

1.17.1: Simulation of Bernoulli process 

A Bernoulli process is a discrete-time stochastic process consisting of 
finite or infinite sequence of independent random variables ,,, 321 xxx  
such that, 









ppropwith

ppropwith
xi 1,1

,1
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Random variables associated with the Bernoulli process include: 

- The number of successes in the first n trials; this has a binomial 
distribution; 

- The number of trials needed to get r successes; this has a negative 
binomial distribution. 

- The number of trials needed to get one success; this has a geometric 
distribution, which is a special case of the negative binomial 
distribution. 

We can simulate a realization of size 100 of a Bernoulli process with p 
= 0.5 as follows. 

u=rand(10,1); 

X=1-2*floor(u*2) 

Where (floor) Round towards minus infinity, 
floor(X) rounds the elements of X to the nearest integers towards 
minus infinity. 

We can simulate another realization of a Bernoulli process with p = 
0.25 and observe the differences.[The program name BERNOULLI.m] 

u=rand(30,1); 
Y(u<0.25)=1;Y(u>0.25)=-1; 
plot(1:30,Y,'ro',1:30,Y,'k*') 
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1.17.2: Simulation of Random walk 

By using the cumsum command, we can simulate random walks from 
the Bernoulli processes simulated previously. [The program name 
RANDOMWALK.m]. 

u=rand(30,1); 

Y(u<0.25)=1;Y(u>0.25)=-1; 
plot(1:30,cumsum(Y),'r') 
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1.17.3: Simulation of Poisson process 

Firstly, observe that continuous time processes are only possible to 
simulate by discretization of the unit time. 

A Poisson process, tx , with rate λ verifies the following property: 

tx = Number of occurrences in [0, t) ∼ Po(λt). 
If we want simulate a realization with 10 occurrences from a Poisson 
process of rate λ = 2, we can first simulate 10 exponential times of 
mean 1/λ = 0.5 between occurrences. [The program name 
POISSONPROCES.m]. 

x=exprnd(0.5,1,10); 

Then, we can obtain the occurrence times as follows. 

x=cumsum(x); 
subplot(2,1,1),plot(x,zeros(length(x)),'.') 
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Suppose we want to know the value of the process tx  at the following 
instant times: 

Then, we can compute: 

for i=1:length(t);X(i)=sum(x<t(i));end 
subplot(2,1,2),plot(t,X) 
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1.17.4: Simulation of Autoregressive process 

Suppose we want to simulate T = 100 values from an autoregressive 
model AR(1), 

ttt exx    
where te  are i.i.d. N (0, 1) and assume three values for α  {0.8, 
0.5,−0.8}. One possibility is to assume x1 = e1 and then obtain 
recursively the remaining values. [The program name AR1.m]. 

e=randn(100,1); 
x=zeros(100,1); 
x(1)=e(1); 
alpha=0.8; 
for i=2:100, x(i)=alpha*x(i-1)+e(i); end 

We can calculate the sample coefficient of the autocorrelation function. 
For example, the first coefficient is the sample correlation coefficient 
of 1tx  and tx : 
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corrcoef(x(1:99),x(2:100)); 
plot(x(1:99),x(2:100),'.') 
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Observe that after 10 lags, there is almost no relation between of 1tx  
and tx : 

plot(x(1:90),x(11:100),'.') 
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1.17.5: Simulation of Moving average process 

Suppose now that we want to simulate T = 100 values from a moving 
average model MA(1), 

ttt eex  1  

Where te  are i.i.d. N (0, 1) and assume three values for    {0.8, 
0.5,−0.8}. [The program name MA1.m]. 
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This process is easier to initialize because we just have to simulate 0e . 

e=randn(101,1); 
theta=0.8; 
x=theta*e(1:100,1)+e(2:101,1); 

Compute the first two coefficients of the autocorrelation function and 
observe the following plots: 

plot(x(1:99),x(2:100),'.') 
plot(x(1:98),x(3:100),'.'); 
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1.18: Nonlinear Regression 

When the relationship between the independent variable(s) and the 
dependent variable cannot be approximated as a line (or a hyperplane), 
approaches beyond linear regression are needed. There are many 
different methods for dealing with nonlinear relationships, but we will 
focus on two approaches: (a) Using a nonlinear transformation which 
makes the data approximately linear; (b) Polynomial fitting. 

1.18.1: Nonlinear Transformations 

Sometimes a non-linear relationship can be transformed into a linear 
one by a mathematical transformation. Examples include the 
exponential growth equation: 

     ubxyuey bx logAloglogA   

And the constant-elasticity equation 
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       uxbyuxy b loglog.AloglogA   

Linear regression can now be performed using the transformed 
variables. 

Example 1.8: The table below shows data to test the relationship 
between porosity and sandstone strength. 

x=porosity y=unconfined 
strength (psi) 

Source: Hale, P. A. & Shakoor, A., 2003, A 
laboratory investigation of the Effects of 
Cyclic Heating and Cooling, Wetting and 
Drying, and Freezing and Thawing on the 
Compressive Strength of Selected 
Sandstones: Environmental and Engineering 
geoscience, vol IX, p. 117-130. 
 

12.32 2636 
13.94 3162 
6.94 7580 
4.0 16899 
2.94 23739 
0.86 14224 

Plot the data and the regression line, and compute the coefficient of 
determination. [The program name example118.m]. 

x=[12.32,13.94,6.94,4,2.94,0.86]; 
y=[ 2636, 3162, 7580, 16899, 23739, 14224]; 
x=x(:); y=y(:); 
n=length(x); 
XX=[ones(n,1),x]; 
b=(XX'*XX)^-1*XX'*y 
yhat=XX*b; 
e=y-yhat; 
my=mean(y); 
R2=1-sum(e.^2)/sum((y-my).^2) 
figure; 
plot(x,y,'.') 
hold on , plot(x,yhat,'r') 
title(['Coeff of determination, R^2' ,num2str(R2)]) 
xlabel('porosity'), ylabel('unconfined strength (psi)') 
MSE=sum(e.^2)/(n-2) 

Ans.   

b =                                R2 =                          MSE =  
        20560                          0.72089                           2.4403e+07                
      -1344.4 
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The coefficient of determination is 72.02 R , indicating that the 
regression equation can explain 72% of the variation in unconfined 
strength. And MSE equals 2.4403e+07  

Repeat the same analysis, using a nonlinear transformation: [The 
program name example118.m]. 

y=log(y)                

b =                    R2 =                           MSE =  
       10.142                 0.87261                        0.13228 
      -0.1612 
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The coefficient of determination has increased to 87.02 R  and MSE 
has decreased to 0.13228 

There are a few points to keep in mind when using this method. First, 
we are assuming that the errors in the transformed equation follow a 
zero-mean Gaussian distribution, which may not be a reasonable 
assumption. Second, once we get the estimates from the transformed 
equation, going back to the original equation can be tricky. Some 
parameter estimates are biased, and the confidence intervals are no 
longer symmetrical around the predicted values. We need to get the 
confidence interval from the transformed equation and then transform 
the bounds back. 

1.18.2: Polynomial fitting 

The commands polyfit and polyval can be used whenever the data can 
be approximated by a polynomial. 

1- polyfit Fit polynomial to data. 

P = polyfit(X,Y,N) finds the coefficients of a polynomial P(X) of     
degree N that fits the data Y best in a least-squares sense. P is a     row 
vector of length N+1 containing the polynomial coefficients in     
descending powers, 

P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1). 

[P,S] = polyfit(X,Y,N) returns the polynomial coefficients P and a 
structure S for use with POLYVAL to obtain error estimates for     
predictions.  S contains fields for the triangular factor (R) from a QR     
decomposition of the Vandermonde matrix of X, the degrees of 
freedom (df), and the norm of the residuals (normr).  If the data Y are 
random, an estimate of the covariance matrix of P is 
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R. 

[P,S,MU] = polyfit(X,Y,N) finds the coefficients of a polynomial in 

XHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = 
STD(X). This centering and scaling transformation improves the 
numerical properties of both the polynomial and the fitting algorithm. 

Warning messages result if N is >= length(X), if X has repeated, or 
nearly repeated, points, or if X might need centering and scaling. 
Class support for inputs X,Y: float: double, single 
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2- polyval Evaluate polynomial. 

Y = polyval(P,X) returns the value of a polynomial P evaluated at X. P 
is a vector of length N+1 whose elements are the coefficients of the 
polynomial in descending powers. 

         Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1) 

If X is a matrix or vector, the polynomial is evaluated at all points in 
X.  See POLYVALM for evaluation in a matrix sense. 

[Y,DELTA] = polyval(P,X,S) uses the optional output structure S 
created by POLYFIT to generate prediction error estimates DELTA.  
DELTA is an estimate of the standard deviation of the error in 
predicting a future observation at X by P(X). 

If the coefficients in P are least squares estimates computed by     
POLYFIT, and the errors in the data input to POLYFIT are 
independent, normal, with constant variance, then Y +/- DELTA will 
contain at least 50% of future observations at X. 

Y = polyval(P,X,[],MU) or [Y,DELTA] = polyval(P,X,S,MU) uses 
XHAT = (X-MU(1))/MU(2) in place of X. The centering and scaling 
parameters MU are optional output computed by POLYFIT. 

Consider the following nonlinear system:  

randn('seed', 1); 
x=(1:50)'; 
y = sin(x/50)./ x + 0.002 * randn(50,1) 

Fit a polynomial of order 5:     

order=5;  
poly = polyfit(x, y, order); 

Evaluate the polynomial at the data points: 

yhat= polyval(poly,x) 

An approximate 95% prediction interval for y (including the noise) can 
be constructed as follows: [The program name NONLINEAR.m]. 

randn('seed', 1); 
x=(1:50)'; y = sin(x/50)./ x + 0.002 * randn(50,1); n=length(x); 
order=5; poly = polyfit(x, y, order); yhat= polyval(poly,x) 
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[poly model] = polyfit(x, y, order); % fit a polynomial 
[yhat s] = polyval(poly, x, model); % evaluate the polynomial 
alpha=0.05; % for 95% confidence 
p=1-alpha/2; % probability to be used in CDF 
df=50-(5+1); % degrees of freedom 
t=tinv(p,df); % t-value, may need tinv558 
PI_lower=yhat-t*s; PI_upper=yhat+t*s; 
figure; 
plot(x,y,'.') 
hold on 
plot(x,yhat, 'r') 
plot(x, PI_lower, 'r:') 
plot(x, PI_upper, 'r:') 
legend('data','regression','95% PI') 
xlabel('x'), ylabel('y') 
my=mean(y); e=y-yhat; 
MSE=sum(e.^2)/(n-2); R1=1-sum(e.^2)/sum((y-my).^2) 

Ans. 

MSE = 0.30322, R2 = 3.616e-06 
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PROBLEMS 

1.1: Define MATLAB  

1.2: What is interest MATLAB? 

1.3: where the name came from MATLAB? 

1.4: What MATLAB language characterized for other programming 
languages? 

1.5: What magic matrix and how do we get them? 

1.6: In analyzing linear equations if you know that: 
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A  

Find the following:  
1- The inverse of the matrix. 
2- Cholesky factorization. 
3- Upper and lower trigonometric matrix.  
4- Pseudoinverse matrix. 

1.7: In the analysis of the Eigenvalues if you know that: 
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B  

A- Eigen values and Eigen vector.  

B- Singular value decomposition. 
1.8: Analysis functions of matrices if you know that: 
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C  

Find the following:   
1- Matrix exponential 
2- Matrix logarithm 
3- Matrix square root 
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1.9: Explain the command Kronecker with a practical example? 

1.10: Solving linear systems following: 
BXA *  

If you know that A represents Pascal matrix (Dim.3) and 

 TB 413  
1.11: Estimate and draw the negative exponential model using (OLS) 

method for the following data: 

            t = [0 .3 .8 1.1 1.6 2.3]' and y = [.82 .72 .63 .60 .55 .50]' 
 Where   tccty  e21  

1.12: Estimate the Simple Linear Model using method (OLS) for the 
following data: 

y 2 3 5 7 8 10 12 15 
x 8 10 14 16 17 20 22 26 

Where ii xccy 21   

Find the following: 
1- Average of D.V. 
2- Variance of I.V.                                                                                     
3- Standard Deviation of the D.V.                            
4- Simple Linear Correlation Coefficient. 
5- Mean Square Error. 
6- The Coefficient of Determination. 
7- Standard Error. 
8- Covariance between the I.V. and D.V.  

.11 3: Draw the scatter plot of the following data: 

 
]2924201612861[

]171513119753[

]76543210[
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1.14: Select outlier values for the following data: 

           
]2924201612861[

]171513119753[

]765203210[
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1.15: Estimate the Multiple Linear Model using method (OLS) for the 
following data: 

         Where  iii zcxccy 321                

The required account the following: 

1 - Average of D.V.  2 - Variance of x.  3 - Mean Square Error.         
  4 - Standard Error.    5 - Covariance between the variables.                            

1.16: Write a computer program to implement for generating a F-
distribution with (8) & (11) degrees of freedom respectively, for 
n = 30 

1.17: Write a computer program to implement for generating a Exp(6) 
random deviate, n = 20 

1.18: Compute possible some cases Normal output matrix of random 
matrix generated from Uniform distribution   23 multiplied by 
10 for just the integer values. 

1.19: Write a computer program to implement for generating a t-
distribution with (20) degree of freedom, for n = 25 by using 
Direct Method. 

1.20: Write a computer program to implement for generating a 
multivariate normal distribution for (k=4) variables, n=30 and: 
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For means equal to [2 15 6 12], find mean, variance and 
correlation matrix. 

1.21: Write a computer program to implement for generating: 
      - Poisson(5)  random deviate,  n = 20 
      - Exp(2) random deviate, n = 10 
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i

2.1: The model   

The simple linear regression model for n observations can be written as 

(2.1)n , ... 2, 1,,10 iii xy   

The designation simple indicates that there is only one x to predict the 
response y, and linear means that the model (2.1) is linear in 0  and 1 . 
[Actually, it is the assumption xyE 10)(    that is linear; see 

assumption 1 below.] For example, a model such as i
x

i
iey    1

0 is 
linear in 0  and 1 , whereas the model is not linear. 

In this chapter, we assume that yi and i  are random variables and that 
the values of xi are known constants, which means that the same values 
of x1, x2, . . .  , xn would be used in repeated sampling.  

To complete the model in (2.1), we make the following additional 
assumptions: 

1-  iE   for all i = 1, 2, ...  , n, or, equivalently, ii xyE 10)(              

2- 2)Var(  i  for all i = 1, 2, .. . , n, or, equivalently, 2)Var( iy    

3- 0),Cov( ii  for all ji  , or, equivalently, 0),Cov( ji yy         

Assumption 1 states that the model (2.1) is correct, implying that yi 
depends only on xi and that all other variation in yi is random. 
Assumption 2 asserts that the variance of   or y does not depend on the 
values of xi. (Assumption 2 is also known as the assumption of 
homoscedasticity, homogeneous variance or constant variance.) Under 
assumption 3, the   variables (or the y variables) are uncorrelated with 
each other. In Section 2.3, we will add a normality assumption, and the 
y (or the  ) variables will thereby be independent as well as 
uncorrelated. Each assumption has been stated in terms of the y. For 
example, if 2)Var(  i  then   222

10
2 )()()]([Var   iiiiii ExyEyEyEy  

Any of these assumptions may fail to hold with real data. A plot of the 
data will often reveal departures from assumptions 1 and 2 (and to a 
lesser extent assumption 3). Techniques for checking on the 
assumptions are discussed in Chapter 5. 
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2.2 : Estimation of 10 ,  and 2   

Using a random sample of n observations y1, y2, .. . , yn and the 
accompanying fixed values x1, x2, .. . , xn, we can estimate the 
parameters 10 ,  and 2 . To obtain the estimates 10

ˆˆ  and ,  we  use  
the  method  of  least  squares,  which  does  not  require any 
distributional assumptions (for maximum likelihood estimators based 
on normality, see Section 3.6.2). 

In the least-squares approach, we seek estimators 0̂  and 1̂  that 
minimize the sum of  squares  of  the  deviations ii yy ˆ  of  the  n  
observed  iy ’s  from  their  predicted values ii xy 10

ˆˆˆ   : 

)2.2()ˆˆ()ˆ(ˆˆˆ 2

1
1

2

11

2 



n

i
ioi

n

i
ii

n

i
i xyyy  

Note  that  the  predicted  value  iŷ  estimates  iyE ,  not iy ;  that  is, 

ix10
ˆˆ    estimate ix10    not iix   10 . A better notation would be  

 iyE ˆ  but iŷ  is commonly used. 

To find the values of 0̂  and 1̂  that minimize  ˆˆ  in (2.2), we 

differentiate with respect to 0̂  and 1̂ and set the results equal to 0: 

)4.2(0)ˆˆ(2
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The solution to (2.3) and (2.4) is given by 
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To verify that 0̂  and 1̂  in (2.5) and (2.6) minimize  ˆˆ  in (2.2), we 
can examine the second derivatives or simply observe that  ˆˆ  has no 
maximum and therefore the first derivatives yield a minimum. For an 
algebraic proof that 0̂  and 1̂ minimize (2.2).  

Example 2.1: Students in a statistics class (taught by one of the 
authors) claimed that doing the homework had not helped prepare them 
for the midterm exam. The exam score y and homework score x 
(averaged up to the time of the midterm) for the 18 students in the class 
were as follows: 

y x y x y x 
95 96 72 89 35 0 
80 77 66 47 50 30 
0 0 98 90 72 59 
0 0 90 93 55 77 
79 78 0 18 75 74 
77 64 95 86 66 67 

Using (2.5) and (2.6), we obtain 

  
 

8726.0
056.581880199

389.61056.581881195ˆ

)(

))((
ˆ

21

2

1

1

1

22

1
1




































n

i
i

i

n

i
i

n

i
i

n

i
ii

xx

yyxx

xnx

yxnyx

 

  73.10056.588726.0389.61ˆ
0   

The prediction equation is thus given by 

ii xy 8726.073.10ˆ   

This equation and the 18 points are plotted in Figure 2.1. It is readily 
apparent in the plot that the slope 1̂  is the rate of change of ŷ  as x 
varies and that the intercept 0̂  is the value of ŷ at x = 0. 
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The apparent linear trend in Figure 2.1 does not establish cause and 
effect between homework and test results (for inferences that can be 
drawn, see Section 2.3). The assumption   2Var  i  (constant 
variance) for all i = 1, 2, . . . , 18 appears to be reasonable. 

Note that the three assumptions in Section 2.1 were not used in 
deriving the least squares estimators 0̂  and 1̂  in (2.5) and (2.6). It is 

not necessary that ii xy 10
ˆˆˆ    be based on   ii xyE 10   ; that is, 

ii xy 10
ˆˆˆ    can be fit to a set of data for which   ii xyE 10   . This 

is illustrated in Figure 2.2, where a straight line has been fitted to curve 
data. 

Applications using MATLAB Example 2.1[The program name ta1.m] 

clc  
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x); 
E=[ones(size(x)) x]; 
beta=E\y 
X=(0:1:100)'; 
Yhat=[ones(size(X)) X]*beta; 
plot(x,y,'ko',X,Yhat,'-') 
xlabel('x'), ylabel('y') 
legend('data','regression line')  
title(['Regression line: Yhat=',num2str(beta(1)),'+',num2str(beta(2)),'*x']) 

Ans. 

beta =  10.727 
            0.87265 
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Regression line: Yhat=10.7269+0.87265*x

 

 

data

regression line

 

Figure 2.1: Regression line and data for homework and test scores 
 

 
Figure 2.2: A straight line fitted to data with a curved trend 

However, if the three assumptions in Section 2.1 hold, then the least-
squares estimators 0̂  and 1̂  are unbiased and have minimum variance 
among all linear unbiased estimators (for the minimum variance 
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property, see Theorem 3.3d in Section 3.3.2; note that 0̂  and 1̂  are 

linear functions of nyyy ,,, 21  ). Using the three assumptions, we 

obtain the following means and variances of 0̂  and 1̂ : 

   7.2ˆ
11  E  

   8.2ˆ
00  E  

 
 

 9.2ˆVar
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1ˆVar
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n
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i xx
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n
  

Note that in discussing  1̂E  and  1̂Var  , for example, we are 
considering random variation of 1̂  from sample to sample. It is 
assumed that the n values nxxx ,,, 21   would remain the same in future 

samples so that  1̂Var   and  0
ˆVar   are constant. 

In (2.9), we see that   1̂Var   is minimized when   


n

i i xx
1

2  is 

maximized. If the ix  values have the range bxa i  , then   


n

i i xx
1

2  

is maximized if half the x’s are selected equal to a and half equal to b 
(assuming that n is even; see Problem 2.4). In (2.10), it is clear that 

 0
ˆVar   is minimized when 0x . 

The method of least squares does not yield an estimator of   2Var iy , 

minimization of  ˆˆ  yields only 0̂  and 1̂ . To estimate 2 , we use the 

definition   22
ii yEyE  . By assumption 2 in Section 2.1, 2  is the 

same for each iy , i = 1, 2, . . . , n. Using iŷ  as an estimator of  iyE , we 
estimate 2  by an average from the sample, that is 
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Where 0̂  and 1̂  are given by (2.5) and (2.6) and    


n

i ii yySSE
1

2ˆ . 

The deviation  2ˆˆ iii yy   is often called the residual of iy , and SSE 
is called the residual sum of squares or error sum of squares. With 

2n  in the denominator, 2S is an unbiased estimator of 2 : 
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SE 

Intuitively, we divide by  2n  in (2.11) instead of  1n  as in 
   1

1

22  
nyyS

n

i i , because ii xy 10
ˆˆˆ    has two estimated 

parameters and should there by be a better estimator of  iyE  than y . 

Thus we expect   


n

i ii yySSE
1

2ˆ to be less than   


n

i i yy
1

2 . In fact, 

using (2.5) and (2.6), we can write the numerator of (2.11) in the form 

   
   

 
 13.2ˆ
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i ii
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yyyySSE  

Which shows that   


n

i ii yy
1

2ˆ is indeed smaller than    


n

i i yy
1

2 . 

2.3: Hypothesis Test and Confidence Interval for 1   

Typically, hypotheses about 1  are of more interest than hypotheses 
about 0 , since our first priority is to determine whether there is a linear 
relationship between y and x. (See Problem 2.9 for a test and 
confidence interval for 0 ) In this section, we consider the hypothesis 

0: 10 H , which states that there is no linear relationship between y 
and x in the model iii xy   10 . The hypothesis c: 10 H  (for c= 0) 
is of less interest. 

In order to obtain a test for 0: 10 H , we assume that iy is  2
10 , ixN  .  

Then 1̂  and 2S  have the following properties (these are special cases 
of results established in Theorem 2.6b in Section 2.6.3): 
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1. 1̂  is   ],[
1

22
1 


n

i i xxN  . 

2.   222 Sn  is  
2

2n . 

3. 1̂  and 2S  are independent. 

From these three properties it follows:  

 
 14.2

ˆ

1

2

1





n

i i xxS
t

 

Is distributed as  ,2nt , the non-central t with non-centrality 
parameter  . And   is given by 

   11
ˆVarˆ  E  =   



 

n

i i xx
1

22
1  . 

If 01  , t is distributed as  2nt . For a two-sided alternative 

hypothesis 0: 11 H , we reject 0: 10 H  if 2,2  ntt  , where 2,2 nt , is 

the upper 2  percentage point of the central t distribution and   is the 
desired significance level of the test (probability of rejecting 0H  when 
it is true). Alternatively, we reject 0H  if p , where p is the p value. 
For a two sided test, the p value is defined as twice the probability that 
 2nt  exceeds the absolute value of the observed t. 

A  %1100   confidence interval for 1  is given by 

 
 15.2ˆ

1

2
2,21








n

i i

n

xx

S
t  

Confidence intervals are defined and discussed further in Section 4.6. 
A confidence interval for E(y) and a prediction interval for y are also 
given in Section 4.6. 

Example 2.2: We test the hypothesis 0: 10 H  for the grades data in 
Example 2.1. By (2.14), the t statistic is 

      8025.8
753.1398547.13

8726.0ˆ

1

2

1 



 

n

i i xxS
t
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Since 120.28025.8 16,025.0  tt , we reject 0: 10 H  at the 05.0  

level of significance. Alternatively, the p value is 710571.1  , which is 
less than 0.05. 

A 95% confidence interval for 1  is given by (2.15) as 

  



n

i i xx

S
t

1

2
16,025.01̂  

 09914.0120.28726.0   

 0828.1,6624.0  

Applications using MATLAB Example 2.2[The program name ta2.m] 
clc  
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x);E=[ones(size(x)) x]; 
beta=E\y 
Yhat=E*beta;e=y-Yhat; 
MSE=e'*e/(n-2),S=sqrt(MSE) 
Sxx=sum((x-mean(x)).^2) 
t=beta(2)/(S/sqrt(Sxx)) 
beta1l=beta(2)-2.12*S/sqrt(Sxx); 
beta1u=beta(2)+2.12*S/sqrt(Sxx); 
beta1LUL=[beta1l beta1u] 

Ans.  

beta = MSE = S = Sxx = t = 

10.727 

0.87265 
191.95 13.855 19531 8.8025 

beta1LUL =   

0.66248        1.0828   
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2.4: Coefficient of Determination 

The coefficient of determination 2r  is defined as 
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Where    


n

i i yySSR
1

2ˆ   is the regression sum of squares and 

 


n

i i yySST
1

2  is the total sum of squares. The total sum of squares 

can be partitioned into SST = SSR+ SSE, that is,   

       17.2ˆˆ
1

2

1

2

1
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n

i ii

n

i i

n

i i yyyyyy 

Thus 2r in (2.16) gives the proportion of variation in y that is explained 
by the model or, equivalently, accounted for by regression on x. 

We have labeled (2.16) as 2r  because it is the same as the square of the 
sample correlation coefficient r between y and x. 
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Where  xyS  is    


n

i ii yyxx
1

 (see Problem 2.11). When x is a random 

variable, r estimates the population correlation, 

(   jiijjiij yyCorr   , ). The coefficient of determination 2r  is 

discussed further in Section 3.7. 

Example 2.3: For the grades data of Example 2.2, we have 

8288.0
3.17944

148732 
SST

SSR
r  

The correlation between homework score and exam score is 
910.08288.0 r . 

The t statistic in (2.14) can be expressed in terms of r as follows: 
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If 0: 10 H  is true, then, as noted following (2.14), the statistic in 
(2.19) is distributed as  2nt  under the assumption that the ix ’s are 
fixed and the iy ’s are independently distributed as  2

10 , ixN   . If x 
is a random variable such that x and y have a bivariate normal 

distribution, then 21.2 rrnt   in (2.20) also has the  2nt  
distribution provided that 0:0 H  is true, where r is the population 
correlation coefficient defined as (   jiijjiij yyCorr   , ). However, 

(2.19) and (2.20) have different distributions if 0: 10 H  and 0:0 H  
are false. If 01  , then (2.19) has a non-central t distribution, but if 

0 , (2.20) does not have a non-central t distribution. 

Applications using MATLAB Example 2.3[The program name ta3.m] 

clc  
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x);E=[ones(size(x)) x];beta=E\y; 
Yhat=E*beta;e=y-Yhat;MSE=e'*e/(n-2);S=sqrt(MSE); 
Sxx=sum((x-mean(x)).^2);t=beta(2)/(S/sqrt(Sxx)) 
p = 1-tcdf(t,n-2),beta1l=beta(2)-2.12*S/sqrt(Sxx); 
r=corr(y,x);R=r^2,SSE=(n-2)*MSE,SST=(n-1)*var(y), 
SSR=SST-SSE,R1=SSR/SST; 
tr=sqrt(n-2)*r/sqrt(1-r^2)% test r  

Ans.  

t = p = R = SSE = SST = 

8.8025 7.8534e-08 0.82885 3071.2 17944 
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SSR = tr =    

14873  8.8025    

 

PROBLEMS 

2.1: Obtain the L-S solutions (2.5) and (2.6) from (2.3) and (2.4). 

2.2: (a) Show that   11
ˆ  E  as in (2.7). 

(b) Show that   00
ˆ  E  as in (2.8). 

2.3: (a) Show that     


n

i i xx
1

22
1

ˆVar   as in (2.9). 

(b) Show that     ]1[ˆVar
1

222
0  


n

i i xxxn  as in (2.10). 

2.4: Suppose that n is even and the n values of ix  can be selected 

anywhere in the interval from a to b. Show that  1̂Var   is a 

minimum if n/2 values of ix  are equal to a and n/2 values are 
equal to b. 

2.5: Show that   


n

i ii yySSE
1

2ˆ  in (6.11) can be expressed in the form 

given in (2.13). 

2.6: Show that   22 SE  as in (2.12). 

2.7: Show that   ][
1

2
1̂ 


n

i i xxSt   in (2.14) is distributed as  ,2nt , 

where   ][
1

2
1

ˆ 


n

i i xx . 

2.8: Obtain a test for c: 10 H  versus c: 11 H . 

2.9: (a) Obtain a test for a: 00 H  versus a: 00 H . 

(b) Obtain a confidence interval for 0 . 

2.10: Show that       


n

i ii

n

i i

n

i i yyyyyy
1

2

1

2

1

2 ˆˆ  as in (2.17). 

2.11: Show that 2r  in (2.16) is the square of the correlation 
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2

1

2

1  

As given by (2.18). 

Table 2.1: Eruptions of Old Faithful Geyser, August 1–4, 1978a 
y x y x y x y x y x 
80 3.5 42 1.8 88 4.7 79 3.7 75 4.0 
84 4.1 91 4.1 51 1.8 60 3.8 73 3.7 
50 2.3 51 1.8 80 4.6 86 3.4 67 3.7 
93 4.7 79 3.2 49 1.9 76 4.5 68 4.3 
55 1.7 53 1.9 82 3.5 82 3.9 86 3.6 
76 4.9 82 4.6 80 4.3 84 4.3 72 3.8 
58 1.7 51 2.0 56 1.7 53 2.3 75 3.8 
74 4.6 78 4.4 80 3.9 86 3.8 75 3.8 
75 3.4 74 3.9 69 3.7 51 1.9 66 2.5 
  68 4.0 57 3.1 85 4.6 84 4.5 
  76 4.0 90 4.0 45 1.8 70 4.1 

Where x = duration, y = interval (both in minutes). 

2.12: Show that cosr , where   is the angle between the vectors 

jx x  and jy x  where   xxxxxxx n,,,jx 21   and 

  yyyyyyx n,,,jy 21  . 

2.13: Show that   ][
1

2
1

ˆ  


n

i i xxSt   in (2.19) is equal to 

21.2 rrn   in (2.20). 

2.14: Table 2.1 (Weisberg 1985, p. 231) gives the data on daytime 
eruptions of Old Faithful Geyser in Yellowstone National Park 
during August 1–4, 1978. The variables are x = duration of an 
eruption and y = interval to the next eruption. Can x be used to 
successfully predict y using a simple linear model 

iii xy   10 ? 

(a) Find 0̂  and 1̂ .                 (b) Test 0: 10 H  using (2.14). 

(c) Find a confidence interval for 1 .  (d) Find 2r  using (2.16). 
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Chapter three 
 
 

Multiple Regression: 
Estimation 
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3.1: Introduction 

In multiple regression, we attempt to predict a dependent or response 
variable y on the basis of an assumed linear relationship with several 
independent or predictor variables kxxx ,,, 21  . In addition to 
constructing a model for prediction, we may wish to assess the extent 
of the relationship between y and the x variables. For this purpose, we 
use the multiple correlation coefficient R. 

In this chapter, y is a continuous random variable and the x variables 
are fixed constants (either discrete or continuous) that are controlled by 
the experimenter.  

Useful applied expositions of multiple regression for the fixed-x case 
can be found in Morrison (1983), Myers (1990), Montgomery and 
Peck (1992), Graybill and Iyer (1994), Mendenhall and Sincich (1996), 
Ryan (1997), Draper and Smith (1998), and Kutner et al. (2005). 
Theoretical treatments are given by Searle (1971), Graybill (1976), 
Guttman (1982), Kshirsagar (1983), Myers and Milton (1991), 
Jørgensen (1993), Wang and Chow (1994), Christensen (1996), Seber 
and Lee (2003), and Hocking (1976, 1985, 2003). 

3.2: The Model 

The multiple linear regression model, can be expressed as 

 1.322110   kk xxxy  

We discuss estimation of the   parameters when the model is linear in 
the ’s. An example of a model that is linear in the ’s but not the x’s 
is the second-order response surface model 

 2.3215
2
24

2
1322110   xxxxxxy 

To estimate the ’s in (3.1), we will use a sample of n observations on 
y and the associated x variables. The model for the ith observation is 

 3.3,,2,1,22110 nixxxy iikkiii    

The assumptions for i  or iy  are essentially the same as those for 
simple linear regression in Section 2.1: 

1.   0iE   for ni ,,2,1  , or, equivalently,  
  ikkiii xxxyE   22110 
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2.   2Var  i  for ni ,,2,1  , or, equivalently,   2Var iy . 
3.   0,Cov ji   for all ji  , or, equivalently,   0,Cov ji yy . 

Assumption 1 states that the model is correct, in other words that all 
relevant x’s are included and the model is indeed linear. Assumption 2 
asserts that the variance of y is constant and therefore does not depend 
on the x’s. Assumption 3 states that the y’s are uncorrelated with each 
other, which usually holds in a random sample (the observations would 
typically be correlated in a time series or when repeated measurements 
are made on a single plant or animal). Later we will add a normality 
assumption (Section 3.6), under which the y variable will be 
independent as well as uncorrelated. 

When all three assumptions hold, the least-squares estimators of the 
 ’s have some good properties (Section 3.3.2). If one or more 
assumptions do not hold, the estimators may be poor. Under the 
normality assumption (Section 3.6), the maximum likelihood 
estimators have excellent properties. 

Any of the three assumptions may fail to hold with real data. Several 
procedures have been devised for checking the assumptions. These 
diagnostic techniques are discussed in Chapter 5. 

Writing (3.3) for each of the n observations, we have 
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These n equations can be written in matrix form as 
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The preceding three assumptions on i  or iy  can be expressed in terms 
of the model in (3.4): 

1.   0ε E  or   Xβy E .  

2.   IεCov 2  or   IyCov 2  

Note that the assumption   IεCov 2  includes both the previous 
assumptions   2Var  i  and   0,Cov ji  . 

The matrix X in (3.4) is  1 kn . In this chapter we assume that 
 1 kn  and rank (X) = k+1. If  1 kn  or if there is a linear 

relationship among the x’s, for example, 


n

i jxx
15 4 , then X will not 

have full column rank. If the values of the ijx ’s are planned (chosen by 

the researcher), then the X matrix essentially contains the experimental 
design and is sometimes called the design matrix. 

The   parameters in (3.1) or (3.4) are called regression coefficients. 
To emphasize their collective effect, they are sometimes referred to as 
partial regression coefficients. The word partial carries both a 
mathematical and a statistical meaning. Mathematically, the partial 
derivative of   kk xxxyE   22110 with respect to 1x , for 
example, is 1 . Thus 1  indicates the change in E(y) with a unit 
increase in 1x  when kxxx ,,, 32  are held constant. Statistically, 1  shows 
the effect of 1x  on E(y) in the presence of the other x ’s. This effect 
would typically be different from the effect of 1x  on E(y) if the other 
x ’s were not present in the model. Thus, for example, 0  and 1  in 

  22110 xxy  

Will usually be different from *
0  and *

1  in 

*
1

*
1

*
0   xy  

[If 1x  and 2x  are orthogonal, that is, if 0xx 21   or if     0jxjx 2211  xx , 
where  1x  and 2x   are columns in the X matrix, then *

00    and 
*
11   ; see Corollary 1 to Theorem 3.9a and Theorem 3.10]. The 

change in parameters when an x is deleted from the model is illustrated 
(with estimates) in the following example. 
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Example 3.1: [See Freund and Minton (1979, pp. 36–39)]. Consider 
the (contrived) data in Table 3.1. 

TABLE 3.1: Data for Example 3.1 
Observation Number y 1x 2x 

1 2 0 2 
2 3 2 6 
3 2 2 7 
4 7 2 5 
5 6 4 9 
6 8 4 8 
7 10 4 7 
8 7 6 10 
9 8 6 11 
10 12 6 9 
11 11 8 15 
12 14 8 13 

Using (2.5) and (2.6) from Section 2.2 and (3.6) in Section 3.3, we 
obtain prediction equations for y regressed on 1x  alone, on 2x  alone, 
and on both 1x  and 2x : 

130.186.1ˆ xy   

278.086.0ˆ xy   

21 29.101.337.5ˆ xxy   

 
Figure: 3.1 Regression of y on 2x  ignoring 1x  
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Figure 3.2: Regression of y on 2x  showing the value of 1x  at each 

point and partial regressions of y on 2x . 

As expected, the coefficients change from either of the reduced models 
to the full model. Note the sign change as the coefficient of 2x  changes 
from .78 to -1.29. 

The values of y and 2x  are plotted in Figure 3.1 along with the 
prediction equation 278.086.0ˆ xy  . The linear trend is clearly evident. 

In Figure 3.2 we have the same plot as in Figure 3.1, except that each 
point is labeled with the value of 1x . Examining values of y and 2x  for 
a fixed value of 1x  (2, 4, 6, or 8) shows a negative slope for the 
relationship. These negative relationships are shown as partial 
regressions of y on 2x  for each value of 1x . The partial regression 
coefficient 29.1ˆ

2   reflects the negative slopes of these four partial 
regressions. 

Further insight into the meaning of the partial regression coefficients is 
given in Section 3.10. 
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Applications using MATLAB Example 3.1[The program name ta4.m] 
clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);E1=[ones(size(x1)) x1]; 
beta1=E1\y,E2=[ones(size(x2)) x2];  
beta2=E2\y,E3=[ones(size(x1)) x1 x2]; beta3=E3\y,X=(0:1:20)'; 
Y1=[ones(size(X)) X]*beta1; Y2=[ones(size(X)) X]*beta2; 
subplot(2,1,1),plot(x1,y,'ko',X,Y1,'-') 
xlabel('x1'), ylabel('y'), legend('data','regression line')  
title(['Regression line: Yhat1=',num2str(beta1(1)), 
'+',num2str(beta1(2)),'*x1']) 
subplot(2,1,2),plot(x2,y,'ko',X,Y2,'-') 
xlabel('x2'), ylabel('y'), legend('data','regression line')  
title(['Regression line: Yhat2=',num2str(beta2(1)), 
'+',num2str(beta2(2)),'*x2']) 

Ans.  

beta1 =                 beta2 =                        beta3 = 
       1.8585                  0.86131                       5.3754                 
       1.3019                  0.78102                       3.0118 
                                                                        -1.2855 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

x1

y

Regression line: Yhat1=1.8585+1.3019*x1

 

 

data

regression line

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

x2

y

Regression line: Yhat2=0.86131+0.78102*x2

 

 

data

regression line
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3.3: Estimation of β  and 2  

3.3.1: Least-Squares Estimator for β  

In this section, we discuss the least-squares approach to estimation of 
the ’s in the fixed-x model (3.1) or (3.4). No distributional 
assumptions on y are required to obtain the estimators. 

For the parameters k ,,, 10  , we seek estimators that minimize the 
sum of squares of deviations of the n observed y’s from their predicted 
values ŷ . By extension of (2.2), we seek k ˆ,,ˆ,ˆ

10   that minimize 

 

   5.3ˆˆˆˆ

ˆˆ

1

2

22110

1

2

1

2











n

i ikkiii

n

i ii

n

i i

xxxy

yy






 

Note that the predicted value ikkii xxy  ˆˆˆˆ 110    estimates  iyE , 
not iy . A better notation would be  iyE ˆ , but iŷ  is commonly used. 

To obtain the least-squares estimators, it is not necessary that the 
prediction equation ikkiii xxxy  ˆˆˆˆˆ 22110    be based on  iyE . 
It is only necessary to postulate an empirical model that is linear in the 
̂ ’s, and the least-squares method will find the “best” fit to this model. 
This was illustrated in Figure 2.2. 

To find the values of k ˆ,,ˆ,ˆ
10   that minimize (3.5), we could 

differentiate 

n

i i1

2̂  with respect to each ĵ  and set the results equal to 

zero to yield k +1 equations that can be solved simultaneously for the 

ĵ ’s. However, the procedure can be carried out in more compact form 

with matrix notation. The result is given in the following theorem. 

Theorem 3.3a: If εXβy  , where X is  1 kn  of rank k +1 < n, then 

the value of   k ˆ,,ˆ,ˆβ̂ 10   that minimizes (3.5) is 

   6.3yXXXβ̂ 1    

Proof. We can write (3.5) as 

       7.3β̂Xyβ̂Xyβ̂xε̂ε̂
1

2



  

n

i iiy  
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Where  ikii xx ,,,1x 1   is the ith row of X. When the product 

   β̂Xyβ̂Xy 


  in (3.7) is expanded as two of the resulting four terms 
can be combined to yield 

β̂XXβ̂β̂Xy2yyε̂ε̂   

We can find the value of β̂  that minimizes ε̂ε̂  by differentiating ε̂ε̂  

with respect to β̂  and setting the result equal to zero: 

0β̂XX2yX20
β̂

ε̂ε̂




  

This gives the normal equations 

 8.3yXβ̂XX   

If X is full-rank, XX  is non-singular, and the solution to (3.8) is given 
by (3.6). 

Since β̂  in (3.6) minimizes the sum of squares in (3.5), β̂  is called the 
least squares estimator. Note that each ĵ  in β̂  is a linear function of y; 

that is, yaˆ
jj  , where ja  is the jth row of   XXX 1   . This usage of the 

word linear in linear estimator is different from that in linear model, 
which indicates that the model is linear in the  ’s. 

We now show that   yXXXβ̂ 1    minimizes ε̂ε̂ . Let b be an alternative 
estimator that may do better than β̂  so that ε̂ε̂  is 

   bb XyXyε̂ε̂   

Now adding and subtracting β̂X , we obtain 

     9.3Xβ̂Xβ̂XyXβ̂Xβ̂Xyε̂ε̂ bb 


  

             10.3β̂XXyXβ̂2β̂XXβ̂β̂Xyβ̂Xy 








 bbb  

The third term on the right side of (3.10) vanishes because of the 
normal equations β̂XXyX   in (3.8). The second term is a positive 
definite quadratic form (assuming that X is full-rank; and ε̂ε̂  is 
therefore minimized when β̂b . 
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To examine the structure of XX  and yX , the    11  kk  matrix XX  
can be obtained as products of columns of X; similarly, yX contains 
products of columns of X and y: 
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If   yXXXβ̂ 1    as in (3.6), then 

 11.3ŷyβ̂Xyε̂   

Is the vector of residuals, 111 ˆˆ yy  , 222 ˆˆ yy  ,…, nnn yy ˆˆ  . The residual 
vector ε̂  estimates ε  in the model εXβy   and can be used to check 
the validity of the model and attendant assumptions; see Chapter 5. 

Example 3.3.1a: We use the data in Table 3.1 to illustrate computation 
of β̂  using (3.6). 


















1315911107895762

886664442220

111111111111

X  

 1411128710867232y   
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1004536102

53639552

1025212

XX , 
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482

90

yX ,  

 




















 

08360.011120.022871.0

11120.016207.024290.0

22871.024290.097476.0

XX 1  

 

















 

2855.1

0118.3

3754.5

yXXXβ̂ 1  

Applications using 
MATLAB 

Example 3.3.1a [The program name ta5.m] 

clc   
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);X=[ones(size(x1)) x1 x2]; 
XTX=X'*X,InvXTX=inv(X'*X),XTy=X'*y  
beta=X\y 

Ans. 

XTX = 

          12          52         102 

          52         296         536 

         102         536        1004 

InvXTX = 

      0.97476       0.2429     -0.22871 
       0.2429      0.16207      -0.1112 
     -0.22871      -0.1112     0.083596 

XTy =         beta = 

    90                  5.3754 
   482                 3.0118                        
   872                -1.2855 
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Example 7.3.1b: Simple linear regression from Chapter 2 can also be 
expressed in matrix terms: 
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Then 0̂  and 1̂  can be obtained using (3.6),   yXXXβ̂ 1   : 
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The estimators 0̂  and 1̂  in (3.11) are the same as those in (2.5) and 
(2.6). 

3.3.2: Properties of the Least-Squares Estimator β̂  

The least-squares estimator   yXXXβ̂ 1   in Theorem 3.3a was 
obtained without using the assumptions   Xβy E  and   IyCov 2  
given in Section 3.2. We merely postulated a model  Xβy  as in 
(3.4) and fitted it. If   Xβy E , the model  Xβy  could still be fitted 
to the data, in which case, β̂  may have poor properties. If   IyCov 2 , 
there may be additional adverse effects on the estimator β̂  . However, 
if   Xβy E  and   IyCov 2  hold, β̂  has some good properties, as 
noted in the four theorems in this section. Note that β̂  is a random 
vector (from sample to sample). We discuss its mean vector and 
covariance matrix in this section (with no distributional assumptions 
on y) and its distribution (assuming that the y variables are normal) in 
Section 3.6.3. In the following theorems, we assume that X is fixed 
(remains constant in repeated sampling) and full rank. 
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Theorem 3.3b: If   Xβy E , then β̂  is an unbiased estimator for β . 

Proof 

    y]XXX[β̂ 1  EE  

   yXXX 1 E   

  XβXXX 1    

 13.3β  

Theorem 3.3c: If   ICov 2y  , the covariance matrix for β̂  is given by 
  12 XX  . 

Proof 

    y]XXX[β̂ 1  CovCov  

      ]XXX[yXXX 11   Cov  

      121 XXXXXX   I  

    112 XXXXXX     

   14.3XX 12    

Example 3.3.2a: Using the matrix   1XX   for simple linear regression 
given in example 3.3.1, we obtain 
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We found  0̂Var  and  1̂Var  in Section 2.2 but did not obtain  10
ˆ,ˆ Cov . 

Note that if 0x , then  10
ˆ,ˆ Cov  is negative and the estimated slope 

and intercept are negatively correlated. In this case, if the estimate of 
the slope increases from one sample to another, the estimate of the 
intercept tends to decrease (assuming the x’s stay the same). 

Example 3.3.2b: For the data in Table 3.1,   1XX   is as given in 
Example 3.3.1. Thus,  β̂Cov  is given by 

   




















 

084.0111.0229.0

111.0162.0243.0

229.0243.0975.0

XXβ̂ 212 Cov  

The negative value of   2
21 111.0ˆ,ˆ  Cov  indicates that in repeated 

sampling (using the same 12 values of 1x  and 2x ), 1̂  and 2̂  would 
tend to move in opposite directions; that is, an increase in one would 
be accompanied by a decrease in the other. 

In addition to   ββ̂ E  and     12 XXβ̂  Cov , a third important property 
of β̂  is that under the standard assumptions, the variance of each ĵ  is 

minimum (see the following theorem). 

Applications using 
MATLAB 

Example 3.3.2b [The program name ta6.m]  

clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);X=[ones(size(x1)) x1 x2]; 
XTX=X'*X;InvXTX=inv(X'*X),XTy=X'*y;beta=X\y; 
Yhat=X*beta;e=y-Yhat; 
MSE=e'*e/(n-2) 
Covbeta=MSE*InvXTX 



 111

Ans.  

InvXTX = 

               0.97476       0.2429     -0.22871 
               0.2429      0.16207      -0.1112 
              -0.22871      -0.1112     0.083596 

MSE = 

              2.5459 

Covbeta =  

               2.4816       0.6184     -0.58226 
               0.6184       0.4126      -0.2831 
             -0.58226      -0.2831      0.21283 

 
Theorem 7.3d: (Gauss–Markov Theorem). If   Xβy E  and   IyCov 2 , 
the least-squares estimators ĵ , j = 0, 1, . . . , k, have minimum 

variance among all linear unbiased estimators. 

Proof. We consider a linear estimator Ay of β  and seek the matrix A 
for which Ay is a minimum variance unbiased estimator of β . In order 
for Ay to be an unbiased estimator of β , we must have E(Ay) =β . 
Using the assumption   Xβy E , this can be expressed as 

    βAXβyAAy  EE  

which gives the unbiasedness condition 

IAX   

Since the relationship βAXβ   must hold for any possible value of β . 

The covariance matrix for the estimator Ay is given by 

    AAAIAAy 22  Cov  

The variances of the ĵ ’s are on the diagonal of AA2  , and we 

therefore need to choose A (subject to IAX  ) so that the diagonal 
elements of AA   are minimized. To relate Ay to   yXXXβ̂ 1   , we add 
and subtract   XXX 1    to obtain 

        ]XXXXXX][AXXXXXX[AAA 1111    
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Expanding this in terms of   XXXA 1    and   XXX 1   , we obtain four 
terms, two of which vanish because of the restriction IAX . The result 
is 

       17.3XX]XXX][AXXX[AAA 111   

The matrix     ]XXX][AXXX[A 11    on the right side of (3.17) is 
positive semi-definite, and the diagonal elements are greater than or 
equal to zero. These diagonal elements can be made equal to zero by 
choosing   XXXA 1   . (This value of A also satisfies the unbiasedness 
condition IAX ) The resulting minimum variance estimator of β  is 

  yXXXyA 1    

which is equal to the least–squares estimator β̂. 

The Gauss–Markov theorem is sometimes stated as follows. If 
  Xβy E  and   ICov 2y  , the least-squares estimators  k ˆ,,ˆ,ˆ

10   
are best linear unbiased estimators (BLUE). In this expression, best 
means minimum variance and linear indicates that the estimators are 
linear functions of y. 

The remarkable feature of the Gauss–Markov theorem is its 
distributional generality. The result holds for any distribution of y; 
normality is not required. The only assumptions used in the proof are 
  Xβy E  and   ICov 2y  . If these assumptions do not hold, β̂ may be 

biased or each ĵ  may have a larger variance than that of some other 

estimator. 

The Gauss–Markov theorem is easily extended to a linear combination 
of the β̂’s, as follows. 

Corollary 1: If   Xβy E  and   ICov 2y  , the best linear unbiased 

estimator of βa  is β̂a , where β̂ is the least–squares estimator 
  yXXXβ̂ 1   . 

Proof. See Problem 3.7. 

Note that Theorem 3.3d is concerned with the form of the estimator β̂ 
for a given X matrix. Once X is chosen, the variances of the ĵ ’s are 

minimized by   yXXXβ̂ 1   . However, in Theorem 3.3c, we have 
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    12 XXβ̂  Cov  and therefore  jVar ̂  and  jiCov  ˆ,ˆ  depend on the 

values of the jx ’s. Thus the configuration of XX  is important in 

estimation of the j ’s (this was illustrated in Problem 2.4). 

In both estimation and testing, there are advantages to choosing the x ’s 
(or the centred x ’s) to be orthogonal so that XX  is diagonal. These 
advantages include minimizing the variances of the ĵ ’s and 

maximizing the power of tests about the j ’s (Chapter 4). For 

clarification, we note that orthogonality is necessary but not sufficient 
for minimizing variances and maximizing power. For example, if there 
are two x ’s, with values to be selected in a rectangular space, the 
points could be evenly placed on a grid, which would be an orthogonal 
pattern. However, the optimal orthogonal pattern would be to place 
one-fourth of the points at each corner of the rectangle. 

A fourth property of β̂ is as follows. The predicted value 

kk xxxy  ˆˆˆˆˆ 22110    xβ̂ is invariant to simple linear changes of 

scale on the x ’s, where   kxxx ,,,,1x 21  . Let the rescaled variables be 
denoted by jjj xcz  ,  j = 1, 2, . . . , k, where the jc terms are constants. 

Thus x is transformed to   kk xcxc ,,,1z 11  . The following theorem 
shows that ŷ  based on z is the same as ŷ  based on x.  

Theorem 3.3e: If   kxxx ,,,,1x 21   and   kk xcxc ,,,1z 11  , then 

zβ̂xβ̂ŷ z , where zβ̂  is the least squares estimator from the regression 
of y on z. 

Proof: We can rewrite z as z = Dx, where D = diag  kk xcxc ,,,1 11  . 
Then, the X matrix is transformed to Z = XD. We substitute Z = XD in 
the least-squares estimator   yβ̂ 1 ZZZZ    to obtain 

        yXD]XDXD[yβ̂ 11   ZZZZ  

  yXXXD 11    

 18.3β̂D 1  

Where β̂  is the usual estimator for y regressed on the x’s. Then 
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  xβ̂Dxβ̂Dzβ̂ 1 


 
z  

In the following corollary to Theorem 3.3e, the invariance of ŷ  is 
extended to any full-rank linear transformation of the x variables. 

Corollary 1: The predicted value ŷ  is invariant to a full-rank linear 
transformation on the x’s. 

Proof: We can express a full-rank linear transformation of the x’s as 

     11111
1

1 KXj,KX0j0,Xj
K0

01
Xj,XKZ 







 
  

Where 1K  is non-singular and 
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We partition X and K in this way so as to transform only the x’s in 1X , 

leaving the first column of X unaffected. Now Zβ̂  becomes 

   20.3β̂Kyβ̂ 11   ZZZZ  

And we have 

 21.3xβ̂zβ̂ŷ  z  

Where xKz   

In addition to ŷ , the sample variance 2S (Section 3.3.3) is also invariant 
to changes of scale on the x variable (see Problem 3.10). The following 
are invariant to changes of scale on y as well as on the x’s (but not to a 
joint linear transformation on y and the x’s): t statistics (Section 4.5), F 
statistics (Chapter 4), and 2R  (Sections 3.7 and 6.3). 

3.3.3: An Estimator for 2  

The method of least squares does not yield a function of the y and x 
values in the sample that we can minimize to obtain an estimator of 

2 . However, we can devise an unbiased estimator for 2  based on the 
least-squares estimator β̂ . By assumption 2 following (3.3), 2  is the 
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same for each iy , i = 1, 2, . . . , n.  2  is defined by   22 ][ ii yEyE  , 
and by assumption 1, we obtain 

  βx22110 iikkiii xxxyE     

Where ix  is the ith row of X. Thus 2  becomes 

22 β]x[ iiyE   

We estimate 2  by a corresponding average from the sample 

   22.3β̂x
1

1

1

22 






n

i
iiy

kn
S  

Where n is the sample size and k is the number of x’s. Note that, by the 
corollary to Theorem 3.3d, β̂x i  is the BLUE of βx i . 

Using (3.7), we can write (3.22) as 

     23.3β̂Xyβ̂Xy
1

12 






kn

S  

 24.3
11

yXβ̂yy2








kn

SSE

kn
S  

Where     yXβ̂yyβ̂Xyβ̂Xy 


SSE . With the denominator n-k-1, 
2S  is an unbiased estimator of 2 , as shown below. 

Theorem 3.3f: If 2S  is defined by (3.22), (3.23), or (3.24) and if 
  Xβy E  and   ICov 2y  , then 

   25.322 SE  

Proof: Using (3.24) and (3.6), we write SSE as a quadratic form: 

  yXXXXyyyyXβ̂yy 1  SSE  

   26.3y]XXXX[Iy 1    

We have 

         y]XXXX[IyI]XXXX[I 121 }{ EEtrSSEE     

    Xβ]XXXX[IXβXXXXI 112 }{  tr  

     XβXXXXXβXβXβXXXX 112 }{  trn  
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   XβXβXβXβXXXX }{ 12  trn  

Since XX  is    11  kk , this becomes 

     1I 2
1

2 }{   kntrnSSEE k   

Corollary 1: An unbiased estimator of  β̂Cov  in (3.14) is given by 

     27.3XXβ̂ˆ 12  SovC  

Note the correspondence between  1 kn  and yXβ̂yy  ; there are n 

terms in yy  and k+1 terms in β̂XXβ̂yXβ̂   [see (3.8)]. A corresponding 
property of the sample is that each additional x (and β̂ ) in the model 
reduces SSE (see Problem 3.13). 

Since SSE is a quadratic function of y, it is not a best linear unbiased 
estimator. The optimality property of 2S  is given in the following 
theorem. 

Theorem 3.3g: If   0ε E ,   2ε Cov , and   44 3ε iE  for the linear 
model εXβy  y, then 2S  in (3.23) or (3.24) is the best (minimum 
variance) quadratic unbiased estimator of 2 . 

Proof: See Graybill (1954), Graybill and Wortham (1956), or Wang 
and Chow (1994, pp. 161–163). 

Example 3.3.3: For the data in Table 3.1, we have 

yXβ̂yy SSE  then  
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2855.1,0118.3,3754.5840SSE  

459.25541.814840 SSE  and 829.2
1212

459.25

1
2 







kn

SSE
S  

Applications using MATLAB Example 3.3.3[The program name ta7.m] 
clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);X=[ones(size(x1)) x1 x2];k=2; 
XTX=X'*X;InvXTX=inv(X'*X);XTy=X'*y;beta=X\y; 
SSE=y'*y-beta'*X'*y,Ssquare=SSE/(n-k-1) 
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Ans.  

SSE = 25.459        Ssquare = 2.8288 

 
3.4: Geometry of Least Squares 

In Sections 3.1–3.3 we presented the multiple linear regression model 
as the matrix equation εXβy   in (3.4). We defined the principle of 
least-squares estimation in terms of deviations from the model [see 
(3.7)], and then used matrix calculus and matrix algebra to derive the 
estimators of β  in (3.6) and of 2 in (3.23) and (3.24). We now present 
an alternate but equivalent derivation of these estimators based 
completely on geometric ideas. 

It is important to clarify first what the geometric approach to least 
squares is not. In two dimensions, we illustrated the principle of least 
squares by creating a two dimensional scatter plot (Fig. 2.1) of the n 
points      nn yxyxyx ,,,,,, 2211  . We then visualized the least-squares 
regression line as the best-fitting straight line to the data. This 
approach can be generalized to present the least-squares estimate in 
multiple linear regression on the basis of the best-fitting hyperplane in 
(k+1)-dimensional space to the n points  111211 ,,,, yxxx k ,  222221 ,,,, yxxx k , 
…,  nnknn yxxx ,,,, 21  . Although this approach is somewhat useful in 
visualizing multiple linear regression, the geometric approach to least-
squares estimation in multiple linear regression does not involve this 
high-dimensional generalization. 

The geometric approach to be discussed below is appealing because of 
its mathematical elegance. For example, the estimator is derived 
without the use of matrix calculus. Also, the geometric approach 
provides deeper insight into statistical inference. Several advanced 
statistical methods including kernel smoothing (Eubank and Eubank 
1999), Fourier analysis (Bloomfield 2000), and wavelet analysis 
(Ogden 1997) can be understood as generalizations of this geometric 
approach. The geometric approach to linear models was first proposed 
by Fisher (Mahalanobis 1964).Christensen (1996) and Jammalamadaka 
and Sengupta (2003) discuss the linear statistical model almost 
completely from the geometric perspective. 
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3.4.1: Parameter Space, Data Space, and Prediction Space 

The geometric approach to least squares begins with two high- 
dimensional spaces, a (k+1)-dimensional space and an n-dimensional 
space. The unknown parameter vector β  can be viewed as a single 
point in (k+1)-dimensional space, with axes corresponding to the k +1 
regression coefficients k ,,, 10  . Hence we call this space the 
parameter space (Fig. 3.3). Similarly, the data vector y can be viewed 
as a single point in n-dimensional space with axes corresponding to the 
n observations. We call this space the data space. 

 
Figure 3.3: Parameter space, data space, and prediction space with 

representative elements. 

The X matrix of the multiple regression model (3.4) can be written as a 
partitioned matrix in terms of its k+1 columns as 

 k321 x,x,x,xj,X   

The columns of X, including j, are all n-dimensional vectors and are 
therefore points in the data space. Note that because we assumed that 
X is of rank k +1, these vectors are linearly independent. The set of all 
possible linear combinations of the columns of X constitutes a subset 
of the data space. Elements of this subset can be written as 

 28.3xxxjXb 22110 kkbbbb    

where b is any k +1 vector, that is, any vector in the parameter space. 
This subset actually has the status of a subspace because it is closed 
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under addition and scalar multiplication (Harville 1997, pp. 28–29). 
This subset is said to be the subspace generated or spanned by the 
columns of X, and we will call this subspace the prediction space. The 
columns of X constitute a basis set for the prediction space. 

3.4.2: Geometric Interpretation of the Multiple Linear Regression 
Model 

The multiple linear regression model (3.4) states that y is equal to a 
vector in the prediction space,   Xβy E , plus a vector of random errors, 
ε  (Fig. 3.4). The problem is that neither β  nor ε  is known. However, 
the data vector y, which is not in the prediction space, is known. And it 
is known that E(y) is in the prediction space. 

 
Figure 3.4: Geometric relationships of vectors associated with the 

multiple linear regression model. 

Multiple linear regression can be understood geometrically as the 
process of finding a sensible estimate of E(y) in the prediction space 
and then determining the vector in the parameter space that is 
associated with this estimate (Fig. 3.4). The estimate of E(y) is denoted 
as ŷ , and the associated vector in the parameter space is denoted as β̂ . 

A reasonable geometric idea is to estimate E(y) using the point in the 
prediction space that is closest to y. It turns out that ŷ , the closest point 
in the prediction space to y, can be found by noting that the difference 
vector ŷyε̂   must be orthogonal (perpendicular) to the prediction 
space (Harville 1997, p. 170). Furthermore, because the prediction 
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space is spanned by the columns of X, the point ŷ  must be such that ε̂  
is orthogonal to the columns of X. We therefore seek ŷ  such that 

0ε̂X   

or 

     29.30β̂XXyXβ̂XyXŷyX  

which implies that 

yXβ̂XX   

Thus, using purely geometric ideas, we obtain the normal equations 
(3.8) and consequently the usual least-squares estimator β̂  in (3.6). We 
can then calculate ŷ  as   HyyXXXXβ̂X 1   . Also,  yHIβ̂Xyε̂   
can be taken as an estimate of ε . Since ε̂  is a vector in (n-k-1)-
dimensional space, it seems reasonable to estimate 2  as the squared 
length of ε̂  divided by n-k-1. In other words, a sensible estimator of 2  
is    1yHIy2  knS , which is equal to (3.25). 

3.5: The Model in Centered Form 

The model in (3.3) for each iy  can be written in terms of centered x 
variables as 

iikkiii xxxy   22110  

       30.3222111 ikikkiii xxxxxxy     

ni ,,2,1   where 

 31.322110 kk xxx     

And nxx
n

i ijj 


1
, kj ,,2,1  . The centered form of the model is useful 

in expressing certain hypothesis tests (Section 4.1), in a search for 
influential observations (Section 5.2), and in providing other insights. 

In matrix form, the centered model (3.30) for nyyy ,,, 21   becomes 

   32.3ε
β

Xj,y
1












c  

Where   k ,,,β 211   
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 33.3XJ
1

IX

2211

2222121

1212111

1






























 

knknn

kk

kk

c

xxxxxx

xxxxxx

xxxxxx

n









  

and 1X  is as given in (3.19). The matrix  J1I n  is sometimes called 
the centering matrix. 

As in (3.8), the normal equations for the model in (3.32) are 

       34.3yXj,
β̂

ˆ
Xj,Xj,

1









ccc


 

The product    cc Xj,Xj,   on the left side of (3.34) becomes 

      






















c

c
ccc XXjX

Xjjj
Xj,

X

j
Xj,Xj,

ccc

 

 35.3
XX0

0

c












c

n
  

Where 0Xj  c  because the columns of cX  sum to zero (Problem 3.16). 
The right side of (3.34) can be written as 

  





















yX

y
X

j
yXj,

cc

yn
c  

The least-squares estimators are then given by 

      































yXXX0

0
yXj,]Xj,Xj,[

β̂

ˆ

c

1

c

1

1

ynn

c
ccc


 

    





























  yXXXyXXX0

01

c
1

cc
1

c cc

yynn
 

Or 

 36.3ˆ y  

   37.3yXXXβ̂ c
1

c1  
c  

These estimators are the same as the usual least-squares estimators 
  yXXXβ̂ c

1
c1  

c  in (3.6), with the adjustment 
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 38.3xβ̂ˆˆˆˆˆ
122110  yxxx kk   

Obtained from an estimator of   in (3.31) (see Problem 3.17). 

When we express ŷ  in centered form 

     kkk xxxxxx   ˆˆˆˆŷ 222111  

It is clear that the fitted regression plane passes through the point 
 yxxx k ,,,, 21  . 

Adapting the expression for SSE (3.24) to the centered model with 
centered ŷ ’s, we obtain 

   39.3yXβ̂
1 1

2
c

n

i i yySSE   
 

which turns out to be equal to yXβ̂yy SSE  (see Problem 3.19). 

We can use (3.36)–(3.38) to express 1β̂  and 0̂  in terms of sample 
variances and covariances, which will be useful in comparing these 
estimators with those for the random-x case in Chapter 6. We first 
define a sample covariance matrix for the x variables and a vector of 
sample covariances between y and the x’s. 

 40.3,
2

1

2
21

2
2
221

112
2

1













































yk

y

y

yx

kkk

k

k

xx

S

S

S

S

SSS

SSS

SSS

S










 

where, 2
iS , ijS , and yiS  are analogous to 2S  and xyS ; for example 

 
 41.3

1
1

2
222

2 


  

n

xx
S

n

i i 

  
 42.3

1
1 2211

12 


  

n

xxxx
S

n

i ii

  

  
 43.3

1
1 22

2 


  

n

xxyy
S

n

i ii

y 

with nxx
n

i i


1 22 . However, since the x’s are fixed, these sample 

variances and covariances do not estimate population variances and 
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covariances. If the x’s were random variables, as in Chapter 6, the  2
iS , 

ijS , and yiS  values would estimate population parameters. 

To express 1β̂  and 0̂   in terms of xxS  and yxS , we first write xxS  and 

yxS  in terms of the centered matrix cX : 

 44.3
1

XXc





n

S c
xx  

 45.3
1

yX c





n

S yx  

Note that yXc  in (3.45) contains terms of the form   


n

i ijij yxx
1

 rather 

than    


n

i ijij yyxx
1

 as in (3.43). It can readily be shown that 

     


n

i ijij

n

i ijij yxxyyxx
11

 (see Problem 6.2). 

From (3.37), (3.44), and (3.45), we have 

    46.3
1

yX

1

XX

1

yX
XX1β̂ 1c

1

cc1
c1 yxxx

c
c SS

nnn
n 


 



















 

and from (3.38) and (3.46), we obtain 

 47.3xxβ̂ˆˆ 1
10

 xxyx SSy  

Example 3.5: For the data in Table 3.1, we calculate 1β̂  and 0̂  using 
(3.46) and (3.47). 




































2855.1

0118.3

7273.9

3636.8

4545.125455.8

5455.84242.6

β̂
1

1
1 yxxx SS

 

 

3754.51246.250.7

5000.8

3333.4
2855.1,0118.350.7

xˆ 1
0













 
xxyx SSy

 

These values are the same as those obtained in Example 3.3.1a. 
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Applications using MATLAB Example 3.5[The program name ta8.m] 
clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1); 
X=[x1 x2];k=2; 
My=mean(y),Mx=mean(X)' 
Sxx=[cov(x1,x2)], 
Syx1=cov(y,x1); 
Syx2=cov(y,x2); 
Syx=[Syx1(1,2);Syx2(1,2)] 
beta1=inv(Sxx)*Syx,  
beta0=My-Syx'*inv(Sxx)*Mx 

Ans. 

My = Mx = Sxx = Syx = 

        7.5          4.3333 

         8.5 

6.4242       8.5455 

8.5455       12.455 

8.3636 

 9.7273 

beta1 = beta0 = 

            3.0118 

           -1.2855 

           5.3754 

 
3.6: Normal Model 

3.6.1 Assumptions 

Thus far we have made no normality assumptions about the random 
variables nyyy ,,, 21  . To the assumptions in Section 3.2, we now add that 

 Iβ,Xy 2nNis  or  I0,ε 2nNis  

Under normality, 0ij  implies that the y (or ε ) variables are 

independent, as well as uncorrelated. 
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3.6.2: Maximum Likelihood Estimators for β  and 2  

With the normality assumption, we can obtain maximum likelihood 
estimators. The likelihood function is the joint density of the y’s, which 
we denote by  2β,L . We seek values of the unknown β  and 2  that 
maximize  2β,L  for the given y and x values in the sample.  

In the case of the normal density function, it is possible to find 
maximum likelihood estimators β̂  and 2̂  by differentiation. Because 
the normal density involves a product and an exponential, it is simpler 
to work with  2β,Ln L , which achieves its maximum for the same 
values of β  and 2  as does  2β,L .  

The maximum likelihood estimators for β  and 2  are given in the 
following theorem. 

Theorem 3.6a: If y is  Iβ,X 2nN , where X is  1 kn  of rank nk 1 , 
the maximum likelihood estimators of β  and 2 are 

   48.3yXXXβ̂ 1    

     49.3β̂Xyβ̂Xy
1

ˆ 2 



n

  

Proof: We sketch the proof. For the remaining steps, see Problem 
3.21. The likelihood function (joint density of nyyy ,,, 21  ):  

   
 

      2β̂Xyβ̂Xy
2122

22
12

I2

1
β,y;β, 


 


 efL

n
 

 
     50.3

2

1 22β̂Xyβ̂Xy
22




 

 en  

[Since the iy ’s are independent,  2β,L  can also be obtained as 

  
n

i iiyf
1

2β,x;  .] Then  2β,Ln L  becomes 

           51.3β̂Xyβ̂Xy
2

1
Ln

2
2Ln

2
β,Ln

2
22 





 nn

L  

Taking the partial derivatives of  2β,Ln L  with respect to β  and 2  
and setting the results equal to zero will produce (3.48) and (3.49). To 
verify that β̂  maximizes (3.50) or (3.51), see (3.10). 
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The maximum likelihood estimator β̂  in (3.48) is the same as the least-

squares estimator β̂  in Theorem 3.3a. The estimator 2̂  in (3.49) is 
biased since the denominator is n rather than n- k -1.We often use the 
unbiased estimator 2S  given in (3.23) or (3.24). 

3.6.3: Properties of β̂  and 2̂  

We now consider some properties of β̂  and 2̂ (or 2S ) under the normal 

model. The distributions of β̂  and 2̂  are given in the following 
theorem. 

Theorem 3.6b: Suppose that y is  Iβ,X 2nN , where X is   1 kn  of 

rank nk 1 , and   k ,,,β 10  . Then the maximum likelihood 

estimators β̂  and 2̂ given in Theorem 3.6a have the following 
distributional properties: 

(i) β̂  is   12
1 XXβ, 
 kN . 

(ii) 22ˆ n is  
2

1kn , or equivalently,   221 Skn  is  
2

1kn . 

(iii) β̂  and 2̂  (or 2S ) are independent. 

Proof: 

(i) Since   yXXXβ̂ 1    is a linear function of y of the form Ayβ̂  , 

where   XXXA 1    is a constant matrix, β̂  is   12
1 XXβ, 
 kN . 

(ii) If y is  I, 2pN , then 2Ayy  is  
2

2A, 2
 r  if and only if A is 

idempotent of rank r. 

(iii) If y is  I, 2pN , then By and Ayy  are independent if and only if 

BA = 0 

Another property of β̂  and 2̂  under normality is that they are 
sufficient statistics. Intuitively, a statistic is sufficient for a parameter if 
the statistic summarizes all the information in the sample about the 
parameter. Sufficiency of β̂  and 2̂ can be established by the Neyman 
factorization theorem [see Hogg and Craig (1995, p. 318) or Graybill 
(1976, pp. 69–70)], which states β̂  and 2̂ are jointly sufficient for β  

and 2 if the density  2β,y; f  can be factored as      y.β,,ˆ,β̂β,y; 222 hgf   , 
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where h(y) does not depend on β  and 2 . The following theorem 

shows that β̂  and 2̂  satisfy this criterion. 

Theorem 3.6c: If y is  Iβ,X 2nN , then β̂  and 2̂ are jointly sufficient 
for β  and 2 . 

Proof: The density  2β,y; f  is given in (3.50). In the exponent, we 
add and subtract β̂X  to obtain 

       Xββ̂Xβ̂XyXββ̂Xβ̂XyXβyXβy 


  

       ][][ ββ̂Xβ̂Xyββ̂Xβ̂Xy    

Expanding this in terms of  β̂Xy  and  ββ̂X  , we obtain four terms, 

two of which vanish because of the normal equations yXβ̂XX  . The 
result is 

             52.3ββ̂XXββ̂β̂Xyβ̂XyXβyXβy 





  

   ββ̂XXββ̂ˆ 2 


 n  

We can now write the density (3.50) as 

 
 

22

22

2
2]ββ̂XXββ̂ˆ[

2

1
β,y;






















 





n

e
n

f  

which is of the form 

     y.β,,ˆ,β̂β,y; 222 hgf    

where h(y) = 1. Therefore, by the Neyman factorization theorem, β̂  
and 2̂  are jointly sufficient for β  and 2 . 

Note that β̂  and 2̂  are jointly sufficient for β  and 2 , not 
independently sufficient; that is,  2β,y; f  does not factor into the 

form        y.,ˆβ,β̂β,y; 22
21

2 hggf   . Also note that because 
 1ˆ 22  knnS  , the proof to Theorem 3.6c can be easily modified to 

show that β̂  and 2S are also jointly sufficient for β  and 2 . 
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Since  β̂  and 2S  are sufficient, no other estimators can improve on the 
information they extract from the sample to estimate β  and 2 . Thus, 

it is not surprising that  β̂  and 2S  are minimum variance unbiased 

estimators (each ĵ  in β̂  has minimum variance). This result is given 

in the following theorem. 

Theorem 3.6d: If y is  Iβ,X 2nN , then  β̂  and 2S  have minimum 
variance among all unbiased estimators. 

Proof: See Graybill (1976, p. 176) or Christensen (1996, pp. 25–27). 

In Theorem 3.3d, the elements of β̂  were shown to have minimum 
variance among all linear unbiased estimators. With the normality 
assumption added in Theorem 3.6d, the elements of β̂  have minimum 
variance among all unbiased estimators. Similarly, by Theorem 3.3g, 

2S  has minimum variance among all quadratic unbiased estimators. 
With the added normality assumption in Theorem 3.6d, 2S  has 
minimum variance among all unbiased estimators. 

The following corollary to Theorem 3.6d is analogous to Corollary 1 of 
Theorem 3.3d. 

Corollary 1: If y is  Iβ,X 2nN , then the minimum variance unbiased 

estimator of βa  is β̂a , where β̂  is the maximum likelihood estimator 
given in (3.48). 

3.7: 2R  In Fixed-x Regression 

In (3.39), we have   yXβ̂
1 1

2
c

n

i i yySSE   
. Thus the corrected total 

sum of squares   


n

i i yySST
1

2 can be partitioned as 

   53.3yXβ̂
1 1

2 SSEyy c

n

i i  
  

SSESSRSST  

where yXβ̂1 cSSR   is the regression sum of squares. From (3.37), we 

obtain 1β̂XXyX ccc  , and multiplying this by 1β̂  gives 111 β̂XXβ̂yXβ̂ ccc  . 

Then yXβ̂1 cSSR   can be written as 

     54.3β̂Xβ̂Xβ̂XXβ̂ 1111 ccccSSR
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In this form, it is clear that SSR is due to   k ,,,β 211  . 

The proportion of the total sum of squares due to regression is 

 
 55.3

β̂XXβ̂

1

2

112

SST

SSR

yy
R

n

i i

cc 






  

which is known as the coefficient of determination or the squared 
multiple correlation. The ratio in (3.55) is a measure of model fit and 
provides an indication of how well the x’s predict y. 

The partitioning in (3.53) can be rewritten as the identity 

     yXβ̂yyyXβ̂yy 22

1

2  
ynynyy

n

i i  

SSESSR   

which leads to an alternative expression for 2R : 

 56.3
yy

yXβ̂
yy

2

2
22

yn

yn
ynR




 

The positive square root R obtained from (3.55) or (3.56) is called the 
multiple correlation coefficient. If the x variables were random, R 
would estimate a population multiple correlation (see Section (6.4)). 

We list some properties of 2R  and R: 

1. The range of 2R  is 10 2  R 0. If all the ĵ ’s were zero, except for 

0̂ , 2R  would be 0. (This event has probability 0 for continuous 
data.) If all the y values fell on the fitted surface, that is, if ii yy ˆ , 

ni ,,2,1  , then 2R  would be 1. 

2. yyrR ˆ ; that is, the multiple correlation is equal to the simple 

correlation [see (2.18)] between the observed iy ’s and the fitted iŷ ’s. 

3. Adding a variable x to the model increases (cannot decrease) the 
value of 2R . 

4. If 021  k  , then 

 57.3
1

2




n

k
R  
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Note that the ĵ ’s will not be 0 when the j ’s are 0. 

5. 2R  Can not be partitioned into k components, each of which is 
uniquely attributable to an jx , unless the x’s are mutually 

orthogonal, that is,    0
1

 

n

i mimjij xxxx  for mj  . 

6. 2R  is invariant to full-rank linear transformations on the x’s and to a 
scale change on y (but not invariant to a joint linear transformation 
including y and the x’s). 

In properties 3 and 4 we see that if k is a relatively large fraction of n, 
it is possible to have a large value of 2R  that is not meaningful. In this 
case, x’s that do not contribute to predicting y may appear to do so in a 
particular example, and the estimated regression equation may not be a 
useful estimator of the population model. To correct for this tendency, 
an adjusted 2R , denoted by 2

aR , was proposed by Ezekiel (1930). To 
obtain 2

aR , we first subtract  1nk  in (3.57) from 2R  in order to correct 
for the bias when 021  k  . This correction, however, would 
make 2

aR  too small when the  ’s are large, so a further modification is 
made so that 12 aR  when 12 R  . Thus 2

aR  is defined as 

     58.3
1

1

1

1
1 2

2

2



















kn

kRn

kn

n
n

k
R

Ra  

Example 3.7: For the data in Table 3.1 in Example 3.2, we obtain 2R  
by (3.56) and 2

aR  by (3.58). The values of yXβ̂   and yy  are given in 
Example 3.3.3. 
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Applications using MATLAB Example 3.7[The program name ta9.m] 
clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);X=[ones(size(x1)) x1 x2];k=2; 
My=mean(y);beta=X\y; 
RS=(beta'*X'*y-n*My^2)/(y'*y-n*My^2) 
RSa=((n-1)*RS'-k)/(n-k-1) 

Ans.  

RS =                             RSa = 
        0.8457                           0.81141 

 

Using (3.44) and (3.46), we can express 2R  in (3.55) in terms of 
sample variances and covariances: 
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Figure 3.5: Multiple correlation R as cosine of  , the angle between 

jy y  and jŷ y  
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This form of 2R  will facilitate a comparison with 2R  for the random-x 
case in Section (6.4) [see (6.34)]. 

Geometrically, R is the cosine of the angle   between y  and ŷ  
corrected for their means. The mean of nyyy ˆ,,ˆ,ˆ 21    is y , the same as 
the mean of nyyy ,,, 21   (see Problem 3.30). Thus the centered forms of 
y  and ŷ  are jy y  and jŷ y . The angle between them is illustrated in 
Figure 3.5. (Note that jy  is in the estimation space since it is a multiple 
of the first column of X.) 

To show that cos  is equal to the square root of 2R  as given by (3.56), 
we use the cosine of the angle between two vectors: 

   
       

 60.3
jŷjŷjyjy

jŷjy
cos

]][[ yyyy

yy




  

To simplify (3.60), we use the identity      ŷyjŷjy  yy , which 
can also be seen geometrically in Figure 3.5. The vectors jŷ y  and 

ŷy  on the right side of this identity are orthogonal since jŷ y  is in 
the prediction space. Thus the numerator of (3.60) can be written as 

         jŷŷyjŷjŷjy ][ yyyy    

       jŷŷyjŷjŷ yyy   

    0jŷjŷ  yy  

Then (3.60) becomes 

   
   

 61.3
jyjy

jŷjŷ
cos

][ yy

yy




  

which is easily shown to be the square root of 2R  as given by (3.56). 
This is equivalent to property 2 following (3.56): yyrR ˆ . 

We can write (3.61) in the form 

 
  SST

SSR

yy

yy
R

n

i i

n

i i 











1

2

1

2

2
ˆ
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In which   


n

i i yySSR
1

2  is a sum of squares for the iŷ ’s. Then the 

partitioning SSESSRSST   below (3.53) can be written as 

      


n

i ii

n

i i

n

i i yyyyyy
1

2

1

2

1

2 ˆˆ  

which is analogous to (2.17) for simple linear regression. 

3.8: Generalized Least Squares:   Vy 2Cov  

We now consider models in which the y variables are correlated or 
have differing variances, so that   Iy 2Cov . In simple linear 
regression, larger values of ix  may lead to larger values of  iyVar . In 
either simple or multiple regression, if nyyy ,,, 21   occur at sequential 
points in time, they are typically correlated. For cases such as these, in 
which the assumption   Iy 2Cov is no longer appropriate, we use the 
model 

        62.3Vy,Xβyε,Xβy 2 CovE   

Where X is full-rank and V is a known positive definite matrix. The 
usage V2  permits estimation of 2  in some convenient contexts 
(see Examples 3.8.1 and 3.8.2). The nn  matrix V has n diagonal 
elements and nC2  elements above (or below) the diagonal. If V were 
unknown, these nC n 2  distinct elements could not be estimated from a 
sample of n observations. In certain applications, a simpler structure 
for V is assumed that permits estimation. Such structures are illustrated 
in Examples 3.8.1 and 3.8.2. 

3.8.1: Estimation of β  and 2  when   Vy 2Cov  

In the following theorem we give estimators of β  and 2 for the model 
in (3.62). 

Theorem 3.8a: Let εXβy  , let   Xβy E , and let     Vεy 2CovCov ,  
where X is a full-rank matrix and V is a known positive definite 
matrix. For this model, we obtain the following results: 

 (i) The best linear unbiased estimator (BLUE) of β is 

   63.3yVXXVXβ̂ 111    

 (ii) The covariance matrix for β̂  is 
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     64.3XVXβ̂
112  Cov  

 (iii) An unbiased estimator of 2  is 

     65.3
1

β̂XyVβ̂Xy 1
2










kn
S  

   66.3
1

yVXXVXXVVy ][ 11111
2











kn
S  

Where β̂  is as given by (3.63). 

Proof: We prove part (i). For parts (ii) and (iii), see Problems (3.32) 
and (3.33). 

Since V is positive definite, there exists an nn  nonsingular matrix P 
such that PPV  . Multiplying εXβy   by 1P , we obtain εPXβPyP 111   , 
for which     00PεPεP 111   EE   and 

      111 PεPεP CovCov  

            IPPPPPVP 2112121  


   

Thus the assumptions for Theorem 3.3d are satisfied for the model 
εPXβPyP 111   , and the least-squares estimator       yPXP1XPXPβ̂ 1111 ][  

  
is BLUE. This can be written as 

    yPPX1XPPXβ̂ 1111 ][    

    yPPX1XPPX 1111 ][    

    yPPX1XPPX 11 ][    

  yVXXVX 111    

Note that, since X is full-rank, XVX 1  is positive definite. The 
estimator   yVXXVXβ̂ 111    is usually called the generalized least-
squares estimator. The same estimator is obtained under a normality 
assumption. 

Theorem 3.8b: If y is  Iβ,X 2nN , where X is full-rank and V is a 
known positive definite matrix, where X is  1 kn  of rank k +1, then 
the maximum likelihood estimators for β  and 2  are 



 135

  yVXXVXβ̂ 111    

   β̂XyVβ̂Xy
1

ˆ 12 


 

n
  

Proof: The likelihood function is 

 
 

      2XβyVXβy

2122

2
12

V2

1
β,








 eL

n  

And   VV 22 n
  . Hence 

   
    21 2XβyVXβy

2122

2

V2

1
β, 


   eL

n  

The results can be obtained by differentiation of  2β,Ln L  with respect 
to β  and with respect to 2 . 

We illustrate an application of generalized least squares. 

Example 3.8.1: Consider the centered model in (3.32) 

  ε
β

Xj,y
1












c  

With covariance pattern 

   67.3VJ]I1[ 22    





















1

1

1

2














  

In which all variables have the same variance 2  and all pairs of 
variables have the same correlation  . Assume for certain repeated 
measures and intraclass correlation designs.  

By (3.63), we have 

  yVXXVX
β̂

ˆ
β̂ 111

1

 









  

For the centered model with  cXj,X  , the matrix XVX 1  becomes 
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 cXj,V
X

j
XVX 1

c

1 











  

















c

c

XVXjVX

XVjjVj
1

c
1

c

11

 

The inverse of the nn  matrix   JI1V    in (3.67) is given by 

   68.3JIV 1 ba   

Where   11a  and   ]11[1  nb . Using 1V   in (3.68), XVX 1  
becomes 

 69.3
XX0

0
XVX

c

1












 

ca

bn
  

Similarly 

 70.3
yX

yVX
c

1











 

a

ybn
  

We therefore have 

    





















yXXX
yVXXVX

β̂

ˆ

c
1

c

111

1 c

y  

which is the same as (3.36) and (3.37). Thus the usual least-squares 
estimators are BLUE for a covariance structure with equal variances 
and equal correlations. 

3.8.2: Misspecification of the Error Structure 

Suppose that the model is εX βy   with   Vy 2Cov , as in (3.62), 
and we mistakenly (or deliberately) use the ordinary least-squares 
estimator   yXXXβ̂ 1*    in (3.6), which we denote here by *β̂  to 

distinguish it from the BLUE estimator   yVXXVXβ̂ 111    in (3.63). 
Then the mean vector and covariance matrix for *β̂  are 

   71.3ββ̂* E 

       72.3XXVXXXXβ̂ 112*   Cov  

Thus the ordinary least-squares estimators are unbiased, but the 
covariance matrix differs from (3.64). Because of Theorem 3.8a(i), the 
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variances of the *ˆ
j ’s in (3.72) cannot be smaller than the variances in 

    112 XVXβ̂
 Cov  in (3.64). This is illustrated in the following 

example. 

Example 3.8.2: Suppose that we have a simple linear regression model 
iii xy   10 , where   ii xyVar 2  and   0, ji yyCov  for ji  . Thus 

 




















nx

x

x

Cov









00

00

00

Vy 2

1

22   

This is an example of weighted least squares, which typically refers to 
the case where V is diagonal with functions of the x’s on the diagonal. 
In this case 





















nx

x

x

1

1

1

X 2

1


 

And by (3.63), we have 

  yVXXVX
ˆ

ˆ
β̂ 111

1

0  












  

 

  
    
      73.3

11

1

111

111

2

11
























 





n

i ii

n

i i

n

i i

n

i i

n

i ii

n

i i

n

i i

n

i i
xynxy

ynxyx

nxx
  

The covariance matrix for β̂  is given by (3.64): 

    112 XVXβ̂
 Cov  

  
 

   74.3
11

1

1

2

11

2

























 





n

i i

n

i i

n

i i

n

i i
xn

nx

nxx


  

If we use the ordinary least-squares estimator   yXXXβ̂ 1*    as given 
in (2.5) and (2.6) or in (3.12) in Example 3.3.1b, then  *β̂Cov  is given 
by (3.72); that is, 
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      112* XXVXXXXβ̂   Cov  

1

1

2

1

1

1

3

1

2
1

2

1

1

1

2

1

12
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n
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n
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n
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n
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n
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n
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n
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n
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i i

xx
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xn
   

     
     75.3

2
3

11

2

11

32

1

3

1

2

1

2

1

3

1

2

1

2
2

1

2

1

2

11
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n
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n

i i

n
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n
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i i
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i i

n

i i

n

i i

n

i i

n

i i

n

i i

xxxnxnxxnxn

xxnxnxxxx
c

where   22

11

21 



   

n

i i

n

i i xxnc . The variance of the estimator 1̂  is 

given by the lower right diagonal element of (3.75): 

   
 

 76.3
2

ˆ
22

11

2

3

11

2

11

32

2*
1
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i i

n

i i

n

i i

n

i i

n

i i

n

i i

xxn

xxxnxn
Var   

And the variance of the estimator *
1̂  is given by the corresponding 

element of (3.74):  

   
 

 77.3
1

1
ˆ

2

11

12
1

nxx

x
Var

n

i i

n

i i

n

i i









  

Consider the following seven values of x: 1, 2, 3, 4, 5, 6, 7. Using 
(3.76), we obtain   2*

1 1429.0ˆ  Var , and from (3.77), we have 
  2

1 1099.0ˆ  Var . Thus for these values of x, the use of ordinary least 
squares yields a slope estimator with a larger variance, as expected. 

Further consequences of using a wrong model are discussed in the next 
section. 

3.9: Model Misspecification 

In Section 3.8.2, we discussed some consequences of misspecification 
of  yCov . We now consider consequences of misspecification of E(y). 
As a framework for discussion, let the model εXβy   be partitioned as 

  ε
β

β
XXεXβy

2

1
21 








  

 78.3εβXβXy 2211   
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If we leave out 22βX  when it should be included (i.e., when 0β2  ), we 
are underfitting. If we include 22βX  when it should be excluded (i.e., 
when 0β2  ), we are overfitting. We discuss the effect of underfitting 
or overfitting on the bias and the variance of the ĵ , ŷ , and 2S  values. 

We first consider estimation of 1β  when underfitting. We write the 
reduced model as 

 79.3εβXy **
11  

Using *
1β  to emphasize that these parameters (and their estimates *

1β̂ ) 

will be different from 1β  (and 1β̂ ) in the full model (3.78) (unless the 
x’s are orthogonal; see Corollary 1 to Theorem 3.9a and Theorem 
3.10). This was illustrated in Example 3.2. In the following theorem, 
we discuss the bias in the estimator *

1β̂  obtained from (3.79) and give 

the covariance matrix for *
1β̂ . 

Theorem 3.9a: If we fit the model **
11 εβXy   when the correct model 

is εβXβXy 2211   with   Iy 2Cov , then the mean vector and 

covariance matrix for the least-squares estimator   yXXXβ̂ 1
1

11
*
1    are 

as follows: 

       80.3XXXXAAβββ̂ 21
1

1121
*
1  WhereEi 

       81.3XXβ̂ 1
11

2*
1

 Covii  

Proof: 

          yXXXy]XXX[β̂ 1
1

111
1

11
*
1 EEEi    

    22111
1

11 βXβXXXX    

   221
1

111 βXXXXβ    

      y]XXX[β̂ 1
1

11
*
1  CovCovii  

       1
111

2
1

1
11 XXXIXXX     

  1
11

2 XX    
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Thus, when underfitting, *
1β̂  is biased by an amount that depends on the 

values of the x’s in both 1X  and 2X . The matrix   21
1

11 XXXXA    in 
(3.81) is called the alias matrix. 

Corollary 1: If OXX 21  , that is, if the columns of 1X  are orthogonal 

to the columns of 2X , then *
1β̂  is unbiased:   1

*
1 ββ̂ E . 

In the next three theorems, we discuss the effect of underfitting 
oroverfitting on ŷ , 2S , and the variances of the ĵ ’s. In some of the 

proofs we follow Hocking (1996, pp. 245–247). 

Let   kxxx 002010 ,,,1x   be a particular value of x for which we desire 
to estimate   βx 00 yE . If we partition 0x  into  0201 x,x   corresponding 
to the partitioning  21 X,XX   and  21 β,ββ  , then we can use either 

β̂xˆ 00 y  or *
10101 β̂xˆ y  to estimate βx 0 . In the following theorem, we 

consider the mean of 01ŷ . 

Theorem 3.9b: Let *
10101 β̂xˆ y , where   yXXXβ̂ 1

1
11

*
1   . Then, if 0β2  , 

we obtain 

     82.3Aββxβ̂x 2101
*
101 E  

   83.3βxβxAxβx 0201020   

Proof: See Problem 3.43. 

In Theorem 3.9b, we see that, when underfitting, *
101β̂x  is biased for 

estimating βx0 . [When overfitting, β̂x 0  is unbiased since   β̂x 0E  βx 0  

220110 βxβx  , which is equal to 110 βx  if 0β2  ]. 

In the next theorem, we compare the variances of *ˆ
j  and ĵ , where *ˆ

j  

is from *
1̂  and ĵ  is from 1̂ . We also compare the variances of *

101β̂x  

and β̂x 0 . 

Theorem 3.9c: Let   yXXXβ̂ 1   from the full model be partitioned as 













2

1

β̂

β̂
β̂ , and let   yXXXβ̂ 1

1
11

*
1    be the estimator from the reduced 

model. Then 
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      AABβ̂β̂ 12*
11  CovCovi , which is a positive definite matrix,      

where   21
1

11 XXXXA    and   AXXXXB 12
1

22   . Thus    *ˆˆ
jj VarVar     

     *
010 β̂xβ̂x jVarVarii   

Proof: 

(i) Using XX  partitioned to conform to  21 X,XX , we have 

   
1

2212

2111212

2

1

XXXX

XXXX
XX

β̂

β̂
β̂

























 CovCov  






















2221

1211
2

1

2212

21112

GG

GG

GG

GG
  

Where jiij XXG   and ijG  is the corresponding block of the 

partitioned inverse matrix   1XX  . Thus   112
1 Gβ̂ Cov . And 

1
1121

1
12

1
11

1
11

11 GGBGGGG   , where 12
1

112122 GGGGB  . By (3.81), 
    1

11
21

11
2*

1 GXXβ̂   Cov .Hence 

      1
11

112*
11 GGβ̂β̂  CovCov  

 1
11

1
1121

1
12

1
11

1
11

2 GGGBGGG     

AAB 12    

      0
1

0
2

0 xXXxβ̂x  Varii  

  

















02

01

2221

1211

0201
2

x

x

GG

GG
x,x  

 02
22

0201
21

0202
12

0101
11

01
2 xGxxGxxGxxGx    

Can be shown that 

        0xAxGxAxβ̂xβ̂x 0102
22

0102
2*

1010  VarVar  

because 22G  is positive definite. 

By Theorem 3.9c(i),  jVar ̂  in the full model is greater than  *ˆ
jVar   in 

the reduced model. Thus underfitting reduces the variance of the ĵ ’s 
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but introduces bias. On the other hand, overfitting increases the 
variance of the ĵ ’s. In Theorem 3.9c (ii),  0ŷVar  based on the full 

model is greater than  01ŷVar  based on the reduced model. Again, 
underfitting reduces the variance of the estimate of  0yE  but introduces 
bias. Overfitting increases the variance of the estimate of  0yE . 

We now consider 2S  for the full model and for the reduced model. For 
the full model εβXβXεXβy 2211  , the sample variance 2S  is 
given by (3.23) as  

   
1

β̂Xyβ̂Xy2








kn

S  

In Theorem 3.3f, we have   22 SE . The expected value of 2S  for the 
reduced model is given in the following theorem. 

Theorem 3.9d: If εXβy   is the correct model, then for the reduced 
model **

11 εβXy   (underfitting), where 1X  is  1 pn  with p < k, the 
variance estimator 

     84.3
1

β̂Xyβ̂Xy *
11

*
112

1 






pn

S  

has expected value 

     85.3
1

βX]XXXX[IXβ 221
1

1112222
1 






pn
SE   

Proof: We write the numerator of (3.84) as 

  yXXXXyyyyXβ̂yy 1
1

1111
*
11 

 SSE  

  y]XXXX[Iy 1
1

111    

Since   Xβy E  by assumption, we have, by Theorem 3.2a, 

      Xβ]XXXX[IXβI}]XXXX{[I 1
1

111
2

1
1

1111   trSSEE  

    221
1

11122
2 βX]XXXX[IXβ1  pn  

(see Problem 3.45). 

Since the quadratic form in (3.85) is positive semidefinite, 2S  is biased 
upward when underfitting (see Fig. 3.6). We can also examine (3.85) 
from the perspective of overfitting, in which case 0β 2   and 2S  is 
unbiased. 
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Figure 3.6: Straight-line fit to a curved pattern of points 

To summarize the results in this section, underfitting leads to biased 

ĵ ’s, biased ŷ ’s, and biased 2S . Overfitting increases the variances of 

the ĵ ’s and of the ŷ ’s. We are thus compelled to seek an appropriate 

balance between a biased model and one with large variances. This is 
the task of the model builder and serves as motivation for seeking an 
optimum subset of x’s. 

Example 3.9a: Suppose that the model **
1

*
0 iii xy    has been fitted 

when the true model is iiii xxy   2
210 . (This situation is similar 

to that illustrated in Figure 3.2.) In this case, *
1

*
0 , , and 2

1S  would be 
biased by an amount dependent on the choice of the ix ’s [see (3.80) 
and (3.86)]. The error term *

i  in the misspecified model 
**

1
*
0 iii xy     does not have a mean of 0: 

   iii xyEE *
1

*
0

*    

  ii xyE *
1

*
0    

iii xxx *
1

*
0

2
210    

  2
2

*
11

*
00 ii xx    

Example 3.9b: Suppose that the true model is iii xy   10  and we 
fit the model **

1 iii xy   , as illustrated in Figure 3.7. 



 144

 
Figure 3.7: No-intercept model fit to data from an intercept model 

For the model **
1 iii xy   , the least-squares estimator is 

 86.3ˆ

1

2

1*
1







n

i i

n

i ii

x

yx
  

(see Problem 3.46). Then, under the full model iii xy   10 , we have 
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yEx
x

E
1

1

2

*
1

1̂  

 
 




n

i iin
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Thus *
1̂  is biased by an amount that depends on 0  and the values of 

the x’s. 
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3.10: Orthogonalization 

In Section 3.9, we discussed estimation of *
1β in the model **

11 εβXy   
when the true model is εβXβXy 2211  . By Theorem 3.9a,  *

1β̂E  

  221
1

111 βXXXXβ   , so that estimation of 1β  is affected by the presence 

of 2X , unless OXX 21  , in which case,   1
*
1 ββ̂ E . In the following 

theorem, we show that if OXX 21  , the estimators of  *
1β and 1β  not 

only have the same expected value, but are exactly the same. 

Theorem 3.10: If OXX 21  , then the estimator of 1β  in the full model 
εβXβXy 2211   is the same as the estimator of *

1β  in the reduced 

model **
11 εβXy  . 

Proof: The least-squares estimator of *
1β  is   yXXXβ̂ 1

1
11

*
1   . For the 

estimator of 1β  in the full model, we partition   yXXXβ̂ 1    to obtain 
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1

1

2212

2111

2

1  

Using the notation in the proof of Theorem 3.9c, this becomes 






























 

yX

yX

GG

GG

β̂

β̂

2

1

1

2221

1211

2

1  






















yX

yX

GG

GG

2

1

2221

1211

 

We obtain 

  yXGyXGβ̂ 2
12

1
11

1   

  yXBGGyXGGBGGG 2
1

12
1

111
1

1121
1

12
1

11
1

11    

Where 12
1

112122 GGGGB  . If OXXG 2112  , then 1β̂  reduces to 

  yXXXyXGβ̂ 1
1

111
1

111    

Which is the same as *
1β̂ . 

Note that Theorem 3.10 will also hold if 1X  and 2X  are “essentially 
orthogonal,” that is, if the centered columns of 1X  are orthogonal to the 
centered columns of 2X . 
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In Theorem 3.9a, we discussed estimation of *
1β  in the presence of 2β  

when OXX 21  . We now consider a process of orthogonalization to give 
additional insights into the meaning of partial regression coefficients. 

In Example 3.2, we illustrated the change in the estimate of a 
regression coefficient when another x was added to the model. We now 
use the same data to further examine this change. The prediction 
equation obtained in Example 3.2 was 

 88.3x2855.1x0118.33754.5ŷ 21 

And the negative partial regressions of y on 2x  were shown in Figure 
3.2. By means of orthogonalization, we can give additional meaning to 
the term 2x2855.1 . In order to add 2x  to the prediction equation 
containing only 1x , we need to determine how much variation in y is 
due to 2x  after the effect of 1x  has been accounted for, and we must 
also correct for the relationship between 1x  and 2x . Our approach is to 
consider the relationship between the residual variation after regressing 
y on 1x  and the residual variation after regressing 2x  on 1x . We follow 
a three-step process. 

1. Regress y on 1x , and calculate residuals [see (3.11)]. The 
prediction equation is 

 89.3x3019.18585.1ŷ 1 

and the residuals  1xˆ ii yy   are given in Table 3.2, where  1xˆ iy  
indicates that ŷ  is based on a regression of y on 1x  as in (3.89). 

2. Regress 2x  on 1x and calculate residuals. The prediction equation is 

 90.3x3302.17358.2x̂ 12  

and the residuals  122 xˆ ii xx   are given in Table 3.2, where 
 12 xˆ ix  indicates that 2x  has been regressed on 1x  as in (3.90). 

3.   Now regress  1xŷy   on  122 xx̂x  , which gives 

   91.3x̂x2855.1ŷy 22  

There is no intercept in (3.91) because both sets of residuals have 
a mean of 0. 
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TABLE 3.2: Data from Table 3.1 and Residuals 
y 

1x 2x  1xŷy   122 xx̂x  
2 0 2 0.141509 -0.735849 
3 2 6 -1.462264 0.603774 
2 2 7 -2.462264 1.603774 
7 2 5 2.537736 -0.396226 
6 4 9 -1.06604 0.943396 
8 4 8 0.93396 -0.056604 
10 4 7 2.93396 -1.056604 
7 6 10 -2.66981 -0.716981 
8 6 11 -1.66981 0.2830189 
12 6 9 2.330189 -1.716981 
11 8 15 -1.273584 1.622642 
14 8 13 1.726415  -0.377358  

In (3.91), we obtain a clearer insight into the meaning of the partial 
regression coefficient -1.2855 in (3.88). We are using the “unexplained” 
portion of 2x  (after 1x  is accounted for) to predict the “unexplained” 
portion of y (after 1x  is accounted for). 

Since  122 xx̂x   is orthogonal to 1x  [see Section 3.4.2, in particular 
(3.29)], fitting  1xŷy   to  122 xx̂x   yields the same coefficient,          
-1.2855, as when fitting y to 1x  and 2x  together. Thus -1.2855 
represents the additional effect of 2x  beyond the effect of 1x  and also 
after taking into account the overlap between 1x  and 2x  in their effect 
on y. The orthogonality of 1x  and  122 xx̂x   makes this simplified 
breakdown of effects possible. 

We can substitute  1ˆ xy  and  12ˆ xx  in (3.91) to obtain 

     ]ˆ[2855.1ˆ,ˆŷy 122121 xxxxyxxy   

Or 

     92.3]3302.17358.2[2855.13019.18585.1ˆ 121 xxxy   

which reduces to 

 93.32855.10118.33754.5ˆ 21 xxy   

the same as (3.88). If we regress y (rather than yy ˆ  on  122 xx̂x  , we 
will still obtain 22855.1 x , but we will not have 10118.33754.5 x . 
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The correlation between the residuals  1xŷy   and  122 xx̂x   is the 
same as the (sample) partial correlation of y and 2x  with 1x  held fixed: 

 94.3. 22 ˆ,ˆ12 xxyyryr   

This is discussed further in Section 6.8. 

Applications using MATLAB Example 3.2a[The program name ta10.m] 
clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; n=length(x1); 
% Regress y on x1 
EX1=[ones(size(x1)) x1];  
beta1=EX1\y;YX1=EX1*beta1;eX1=y-YX1; 
['Reg. line 1: yhat = ',num2str(beta1(1)),' + ',num2str(beta1(2)), '*x1'] 
% Regress x2 on x1 
EX1=[ones(size(x1)) x1]; 
beta2=EX1\x2;X2X1=EX1*beta2;eX2= x2-X2X1; 
['Reg. line 2: xhat2 = ',num2str(beta2(1)),' + ',num2str(beta2(2)), '*x1'] 
% Regress eX1 on eX2 
beta3=eX2\eX1;data=[y x1 x2];partialcorr(data); 
['Reg. line 3: y-yhat = ',num2str(beta3),'*(x2-x2hat)'] 
Table=[y x1 x2 eX1 eX2],ry2and1=partialcorr(data); 
ry2andfixed1=ry2and1(3,1),reX1andeX2=corr(eX1,eX2) 

Ans = 

Reg. line 1: yhat = 1.8585 + 1.3019*x1 
Reg. line 2: xhat2 = 2.7358 + 1.3302*x1 
Reg. line 3: y-yhat = -1.2855*(x2-x2hat) 
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ry2andfixed1 = 
                      -0.66112 
reX1andeX2 = 
                        -0.66112 

 
We now consider the general case with full model 

εβXβXy 2211   

and reduced model 
**

11 εβXy   

We use an orthogonalization approach to obtain an estimator of 2β , 
following the same three steps as in the illustration with 1x  and 2x  
above: 

1. Regress y on 1x  and calculate residuals  1Xŷy  , where *
11β̂Xŷ   

  yXXXX 1
1

111    [see (3.11)]. 

2. Regress the columns of 2X  on 1X  and obtain residuals 12.X  

 122 XX̂X  . If 2X  is written in terms of its columns as 2X  
 pj 2221 x,x,,x  , then the regression coefficient vector for j2x  on 

1X  is   jj 21
1

11 xXXXb   , and   jjj 21
1

11112 xXXXXbXx̂   . For all 

columns of 2X , this becomes     AXXXXXXXX̂ 121
1

11112   , 

where   21
1

11 XXXXA    is the alias matrix defined in (3.80). Note 
that 12.X   122 XX̂X  . is orthogonal to 1X :  

 95.3O.XX 121   

Using the alias matrix A, the residual matrix can be expressed as 

   96.3XX̂X.X 12212   

   97.3AXXXXXXXX 1221
1

1112    

3. Regress  1Xŷy   on  12212 XX̂X.X  . Since 12.X  is orthogonal to 1X , 

we obtain the same 2β̂  as in the full model 2211 β̂Xβ̂Xŷ  . Adapting 
the notation of (3.91) and (3.92), this can be expressed as 

     98.3β̂XXŷX,Xŷ 21.2121   
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If we substitute   *
111 β̂XXŷ   and AXX.X 1212   into (3.98) and use 

21
*
1 β̂Aβ̂β̂    from (3.80), we obtain 

    212
*
1121 β̂AXXβ̂XX,Xŷ   

    212211 β̂AXXβ̂Aβ̂X   

2211 β̂Xβ̂X   

which is analogous to (3.93). This confirms that the orthogonality of 

1X  and 1.2X  leads to the estimator 2β̂  in (3.98). For a formal proof, see 
Problem 3.50. 

 

PROBLEMS  

3.1: Show that      β̂Xyβ̂Xyβ̂x
1

2



 

n

i iiy , thus verifying (3.7). 

3.2: Show that (3.10) follows from (3.9). Why is XX  positive definite, 
as noted below (3.10)? 

3.3: Show that 0̂  and 1̂  in (3.12) in Example 3.3.1 are the same as in 
(2.5) and (2.6). 

3.4: Obtain  β̂Cov  in (3.16) from (3.15). 

3.5: Show that    












n

i
i

n

i
i xxnxVar

1

2

1

22
0

ˆ   in (3.16) in Example 

3.3.2a is the same as  0̂Var  in (3.10). 

3.6: Show that AA   can be expressed as     ]XXX][AXXX[AAA 11    
  1XX   as in (3.17) in Theorem 3.3d. 

3.7: Prove Corollary 1 to Theorem 3.3d in the following two ways:   
(a) Use an approach similar to the proof of Theorem 3.3d.          
(b) Use the method of Lagrange multipliers. 

3.8: Show that if the x’s are rescaled as jjj xcz  ,  j = 1, 2, . . . , k, then 

β̂Dβ̂ 1z , as in (3.18) in the proof of the Theorem 3.3e. 

3.9: Verify (3.20) and (3.21) in the proof of Corollary 1 to Theorem 
3.3e. 
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3.10: Show that 2S  is invariant to changes of scale on the x’s, as noted 
following Corollary 1 to Theorem 3.3e. 

3.11: Show that     yXβ̂yyβ̂Xyβ̂Xy 


  as in (3.24). 

3.12: Show that    12  knSSEE  , as in Theorem 3.3f, using the 
following approach. Show that β̂XXβ̂yy SSE . Show that 
  X βXβyy 2  nE  and that     X βXβ1β̂XXβ̂ 2  kE . 

3.13: Prove that an additional x reduces SSE, as noted following 
Theorem 3.3f. 

3.14: Show that the non-centered model preceding (3.30) can be 
written in the centered form in (3.30), with   defined as in 
(3.31). 

3.15: Show that   1XJ]1[IX nc   as in (3.33), where 1X  is as given in 
(3.19). 

3.16: Show that 0Xj  c , as in (3.35), where cX is the centered X  
matrix defined in (3.33). 

3.17: Show that the estimators ŷ  and   yXXXβ̂ 1
1 ccc    in (3.36) 

and (3.37) are the same as   yXXXβ̂ 1    in (3.6). Use the following 
two methods: 

(a) Work with the normal equations in both cases. 

(b) Use the inverse of XX  in partitioned form: 

      1
11

1 ]Xj,Xj,[XX    

3.18: Show that the fitted regression plane    kkk xxxxy   ˆˆˆˆ 111   
passes through the point  yxxx k ,,,, 21  , as noted below (3.38). 

3.19: Show that   yXβ̂11

2
c

n

i i yySSE  
 in (3.39) is the same as 

yXβ̂yy SSE  in (3.24). 

3.20: (a) Show that  1XX  nS ccxx  as in (3.44). 

 (b) Show that  1yX  nS cyx  as in (3.45). 

3.21: (a) Show that if y is  Iβ,X 2nN , the likelihood function is 
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    22β̂Xyβ̂Xy
22

2

2

1
β, 


  

 eL
n

 

 as in (3.50) in the proof of Theorem 3.6a. 

(b) Differentiate  2β,Ln L  in (3.51) with respect to β̂  to obtain 

  yXXXβ̂ 1    in (3.48). 

(c) Differentiate  2β,Ln L  with respect to 2  to obtain 2̂  

    nβ̂Xyβ̂Xy 


  as in (3.49). 

3.22: Prove parts (ii) and (iii) of Theorem 3.6b. 

3.23: Show that            ββ̂XXββ̂β̂Xyβ̂XyXβyXβy 





  as in 
(3.52) in the proof of Theorem 3.6c. 

3.24: Explain why  2β,y; f  does not factor into      y.,ˆβ,β̂ 22
21 hgg  , 

as noted following Theorem 3.6c. 

3.25: Verify the equivalence of (3.55) and (3.56); that is, show that 

11
2 β̂XXβ̂Xβ̂ ccyny  . 

3.26: Verify the comments in property 1 in Section 3.7, namely, that if 
0β̂β̂β̂ 21  k , then 02 R , and if ii yy ˆ , ni ,,2,1  , then 12 R . 

3.27: Show that adding an x to the model increases (cannot decrease) 
the value of 2R , as in property 3 in Section 3.7. 

3.28: (a) Verify that 2R  is invariant to full-rank linear transformations 
on the x’s as in property 6 in Section 3.7. 

 (b) Show that 2R  is invariant to a scale change yz c  on y. 

3.29: (a) Show that 2R  in (3.55) can be written in the form 
  


n

i i yySSER
1

22 1 . 

(b) Replace SSE and   


n

i i yy
1

2  in part (a) by variance 

estimators  1 knSSE  and    1
1

2  
nyy

n

i i  and show that 

the result is the same as 2
aR  in (3.56). 

3.30: Show that nyny
n

i i

n

i i  


11
ˆ , as noted following (3.59) in 

Section 3.7. 
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3.31: Show that Rcos  as in (3.61), where 2R  is as given by (3.56). 

3.32: (a) Show that   ββ̂ E , where   yVXXVXβ̂ 111    as in (3.63).  

(b) Show that     112 XVXβ̂
 Cov  as in (3.64). 

3.33: (a) Show that the two forms of 2S  in (3.65) and (3.66) are equal. 
(b) Show that   22 SE , where 2S  is as given by (3.66). 

3.34: Complete the steps in the proof of Theorem 3.8b. 

3.35: Show that for   JI1V    in (3.67), the inverse is given by 
 JIV 1 ba   as in (3.68), where   11a  and   ]11[1  nb . 

3.36: (a) Show that 










 

ca

bn

XX0

0
XVX

c

1  as in (3.69).    

         (b) Show that 









 

yX
yVX

c

1

a

ybn
 as in (3.70). 

3.37: Show that       112* XXVXXXXβ̂   Cov  as in (3.72), where 
  yXXXβ̂ 1*    and   Vy 2Cov . 

3.38: (a) Show that the weighted least-squares estimator  10
ˆ,ˆβ̂    for 

the model iii xy   10  with   ii xyVar 2  has the form 
given in (3.73). 

 (b) Verify the expression for  β̂Cov  in (3.74). 

3.39: Obtain the expression for  *β̂Cov  in (3.75). 

3.40: As an alternative derivation of  *
1β̂Var  in (3.76), use the following 

two steps to find  *
1β̂Var  using     


n

i i

n

i ii xxyxx
1

2

1

*
1β̂  

from the answer to Problem 2.2: 

(a) Using   ii xyVar 2 , show that     


n

i ii xxxVar
1

22*
1β̂   

 
2

1

2 ][


n

i i xx . 

(b) Show that this expression for  *
1β̂Var  is equal to that in (3.76). 

3.41: Using x = 2, 3, 5, 7, 8, 10, compare  *
1β̂Var  in (3.76) with  1β̂Var  

in (3.77). 
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3.42: Provide an alternative proof of     1
11

2*
1 XXβ̂  Cov  in (3.81) , 

      }]][{[ *
1

*
1

*
1

*
1

*
1 β̂β̂β̂β̂β̂  EEECov  

3.43: Prove Theorem 3.9b. 

3.44: Provide the missing steps in the proof of Theorem 3.9c(ii). 

3.45: Show that *
101β̂x  is biased for estimating 101βx if 0β2   and 

OXX 21  . 

3.46: Show that    *
101101 β̂xβ̂x VarVar  . 

3.47: Complete the steps in the proof of Theorem 3.9d. 

3.48: Show that for the no-intercept model **
1 εβ iii xy  , the least-

squares estimator is  


n

i i

n

i ii xyx
1

2

1

*
1̂  in (3.86). 

3.49: Obtain   11

2

10
*

1
ˆ    

n

i i

n

i i xxE  in (3.87) using (3.80), 

  21
*

1 Aˆ  E . 

3.50: Suppose that we use the model **
1

*
0 εββ iii xy   when the true 

 model is iiiii xxxy   3
3

2
210 . 

(a) Using (3.80), find  *
0̂E  and  *

1̂E  if observations are taken at 
x = -3, -2, -1, 0, 1, 2, 3. 

 (b) Using (3.85), find  2
1SE  for the same values of x. 

3.51: Show that  12212 XX̂X.X   is orthogonal to 1X , that is, O.XX 121  , 
as in (3.95). 

3.52: Show that 2β̂  in (3.98) is the same as in the full fitted model 

2211 β̂Xβ̂Xŷ  . 

3.53: When gasoline is pumped into the tank of a car, vapors are 
vented into the atmosphere. An experiment was conducted to 
determine whether y, the amount of vapor, can be predicted using 
the following four variables based on initial conditions of the 
tank and the dispensed gasoline: 

1x  tank temperature ( F0 ) 
2x  gasoline temperature ( F0 ) 
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3x  vapor pressure in tank ( psi) 
4x  vapor pressure of gasoline (psi) 

The data are given in Table 3.3 (Weisberg 1985, p. 138). 

(a) Find β̂  and 2S . 

(b) Find an estimate of  β̂Cov . 
(c) Find 1̂  and 0̂  using xxS  and yxS  as in (3.46) and (3.47). 

(d) Find 2R  and 2
aR . 

TABLE 3.3: Gas Vapor Data 
y 1x 2x 3x 4x y 1x 2x 3x 4x 

29 33 53 3.32 3.42 40 90 64 7.32 6.70 
24 31 36 3.10 3.26 46 90 60 7.32 7.20 
26 33 51 3.18 3.18 55 92 92 7.45 7.45 
22 37 51 3.39 3.08 52 91 92 7.27 7.26 
27 36 54 3.20 3.41 29 61 62 3.91 4.08 
21 35 35 3.03 3.03 22 59 42 3.75 3.45 
33 59 56 4.78 4.57 31 88 65 6.48 5.80 
34 60 60 4.72 4.72 45 91 89 6.70 6.60 
32 59 60 4.60 4.41 37 63 62 4.30 4.30 
34 60 60 4.53 4.53 37 60 61 4.02 4.10 
20 34 35 2.90 2.95 33 60 62 4.02 3.89 
36 60 59 4.40 4.36 27 59 62 3.98 4.02 
34 60 62 4.31 4.42 34 59 62 4.39 4.53 
23 60 36 4.27 3.94 19 37 35 2.75 2.64 
24 62 38 4.41 3.49 16 35 35 2.59 2.59 
32 62 61 4.39  4.39 22  37 37 2.73  2.59 

3.54: In an effort to obtain maximum yield in a chemical reaction, the 
values of the following variables were chosen by the experiment-
ter: 

1x  temperature ( C0 ) 
2x  concentration of a reagent (%) 
3x  time of reaction (hours) 

Two different response variables were observed: 

1y  percent of unchanged starting material 

2y  percent converted to the desired product 
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The data are listed in Table 3.4 (Box and Youle 1955, Andrews 
 and Herzberg 1985, p. 188). Carry out the following for 1y : 

(a) Find β̂  and 2S . 

(b) Find an estimate of  β̂Cov . 
(c) Find 2R  and 2

aR . 

(d) In order to find the maximum yield for 1y , a second-order 
model is of interest. Find β̂  and 2S  for the model  01 y  

  329318217
2
36

2
25

2
14332211 xxxxxxxxxxxx . 

(e) Find 2R  and 2
aR  for the second-order model. 

TABLE 3.4: Chemical Reaction Data 
1y  2y 1x 2x 3x 

41.5 45.9 162 23 3 
33.8 53.3 162 23 8 
27.7 57.5 162 30 5 
21.7 58.8 162 30 8 
19.9 60.6 172 25 5 
15 58 172 25 8 

12.2 58.6 172 30 5 
4.30 52.4 172 30 8 
19.3 56.9 167 27.5 6.5 
6.40 55.4 177 27.5 6.5 
37.6 46.9 157 27.5 6.5 
18 57.3 167 32.5 6.5 

26.3 55 167 22.5 6.5 
9.90 58.9 167 27.5 9.5 
25 50.3 167 27.5 3.5 

14.1 61.1 177 20 6.5 
15.2 62.9 177 20 6.5 
15.9 60 160 34 7.5 
19.6  60.6  160 34 7.5  

3.55: The following variables were recorded for several counties in 
Minnesota in 1977: 

y  Average rent paid per acre of land with alfalfa 
1x  Average rent paid per acre for all land 
2x  Average number of dairy cows per square mile 
3x  Proportion of farmland in pasture 



 157

The data for 34 counties are given in Table 3.5 (Weisberg 1985, 
p.162). Can rent for alfalfa land be predicted from the other three 
variables? 

(a) Find β̂  and 2S . 
(b) Find 1̂  and 0̂  using xxS  and yxS  as in (3.46) and (3.47). 

(c) Find 2R  and 2
aR . 

TABLE 3.5: Land Rent Data 
y  

1x 2x 3x y
1x 2x 3x 

18.38 15.50 17.25 0.24 8.50 9 8.89 0.08 
20 22.29 18.51 0.20 36.5 20.64 23.81 0.24 

11.5 12.36 11.13 0.12 60 81.40 4.54 0.05 
25 31.84 5.54 0.12 16.25 18.92 29.62 0.72 

52.50 83.90 5.44 0.04 50 50.32 21.36 0.19 
82.50 72.25 20.37 0.05 11.50 21.33 1.53 0.10 

25 27.14 31.20 0.27 35 46.85 5.42 0.08 
30.67 40.41 4.29 0.10 75 65.94 22.10 0.09 

12 12.42 8.69 0.41 31.56 38.68 14.55 0.17 
61.2 69.42 6.63 0.04 48.50 51.19 7.59 0.13 
60 48.46 27.40 0.12 77.50 59.42 49.86 0.13 

57.50 69 31.23 0.08 21.67 24.64 11.46 0.21 
31 26.09 28.50 0.21 19.75 26.94 2.48 0.10 
60 62.83 29.98 0.17 56 46.20 31.62 0.26 

72.50 77.06 13.59 0.05 25 26.86 53.73 0.43 
60.33 58.83 45.46 0.16 40 20 40.18 0.56 
49.75 59.48 35.90 0.32 56.67 62.52 15.89 0.05  

 
. 
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4: Introduction 

In this chapter we consider hypothesis tests and confidence intervals 
for the parameters k ,,, 10   in β  in the model εX βy  . We also 
provide a confidence interval for  iyVar2 . We will assume through-
out the chapter that y is  Iβ,X 2N , where X is  1 kn  of rank nk 1 . 

4.1: Test of Overall Regression 

We noted in Section 3.9 that the problems associated with both 
overfitting and underfitting motivate us to seek an optimal model. 
Hypothesis testing is a formal tool for, among other things, choosing 
between a reduced model and an associated full model. The hypothesis 

0H , expresses the reduced model in terms of values of a subset of the 

j ’s in β . The alternative hypothesis, 1H , is associated with the full 

model. 

To illustrate this tool we begin with a common test, the test of the 
overall regression hypothesis that none of the x variables predict y. 
This hypothesis (leading to the reduced model) can be expressed as 

0β: 10 H , where   k ,,,β 211  . Note that we wish to test 0β: 10 H , 
not 0: 00 H , where 











1

0

β
β


 

Since 0  is usually not zero, we would rarely be interested in including 
00   in the hypothesis. Rejection of 0β:0 H  might be due solely to 

0 , and we would not learn whether the x variables predict y. For a test 
of 0β:0 H , see Problem 4.6. 

We proceed by proposing a test statistic that is distributed as a central 
F if 0H  is true and as a non-central F otherwise. Our approach to 
obtaining a test statistic is somewhat simplified if we use the centered 
model (3.32) 

  ε
β

Xj,y
1












c  
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where    1XJ1IX nc   is the centered matrix [see (3.33)] and 1X  
contains all the columns of X except the first [see (3.19)]. The 
corrected total sum of squares   


n

i i yySST
1

2  can be partitioned as 

    ][ yXβ̂yXβ̂ 11

2
11

2
c

n

i ic

n

i i yyyy   
,   [by (3.53)] 

   1.4],54.3[byβ̂XXβ̂ 11 SSESSRSSEcc   

where SSE is as given in (3.39). The regression sum of squares 

11 β̂XXβ̂ ccSSR   is clearly due to 1β . 

In order to construct an F test, we first express the sums of squares in 
(4.1) as quadratic forms in y so that SSR and SSE have chi-square 
distributions and are independent. Using     yJ1Iy

1

2 nyy
n

i i  
, 

  yXXXβ̂ c
1

c1  
c  in (3.37), and   yXβ̂11

2
c

n

i i yySSE   
 in (3.39), we 

can write (4.1) as 

   SSESSRn  yJ1Iy  

       yXXXXyyJ1IyyXXXXy c
1

cc
1

c  
cccc n  

    2.4yHJ1IyyHy cc n   

Where   c
1

c XXXXH  
ccc  

In the following theorem we establish some properties of the three 
matrices of the quadratic forms in (4.2). 

Theorem 4.1a: The matrices  J1I n ,   cccc XXXXH 1
c   , and   cn HJ1I   

have the following properties: 

(i)     3.4HJ1IH cc n   
(ii) cH  is idempotent of rank k. 
(iii)   cn HJ1I   is idempotent of rank 1 kn . 
(iv)     4.4HJ1IH o cc n  

Proof: Part (i) follows from 0jX c , which was established in Problem 
3.16. Part (ii) can be shown by direct multiplication. Parts (iii) and (iv) 
follow from (i) and (ii). 

The distributions of 2SSR  and 2SSE  are given in the following 
theorem. 
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Theorem 4.1b: If y is  Iβ,X 2nN , then 2
11

2 β̂XXβ̂  ccSSR  and 

  2
111

22 ][ β̂XXβ̂  cc

n

i i yySSE   
 have the following distributions: 

(i) 2SSR  is  
2

, 1
 k , where 2

11
2

1 2βXXβ2A  cc  

(i) 2SSE  is  
2

1 kn . 

Proof: These results follow from (4.2), Theorem 4.1a(ii) and (iii). The 
independence of SSR and SSE  is demonstrated in the following theorem. 

Theorem 4.1c: If y is  Iβ,X 2nN , then SSR and SSE are independent, 
where SSR and SSE are defined in (4.1) and (4.2). 

Proof: This follows from Theorem 4.1a(iv). 

We can now establish an F test for 0β: 10 H  versus 0β: 10 H . 

Theorem 4.1d: If y is  Iβ,X 2nN , the distribution of 

 
      5.4

11 2

2







knSSE

kSSR

knSSE

kSSR
F


  

is as follows: 

 (i) If 0β: 10 H  is false, then 

F is distributed as  1,1,  knkF , where 2
111 2βXXβ  cc  

 (ii) If 0β: 10 H  is true, then 01   and F is distributed as  1,  knkF , 

Proof: 

(i) This result follows from Theorems 4.1b and 4.1c. 
(ii) This result follows from Theorems 4.1b and 4.1c. 

Note that 01   if and only if 0β1  , since ccXX  is positive definite.  

The test for 0β: 10 H  is carried out as follows. Reject 0H  if 

 1,,  knkFF  , where  1,,  knkF   is the upper   percentage point 

of the (central) F distribution. Alternatively, a p-value can be used to 
carry out the test. A p-value is the tail area of the central F distribution 
beyond the calculated F value, that is, the probability of exceeding the 
calculated F value, assuming 0β: 10 H  to be true. A p-value less than 
  is equivalent to  1,,  knkFF  . 
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TABLE 4.1: ANOVA Table for the F Test of 0β: 10 H  
Source of 
Variation 

df Sum of Squares Mean 
Square 

Expected Mean 
Square 

Due to 1β  k 2
1 yXβ̂yXβ̂ ynSSR c  kSSR

11
2 βXXβ

1
cck

  

Error n-k-1  
yXβ̂yy

yXβ̂11

2



  c

n

i i yySSE  
1 kn

SSE

 

2  

Total n-1   


n

i i yySST
1

2    

The analysis-of-variance (ANOVA) table (Table 4.1) summarizes the 
results and calculations leading to the overall F test. Mean squares are 
sums of squares divided by the degrees of freedom of the associated 
chi-square ( 2 ) distributions. 

The entries in the column for expected mean squares in Table 4.1 are 
simply  kSSRE  and   1 knSSEE . It was established by Theorem 
3.3f.  

If 0β: 10 H  is true, both of the expected mean squares in Table 4.1 are 
equal to 2 , and we expect F to be near 1. If 0β1  , then   2kSSRE  
since ccXX  is positive definite, and we expect F to exceed 1.We 
therefore reject 0H  for large values of F. 

The test of 0β: 10 H  in Table 4.1 has been developed using the 
centered model (3.32). We can also express SSR and SSE in terms of 
the non-centered model εX βy   in (3.4): 

 6.4yXβ̂yy,yXβ̂ 2  SSEynSSR 

These are the same as SSR and SSE in (4.1) [see (3.24), (3.39), (3.54), 
and Problems 3.19, 3.25]. 

Example 4.1: Using the data in Table 3.1, we illustrate the test of 

0β: 10 H  where, in this case,   211 ,β  . In Example 3.3.1(a), we 

found   872,482,90yX  and   2855.1,0118.3,3754.5β̂ . The 

quantities yy , yXβ̂  , and 2yn  are given by 


 12

1

2222 8401432yy
i iy   
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  5410.814

872

482

90

2855.1,0118.3,3754.5yXβ̂ 















  

TABLE 4.2: ANOVA for Overall Reg. Test for Data in Table 3.1 
Source  df SS MS F 
Due to 1β  2 139.5410 69.7705 24.665 
Error 9 25.4590 2.8288  
Total 11 165.000   

675
12

90
12

2
2

12 



















  

n

y
nyn

n

i i  

Thus, by (4.6), we obtain 

5410.139yXβ̂ 2  ynSSR , 4590.25yXβ̂yy SSE  

  165yy 2

1

2 
ynyy

n

i i  

The F test is given in Table 4.2. Since 26.4665.24 9,2,05.0  F , we reject 

0β: 10 H  and conclude that at least one of 1  or 2  is not zero. The p- 
value is .000223. 

Applications using MATLAB Example 4.1[The program name ta11.m]  
Clc   

y=[2 3 2 7 6 8 10 7 8 12 11 14]'; x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);k=2;x=[ones(size(x1)) x1 x2]; 
beta=x\y, Y=x*beta; e=Y-y;MSE=e'*e/(n-3); 
% test of H0:beta1=0 
beta1=beta(2:3),xy=x'*y,yy=y'*y,betaxy=beta'*x'*y 
SSR=betaxy-n*mean(y)^2,SSE=yy-betaxy 
SST=yy-n*mean(y)^2 
MSR=SSR/k, MSE=SSE/(n-k-1),F=MSR/MSE 
table=[{'Source  ', 'df' ,'SS ' ,'MS ' , 'F'} ; {'Due to beta1' k SSR MSR 
F};{'Error' n-k-1 SSE MSE []};{'Total' n-1 SST [] []}] 
% direect method 
d=[x1 x2];lm=LinearModel.fit(d,y),anova(lm) 
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Ans.  

beta = 
       5.3754 
       3.0118 
      -1.2855 

beta1 = 
      3.0118 
     -1.2855 

xy = 
    90 
   482 
   872 

yy = 
   840 

betaxy = 
       814.54 

SSR = 
      139.54 

SSE = 
   25.459

SST = 
   165 

MSR = 
       69.771 

MSE = 
      2.8288 

F = 
   24.665
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4.2: Test on A Subset of The  ’s  

In more generality, suppose that we wish to test the hypothesis that a 
subset of the x’s is not useful in predicting y. A simple example is 

0:0 jβH  for a single jβ . If 0H  is rejected, we would retain jj xβ in the 

model. As another illustration, consider the model in (3.2). 

  215
2
24

2
13221101 xxxxxxy  

For which we may wish to test the hypothesis 0: 5430  H . If 

0H  is rejected, we would choose the full second-order model over the 
reduced first-order model. 

Without loss of generality, we assume that the  ’s to be tested have 
been arranged last in β , with a corresponding arrangement of the 
columns of X. Then β  and X can be partitioned accordingly, and by 
(3.78), the model for all n observations becomes 

  ε
β

β
X,XεX βy

2

1
21 








  

 7.4εβXβX 2211  

Where 2β  contains the  ’s to be tested. The intercept 0  would 
ordinarily be included in 1β . 

The hypothesis of interest is 0β: 20 H . If we designate the number of 
parameters in 2β  by h, then 2X  is hn , 1β  is   11  hk , and 1X  is 

 1 hkn . Thus   hk ,,,β 101   and    khkhk  ,,,β 212  . In 
terms of the illustration at the beginning of this section, we would have 

  2101 ,,β   and   5432 ,,β  . Note that 1β  in (4.7) is different 

from 1β  in Section 4.1, in which β  was partitioned as 









1

0

β
β

β
 and 1β  

constituted all of β  except 0 . 

To test 0β: 20 H  versus 0β: 21 H , we use a full–reduced-model 
approach. The full model is given by (4.7). Under 0β: 20 H , the 
reduced model becomes 

 8.4εβXy **
11   
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We use the notation *
1β  and *ε  as in Section 3.9, because in the reduced 

model, *
1β  and *ε  will typically be different from 1β  and ε  in the full 

model (unless 1X  and 2X  are orthogonal; see Theorem 3.9a and its 
corollary). The estimator of *

1β  in the reduced model (4.8) is 

  yXXXβ̂ 1
1

11
*
1   , which is, in general, not the same as the first 1 hk  

elements of   yXXXβ̂ 1    from the full model (4.7) (unless 1X  and 

2X  are orthogonal; see Theorem 3.10). 

In order to compare the fit of the full model (4.7) to the fit of the 

reduced model (4.8), we add and subtract yXβ̂   and yXβ̂ 1
*
1 

 to the total 

corrected sum of squares   2

1

2 yy ynyy
n

i i  
 so as to obtain the 

partitioning 

   9.4yXβ̂yXβ̂yXβ̂yXβ̂yyyy 2
1

*
11

*
1

2 





 







 

 ynyn  

Or 

     10.4ββ 12 reducedSSRSSSSESST  

where   yXβ̂yXβ̂ββ 1
*
112 

SS  is the “extra” regression sum of squares 

due to 2β  after adjusting for 1β . Note that  12 ββSS  can also be 

expressed as 

  





 

 2
1

*
1

2
12 yXβ̂yXβ̂ββ ynynSS  

   reducedSSRfullSSR   

which is the difference between the overall regression sum of squares 
for the full model and the overall regression sum of squares for the 
reduced model [see (4.6)]. 

If 0β: 20 H  is true, we would expect  12 ββSS  to be small so that SST in 

(4.10) is composed mostly of  reducedSSR  and SSE. If 0β2  , we expect 
 12 ββSS  to be larger and account for more of SST. Thus we are testing 

0β: 20 H  in the full model in which there are no restrictions on 1β . We 
are not ignoring 1β  (assuming 0β1  ) but are testing 0β: 20 H  in the pres-
ence of 1β , that is, above and beyond whatever 1β  contributes to SST. 
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To develop a test statistic based on  12 ββSS , we first write (4.9) in 

terms of quadratic forms in y. Using   yXXXβ̂ 1    and   yXXXβ̂ 1
1

11
*
1   , 

(4.9) becomes 

       yXXXXyyXXXXyyyyJ1Iy 11  n  

    Jy
1

yyXXXXyyXXXXy 1
1

1111
1

111 n
   

      y]XXXXXXX[Xyy]XXXX[Iy 1
111

11   

   11.4yJ
1

XXXXy 1
1

111 



  

n

     12.4yJ
1

HyyHHyyHIy 11 





 

n
  

where   XXXXH 1    and   1
1

1111 XXXXH   . The matrix HI  was 
shown to be idempotent; with rank 1 kn , where k +1 is the rank of 
X (k+1 is also the number of elements in β ). The matrix 1HH  is 
shown to be idempotent in the following theorem. 

Theorem 8.2a: The matrix     1
1

111
1

1 XXXXXXXXHH    is idemp-
otent with rank h, where h is the number of elements in 2β . 

Proof: Premultiplying X by H, we obtain 

  XXXXXXHX 1    

Or 

   13.4X]XXX[XX 1   

Partitioning X on the left side of (4.13) and the last X on the right side, 
we obtain  

     21
1

21 X,X]XXX[XX,X    

    ]XXXXX,XXXX[X 2
1

1
1    

Thus 

 
 

 14.4
XXXXXX

XXXXXX

2
1

2

1
1

1
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Simplifying 1HH  and HH1  by (4.14) and its transpose, we obtain 

 15.4HHHHHH 1111  and 

The matrices H  and 1H  are idempotent. Thus 

  2
111

22
1 HHHHHHHH   

111 HHHH   

1HH  

and 1HH  is idempotent. For the rank of 1HH , we have 

    11 HHHH  trrank   

    1HH trtr   

    ]XXX[X]XXX[X 1
1

111
1   trtr  

    ]XXXX[]XXXX[ 1
1111

1   trtr  

      hhkktrtr hkk   11II 11  

We now find the distributions of  yHIy   and  yHHy 1  in (4.12) and 
show that they are independent. 

Theorem 8.2b: If y is  Iβ,X 2nN  and H and 1H  are as defined in (4.11) 
and (4.12), then 

(i)   2yHIy   is  
2

1 kn .  

(ii)    2
1 yHHy   is  

2
, 1

 h ,   2
221

1
11122221 2β]XXXXXXXX[β    . 

(iii)   yHIy   and  yHHy 1  are independent. 

Proof: Adding  Jy1y n  to both sides of (4.12), we obtain the decom-
position     yHyyHHyyHIyyy 11  . The matrices HI , 1HH  and 

1H  were shown to be idempotent in Theorem 4.2a. Hence all parts of 
the theorem follow. See Problem 4.9 for the derivation of 1 . 

If 01   in Theorem 4.2b(ii), then   2
1 yHHy   has the central chi-

square distribution  
2
h . Since   21

1
111222 XXXXXXXX    is positive 

definite (see Problem 8), 01   if and only if 0β2  . 

An F test for 0β: 20 H  versus 0β: 21 H  is given in the following theorem. 
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Theorem 8.2c: Let y be  Iβ,X 2nN  and define an F statistic as follows: 

 
   

 
   16.4

1

ββ

1yHIy

yHHy 121








knSSE

hSS

kn

h
F  

   
 17.4

1yXβ̂yy

yXβ̂yXβ̂ 1
*
1









 




kn

h
 

where   yXXXβ̂ 1    is from the full model εXβy   and   yXXXβ̂ 1
1

11
*
1    

is from the reduced model **
11 εβXy  . The distribution of F in (4.17) 

is as follows: 

 (i) If 0β: 20 H  is false, then 

F is distributed as  1,1,  knhF , 

Where   2
221

1
11122221 2β]XXXXXXXX[β     

 (ii) If 0β: 20 H  is true, then 01   and  

F is distributed as  1,  knhF , 

Proof: 

(i) This result follows from Theorem 4.2b. 

(ii) This result follows from Theorem 4.2b. 

The test for 0β: 20 H  is carried out as follows: Reject 0H  if 

 1,,  knhFF  , where  1,, knhF  is the upper a percentage point of 

the (central) F distribution. Alternatively, we reject 0H  if p , where 

p is the p-value. Since   21
1

111222 XXXXXXXX    is positive definite (see 
Problem 4.10), 01   if 0β: 20 H  is false. This justifies rejection of 0H  
for large values of F. 

Results and calculations leading to this F test are summarized in the 
ANOVA table (Table 4.3), where 1β  is   11  hk , 2β  is 1h , 1X  is 

 1 hkn , and 2X  is hn . 

The entries in the column for expected mean squares are   ]ββ[ 12 hSSE  

and  ]1[  knSSEE . For   ]ββ[ 12 hSSE , see Problem 4.11. Note that if  
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0H  is true, both expected mean squares (Table 4.3) are equal to 2 , 
and if 0H  is false,    ]1[]ββ[ 12  knSSEEhSSE . since 1222 XXXX   

  1
11XX  21XX  is positive definite. This inequality provides another 

justification for rejecting 0H  for large values of F. 

TABLE 4.3: ANOVA Table for F-Test of 0β: 20 H  
Source of 
Variation 

df Sum of Squares Mean Square Expected Mean 
Square 

Due to 2β  
adjusted 
for 1β  

h   yXβ̂yXβ̂ββ 1
*
112 

SS   hSS 12 ββ  

  221
1

111

2222
2

β]XXXXX

XXX[β
1







h


Error n-k-1 yXβ̂yy SSE  1 knSSE 2  

Total n-1 
2yy ynSST    

Example 4.2a: Consider the dependent variable 2y  in the chemical 
reaction data in Table 3.4 (see Problem 3.52 for a description of the 
variables). In order to check the usefulness of second-order terms in 
predicting 2y , we use as a full model,  2

1433221102 xxxxy   
  329318217

2
36

2
25 xxxxxxxx , and test 0: 9540   H . 

For the full model, we obtain 7888.339yXβ̂ 2  yn , and for the reduced 

model *
3

*
32

*
21

*
1

*
02   xxxy , we have 0022.151yXβ̂ 2

1
*
1 


yn . The 

difference is 7866.188yXβ̂yXβ̂ 1
*
1 

 . The error sum of squares is SSE = 
60.6755, and the F statistic is given by (4.16) or Table 4.3 as 

6671.4
7417.6

4644.31

96755.60

67866.188
F  

which has a p-value of 0.0198. Thus the second-order terms are useful 
in prediction of 2y . In fact, the overall F in (4.5) for the reduced model 
is 3.027 with p = 0.0623, so that 21, xx , and 3x  are inadequate for 
predicting 2y . The overall F for the full model is 5.600 with p = 0.0086. 

In the following theorem, we express  12 ββSS  as a quadratic form in 

2β̂  that corresponds to 1  in Theorem 4.2b(ii). 



 171

Applications using MATLAB Example 4.2a [The program name ta12.m] 
clc   
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];y2=data(:,2);x1=data(:,3);x2=data(:,4); 
      x3=data(:,5); 
% full model 
x=[ones(size(x1)) x1 x2 x3 x1.^2 x2.^2 x3.^2 x1.*x2 x1.*x3 x2.*x3]; 
beta=x\y2;n=length(x1); 
betaxy2corefac=beta'*x'*y2-n*mean(y2)^2 
SSE=y2'*y2-beta'*x'*y2 
Ff=(betaxy2corefac/9)/(SSE/9) 
% reduced model 
xr=[ones(size(x1)) x1 x2 x3];betar=xr\y2 
betarxy2corefac=betar'*xr'*y2-n*mean(y2)^2 
SSEr=y2'*y2-betar'*xr'*y2 
Fr=(betarxy2corefac/3)/(SSEr/15) 
% difference 
SSD=betaxy2corefac-betarxy2corefac 
% F-test 
F=(SSD/6)/(SSE/9) 
% test of R square for full model 
SSR=betaxy2corefac 
SST=SSR+SSE,RS=SSR/SST 
% test of R square for redused model 
SSRr=betarxy2corefac,SSTr=SSRr+SSEr 
RSr=SSRr/SSTr 
FR=((RS-RSr)/6)/((1-RS)/9) 
% direect method for reduced model 
d=[x1 x2 x3];lmr=LinearModel.fit(d,y2) 
% direect method for full model 
d=[x1 x2 x3 x1.^2 x2.^2 x3.^2 x1.*x2 x1.*x3 x2.*x3]; 
lmf=LinearModel.fit(d,y2), 
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Ans. 

betaxy2corefac =  
            339.79  

SSE = 
     60.675      

Ff = 
    
5.6001   

betar = 
      -26.035 
      0.40455 
      0.29299 
       1.0338 

betarxy2corefac= 
             151 

SSEr = 
   249.46

Fr = 
       3.0266 

SSD = 
       188.79 

F = 
   4.6671

SSR = 
       339.79 

SST = 
       400.46 

RS = 
  0.84849

SSRr = 
          151 

SSTr = 
       400.46 

RSr = 
  0.37707

FR = 
       4.6671 
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Theorem 4.2d: If the model is partitioned as in (4.7), then  12 ββSS  

yXβ̂yXβ̂ 1
*
1 

  can be written as 

     18.4β̂]XXXXXXXX[β̂ββ 221
1

111222212  SS 

where 2β̂  is from a partitioning of β̂  in the full model: 

   19.4yXXX
β

β̂
β̂ 1

2

1 









  

Proof: We can write β̂X  in terms of 1β̂  and 2β̂  as   











2

1
21

β̂

β̂
X,Xβ̂X  

2211 β̂Xβ̂X  . To write *
1β̂  in terms of 1β̂  and 2β̂ , we note that by (3.80), 

  21
*
1 Aβββ̂ E , where   21

1
11 XXXXA    is the alias matrix defined in 

Theorem 3.9a. This can be estimated by 21
*
1 β̂Aβ̂β̂  , where 1β̂  and 2β̂  

are from the full model, as in (4.19). Then  12 ββSS  in (4.10) or Table 

4.3 can be written as 
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   yXβ̂yXβ̂ββ 1
*
112 

SS  

 *
111

*
1 β̂XXβ̂β̂XXβ̂ 

  [by (3.8)] 

       21112122112211 β̂Aβ̂XXAβ̂β̂β̂Xβ̂XXβ̂Xβ̂   

Multiplying this out and substituting   21
1

11 XXXX    for A, we obtain 
(4.18). 

In (4.18), it is clear that  12 ββSS  is due to 2β . We also see in (4.18) a 

direct correspondence between  12 ββSS  and the non-centrality parame-

ter 1  in Theorem 4.2b (ii) or the expected mean square in Table 4.3. 

Example 4.2b: The full–reduced-model test of 0β: 20 H  in Table 4.3 

can be used to test for significance of a single ĵ . To illustrate, supp-

ose that we wish to test 0β:0 kH , where β  is partitioned as 




































k

k

k










1

1

1

0

β 
 

Then X is partitioned as  kx,XX 1 , where kx  is the last column of X 
and 1X  contains all columns except kx . The reduced model is 

**
11 εβXy  , and *

1β  is estimated as   yXXXβ̂ 1
1

11
*
1   . In this case, h = 1, 

and the F statistic in (4.17) becomes 

   
 20.4

1yXβ̂yy

yXβ̂yXβ̂ 1
*
1







kn

F 

which is distributed as  1,1  knF  if 0:0 kH   is true. 

Example 4.2c: The test in Section 4.1 for overall regression can be 
obtained as a full-reduced-model test. In this case, the partitioning of X 
and of β  is  1Xj,X   and 






























1

01

0

β








k
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The reduced model is **
0 εjβy  , for which we have 

   21.4ββ̂ 2*
0

*
0 ynSSandy     

(see Problem 4.13). Then   2
01 yXβ̂ββ ynSS  , which is the same as 

(4.6). 

4.3: F Test in terms of 2R  

The F statistics in Sections 4.1 and 4.2 can be expressed in terms of 2R  
as defined in (3.56). 

Theorem 4.3: The F statistics in (4.5) and (4.17) for testing 0β: 10 H  
and 0β: 20 H , respectively, can be written in terms of 2R  as 

 
   

 22.4
1yXβ̂yy

yXβ̂ 2





kn

kyn
F 

     23.4
11 2

2




knR

kR
  

And 

   
 24.4

1yXβ̂yy

yXβ̂yXβ̂ 1
*
1









 




kn

h
F 

 
   

 25.4
11 2

22





knR

hRR r 

where 2R for the full model is given in (3.56) as    222 yyyXβ̂ ynynR   
and 2

rR  for the reduced model **
11 εβXy   in (4.8) is similarly defined as 

 26.4
yy

yXβ̂
2

2
1

*
12

yn

yn
Rr 




  

Proof: Adding and subtracting 2yn  in the denominator of (4.22) gives 

 
   1yXβ̂yy

yXβ̂

][ 22

2






knynyn

kyn
F 

Dividing numerator and denominator by 2yy yn  yields (4.23). For 
(4.25), see Problem 4.15. 
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In (4.25), we see that the F test for 0β: 20 H  is equivalent to a test for 
significant reduction in 2R . Note also that since 0F  in (4.25), we 
have 22

rRR  , which is an additional confirmation of property 3 in 
Section 3.7, namely, that adding an x to the model increases 2R . 

Example 4.3: For the dependent variable 2y  in the chemical reaction 
data in Table 3.4, a full model with nine x’s and a reduced model with 
three x’s were considered in Example 4.2a. The values of 2R  for the 
full model and reduced model are 0.8485 and 0.3771, respectively. To 
test the significance of the increase in 2R  from 0.3771 to 0.8485, we 
use (4.25) 

 
   

 
  98485.01

63771.08485.0

11 2

22










knR

hRR
F r  

6671.4
01683.0

07857.0
  

which is the same as the value obtained for F in Example 4.2a. 

Applications using MATLAB Example 4.3 [The program name ta13.m] 
clc  
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];y2=data(:,2);x1=data(:,3);x2=data(:,4); 
      x3=data(:,5); 
% full model 
x=[ones(size(x1)) x1 x2 x3 x1.^2 x2.^2 x3.^2 x1.*x2 x1.*x3 x2.*x3]; 
beta=x\y2;n=length(x1);betaxy2corefac=beta'*x'*y2-n*mean(y2)^2; 
SSE=y2'*y2-beta'*x'*y2; 
% reduced model 
xr=[ones(size(x1)) x1 x2 x3];betar=xr\y2; 
betarxy2corefac=betar'*xr'*y2-n*mean(y2)^2; 
SSEr=y2'*y2-betar'*xr'*y2; 
% Compute R square for full model 
SSR=betaxy2corefac;SST=SSR+SSE;RS=SSR/SST 
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% F-test by using R square for redused model 
SSRr=betarxy2corefac;SSTr=SSRr+SSEr;RSr=SSRr/SSTr 
FR=((RS-RSr)/6)/((1-RS)/9) 

Ans.  

 RS = 

        0.84849 

 RSr = 

         0.37707 

 FR = 

         4.6671 

 
4.4: The General Linear Hypothesis Test for 
 0C β:0 H and tC β:0 H   

We discuss a test for 0Cβ:0 H  in Section 4.4.1 and a test for 
tCβ:0 H  in Section 4.4.2. 

4.4.1: The Test for 0C β:0 H  

The hypothesis 0C β:0 H , where C is a known  1 kq  coefficient 
matrix of rank 1 kq , is known as the general linear hypothesis. The 
alternative hypothesis is 0C β:1 H . The formulation 0C β:0 H  
includes as special cases the hypotheses in Sections 4.1 and 4.2. The 
hypothesis 0β: 10 H  in Section 4.1 can be expressed in the form 

0C β:0 H  as follows 

  0β
β

I,0C β: 1
1

0
0 











kH  

where 0 is a 1k  vector. Similarly, the hypothesis 0β: 20 H  in Section 
4.2 can be expressed in the form 0C β:0 H : 

  0β
β

β
IO,C β: 2

2

1
0 








 hH  

where the matrix O is  1 hkh  and the vector 0 is 1h . 
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The formulation 0Cβ:0 H  also allows for more general hypotheses 
such as 

0322: 41432210  βββββββH  

which can be expressed as follows: 
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0

0

10010

32100

00120

:

4

3

2

1

0

0







H  

As another illustration, the hypothesis 43210 : ββββH   can be 
expressed in terms of three differences, 0: 4332210  ββββββH ,  
or, equivalently, as 0Cβ:0 H : 
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11000

01100
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:
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2

1

0

0







H  

In the following theorem, we give the sums of squares used in the test 
of 0Cβ:0 H  versus 0Cβ:1 H , along with the properties of these 
sums of squares. We denote the sum of squares due to Cβ  (due to the 
hypothesis) as SSH.  

Theorem 4.4a: If y is distributed  Iβ,X 2nN  and C is  1 kq  of rank 
1 kq , then 

(i) β̂C  is   ]CXXCβ,C 12[  qN . 

(ii)     2112 β̂CCXXCβ̂C ][   


SSH  is  
2

, q , 

 where     211 2CβCXXCCβ ][    . 
(iii)   212 yXXXXIy ][   SSE  is  

2
1 kn . 

(iv) SSH and SSE are independent. 
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Proof: 

(i) By Theorem 3.6b (i), β̂  is   ]XXβ, 12
1[


 kN .  

(ii) Since     CXXCβ̂C 12  Cov  and     ICXXC]CXX[C 21112    . 

(iii) This was established in Theorem 4.1b(ii). 

(iv) Since β̂  and SSE are independent [see Theorem 3.6b(iii)], 

  β̂CCXXCCβ̂ 11 ][  SSH  and SSE are also independent (Seber 
1977, pp. 17, 33–34). For a more formal proof, see Problem 4.16. 

The F test for 0Cβ:0 H  versus 0Cβ:1 H is given in the following 
theorem. 

Theorem 4.4b: Let y be  Iβ,X 2nN  and define the statistic 

 1


knSSE

qSSH
F  

   
   27.4

1

β̂CCXXCβ̂C 11 ][






knSSE

q 

where C is  1 kq  of rank 1 kq , and   yXXXβ̂ 1   . The distribution 
of F in (4.27) is as follows: 

(i) If 0Cβ:0 H  is false, then 

F is distributed as  ,1,  knqF , 

Where     211 2CβCXXCCβ ][     

(ii) If 0Cβ:0 H  is true, then F is distributed as  1,  knqF . 

Proof: 

(i) This result follows from Theorem 4.4a. 

(ii) This result follows from Theorem 4.4a. 

The F test for 0Cβ:0 H  in Theorem 4.4b is usually called the general 
linear hypothesis test. The degrees of freedom q is the number of linear 
combinations in Cβ . The test for 0Cβ:0 H  is carried out as follows. 
Reject 0H  if  1,,  knqFF  , where F is as given in (4.27) and 
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 1,,  knqF   is the upper   percentage point of the (central) F 

distribution. Alternatively, we can reject 0H  if p  where p is the p-
value for F. [The p-value is the probability that  1,  knqF  exceeds the 

observed F value.] Since   CXXC 1    is positive definite (see Problem 

4.17), 0  if 0H  is false, where     211 2CβCXXCCβ ][    . Hence 
we reject 0Cβ:0 H  for large values of F. 

In Theorems 4.4a and 4.4b, SSH could be written as   0β̂C  

     0β̂CCXXC 11 ][ , which is the squared distance between β̂C  and the 
hypothesized value of C β . The distance is standardized by the 

covariance matrix of β̂C . Intuitively, if 0H  is true, β̂C  tends to be close 
to 0 so that the numerator of F in (4.27) is small. On the other hand, if 
Cβ  is very different from 0, the numerator of F tends to be large. 

The expected mean squares for the F test are given by 

   
 28.4

1

CβCXXCCβ
1

2

112 ][




























 





kn

SSE
E

qq

SSH
E

 

These expected mean squares provide additional motivation for 
rejecting 0H  for large values of F. If 0H  is true, both expected mean 
squares are equal to 2 ; if 0H  is false,    ][ 1 qnSSEEqSSHE . 

The F statistic in (4.27) is invariant to full-rank linear transformations 
on the x’s or on y. 

Theorem 4.4c: Let cyz   and XKW  , where K is nonsingular (see 
Corollary 1 to Theorem 3.3e for the form of K). The F statistic in 
(4.27) is unchanged by these transformations. 

Proof: See Problem 4.18. 

In the first paragraph of this section, it was noted that the hypothesis 
0β: 20 H  can be expressed in the form 0Cβ:0 H . Since we used a 

full–reduced-model approach to develop the test for 0β: 20 H , we 
expect that the general linear hypothesis test is also a full–reduced-
model test. This is confirmed in the following theorem. 
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Theorem 4.4d: The F test in Theorem 4.4b for the general linear 
hypothesis 0Cβ:0 H  is a full–reduced-model test. 

Proof: The reduced model under 0H  is 

 29.40CβtosubjectεXβy  

Using Lagrange multipliers, it can be shown (see Problem 4.19) that 
the estimator for β  in this reduced model is 

     30.4β̂CCXXCCXXβ̂β̂ 111 ][  c 

where   yXXXβ̂ 1    is estimated from the full model unrestricted by 
the hypothesis and the subscript c in cβ̂  indicates that β  is estimated 
subject to the constraint 0Cβ  . In (4.29), the X matrix for the reduced 
model is unchanged from the full model, and the regression sum of 
squares for the reduced model is therefore yXβ̂ c (for a more formal 

justification of yXβ̂ c , see Problem 4.20). Hence, the regression sum of 
squares due to the hypothesis is 

 31.4yXβ̂yXβ̂  cSSH 

By substituting cβ̂  [as given by (4.30)] into (4.31), we obtain 

     32.4β̂CCXXCβ̂C 11 ][  


SSH 

(see Problem 4.21), thus establishing that the F test in Theorem 4.4b 
for 0Cβ:0 H , is a full–reduced-model test. 

Example 4.4.1a: In many cases, the hypothesis can be incorporated 
directly into the model to obtain the reduced model. Suppose that the 
full model is 

iiiii xxxy   3322110  

and the hypothesis is 210 β2β: H . Then the reduced model becomes 

iiiii xxxy   3322120 2  

  iiciicc xxx   332120 2  

where ci  indicates a parameter subject to the constraint 21 β2β  .  
The full model and reduced model could be fit, and the difference  
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  yXβ̂yXβ̂ββ 1
*
112 

SS  would be the same as SSH in (4.32). 

If 0Cβ  , the estimator cβ̂  in (4.30) is a biased estimator of β , but the 

variances of the cjβ̂ ’s in cβ̂  are reduced, as shown in the following 

theorem. 

Theorem 4.4e: The mean vector and covariance matrix of cβ̂  in (4.30) 
are as follows: 

         33.4CβCXXCCXXββ̂ 111 ][  cEi 

             34.4XXCCXXCCXXXXβ̂ 1111212 ][   cCovii  

Proof: See Problem 4.22. 

Since the second matrix on the right side of (4.34) is positive semi-
definite, the diagonal elements of  cCov β̂  are less than those of 

    12 XXβ̂ cCov ; that is,    jcj VarVar β̂β̂   for j = 0, 1, 2, … , k, where 

cjβ̂  is the jth diagonal element of  cCov β̂  in (4.34). This is analogous to 

the inequality    jj VarVar β̂β̂*   in Theorem 3.9c, where *β̂ j  is from the 

reduced model. 

Example 4.4.1b: Consider the dependent variable 1y  in the chemical 
reaction data in Table 3.4. For the model   33221101 xxxy  , 
we test 3210 22:  H  using (4.27) in Theorem 4.4b. To express 0H  
in the form 0Cβ  , the matrix C becomes 














1200

0110
C  

and we obtain 

 











6118.0

1214.0
β̂C  

  










 

044974.0006943.0

006943.0003366.0
CXXC 1  

3449.5

2
6118.0

1214.0

044974.0006943.0

006943.0003366.0

6118.0

1214.0


































F  
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6776.2
3449.5

262301.28
  

Which has p = 0.101 

Applications using MATLAB Example 4.4.1b 
 [The program name ta14.m]  

clc  
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];y2=data(:,2);x1=data(:,3);x2=data(:,4); 
      x3=data(:,5); 
y1=data(:,1);x1=data(:,3);x2=data(:,4);x3=data(:,5); 
% Test of H0: 2beta1=2beta2=beta3 
x=[ones(size(x1)) x1 x2 x3];beta=x\y1 
C=[0 1 -1 0;0 0 2 -1],Cbeta=C*beta,A=C*inv(x'*x)*C' 
SSE=y1'*y1-beta'*x'*y1,MSE=SSE/15 
F=(Cbeta'*inv(A)*Cbeta/2)/MSE,p=1-fcdf(F,2,15) 

beta = 

         332.11 

         -1.546 

         -1.4246 

         -2.2374 

C = 

     0     1    -1     0 

     0     0     2    -1 

Cbeta = 

           -0.1214 

           -0.61175 

SSE = 

         80.174 

A = 

      0.0033664   -0.0069425 

     -0.0069425     0.044974 

MSE = 

           5.3449 

F = 

       2.6776 

p = 

       0.1013 
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4.4.2: The Test for tCβ:0 H  

The test for tCβ:0 H  is a straightforward extension of the test for 
0Cβ:0 H .With the additional flexibility provided by t, we can test 

hypotheses such as 5: 120  H . We assume that the system of 
equations tCβ   is consistent, that is, that rank(C) = rank(C, t). The 
requisite sums of squares and their properties are given in the 
following theorem, which is analogous to Theorem 4.4a. 

Theorem 4.4f: If y is  Iβ,X 2nN  and C is  1 kq  of rank 1 kq , 
then 

(i) tβ̂C   is   ][ CXXCt,Cβ 12  nN . 

(ii)       2112 tβ̂CCXXCtβ̂C ][  


 SSH  is  
2

, q  

where       211 2tCβCXXCtCβ ][    .  

(iii)   212 yXXXXIy ][   SSE  is  
2

1 kn . 

(iv) SSH and SSE are independent. 

Proof: 

(i) By Theorem 3.6b (i), β̂  is   ][ 12
1 XXβ, 
 kN . 

(ii) By part (i),     CXXCtβ̂C 12  Cov . The result follows as 
in the proof of Theorem 4.4a (ii). 

(iii) See Theorem 4.1b (ii). 

(iv) Since β̂  and SSE are independent [see Theorem 3.6b (iii)], 
SSH and SSE are independent [see Seber (1977, pp. 17, 33–
34)]. For a more formal proof, see Problem 4.23. 

An F test for tCβ:0 H  versus tCβ:0 H  is given in the following 
theorem, which is analogous to Theorem 4.4b. 

Theorem 4.4g: Let y be  Iβ,X 2nN  and define an F statistic as follows: 

 1


knSSE

qSSH
F  

     
   35.4

1

tβ̂CCXXCtβ̂C 11 ][








knSSE

q 
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where   yXXXβ̂ 1   . The distribution of F in (4.35) is as follows: 

 (i) If tCβ:0 H  is false, then 

F is distributed as  ,1,  knqF , 

  Where       211 2tCβCXXCtCβ ][     

 (ii) If tCβ:0 H  is true, then 0  and 

F is distributed as  1,  knqF . 

Proof: 

(i) This result follows from Theorem 4.4f. 
(ii) This result follows from Theorem 4.4f. 

The test for tCβ:0 H  is carried out as follows. Reject 0H  if 

 1,,  knqFF  , where  1,,  knqF   is the upper   percentage point 

of the central F distribution. Alternatively, we can reject 0H  if p , 
where p is the p-value for F. 

The expected mean squares for the F test are given by 

     
 36.4

1

tCβCXXCtCβ
1

2

112 ][




























 





kn

SSE
E

qq

SSH
E

 

By extension of Theorem 4.4d, the F test for tCβ:0 H  in Theorem 
4.4g is a full–reduced-model test (see Problem 4.24 for a partial result). 

4.5: Tests on j  and βa  

We consider tests for a single j  or a single linear combination βa  in 

Section 4.5.1 and tests for several j ’s or several βa ’s in Section 4.5.2. 

4.5.1: Testing One j  or One βa  

Tests for an individual j can be obtained using either the full–reduced- 

model approach in Section 4.2 or the general linear hypothesis 
approach in Section 4.4 The test statistic for 0:0 kH   using a full–
reduced–model is given in (4.20) as 
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   37.4
1

yXβ̂yXβ̂ 1
*
1







knSSE
F 

which is distributed as  1,1  knF  if 0H  is true. In this case, k is the last 

β , so that b is partitioned as 









k
1β

β  and X is partitioned as 

 kx,XX 1 , where kx  is the last column of X. Then 1X  in the reduced 
model **

11 εβy  X  contains all the columns of X except the last. 

To test 0:0 jH   by means of the general linear hypothesis test of 

0Cβ:0 H  (Section 4.4.1), we first consider a test of 0βa:0 H  for a 
single linear combination, for example,  β1,3,2,2,0βa  . Using a   
in place of the matrix C in 0Cβ  , we have q = 1, and (4.27) becomes 

   
 

 
 

 38.4
aXXa

β̂a

1

β̂aaXXaβ̂a
12

211 ][













SknSSE
F 

where  12  knSSES .The F statistic in (4.38) is distributed as 

 1,1  knF  if 0βa:0 H  is true. To test 0:0 jH   using (4.38), we 

define  0,,0,1,0,,0a  , where the 1 is in the jth position. 
This gives 

 39.4
ˆ

2

2

jj

j

gS
F


 

where jjg  is the jth diagonal element of   1XX  . If 0:0 jH   is true, F 

in (4.39) is distributed as  1,1  knF . We reject 0:0 jH  if 

 1,1,  knFF   or, equivalently, if p , where p is the p-value for F. 

By Theorem 4.4d (see also Problem 4.25), the F statistics in (4.37) and 
(4.39) are the same (for j = k). This confirms that (4.39) tests 

0:0 jH   adjusted for the other  ’s. 

Since the F statistic in (4.39) has 1 and n-k-1 degrees of freedom, we 
can equivalently use the t statistic 

 40.4
ˆ

jj

j
j

gS
t
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to test the effect of j  above and beyond the other  ’s . We reject 

0:0 jH   if 1,2  knj tt   or, equivalently, if p , where p is the p-

value. For a two-tailed t test such as this one, the p-value is twice the 
probability that  1 knt  exceeds the absolute value of the observed t. 

For j = 1, (4.40) becomes 1111
ˆ gSt  , which is not the same as 

  ][
1

2
1

ˆ  


n

i i xxSt   in (2.14). Unless the x’s are orthogonal, 

  
 

n

i i xxg
1

21
11 . 

4.5.2: Testing Several j ’s or ia ’s 

We sometimes want to carry out several separate tests rather than a 
single joint test of the hypotheses. For example, the test in (4.40) might 
be carried out separately for each i , i = 1, . . . , k rather than the joint 
test of 0β: 10 H  in (4.5). Similarly, we might want to carry out 
separate tests for several (say, d) ia ’s using (4.38) rather than the 
joint test of 0Cβ:0 H  using (4.27), where 





















da

a

a

C 2

1


 

In such situations there are two different   levels, the overall or fami-
lywise   level  f  and the   level for each test or comparisonwise   

level  c . In some cases researchers desire to control  c  when doing 
several tests (Saville 1990), and so no changes are needed in the testing 
procedure. In other cases, the desire is to control  f . In yet other 

cases, especially those involving thousands of separate tests (e.g., 
microarray data), it makes sense to control other quantities such as the 
false discovery rate (Benjamini and Hochberg 1995, Benjamini and 
Yekutieli 2001). This will not be discussed further here. We consider 
two ways to control  f  when several tests are made. 

The first of these methods is the Bonferroni approach (Bonferroni 
1936), which reduces ac for each test, so that  f  is less than the 

desired level of * . As an example, suppose that we carry out the k 
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tests of 0:0 jjH  , j = 1, 2, . . . , k. Let jE  be the event that the jth test 

rejects jH 0  when it is true, where   cjEP  . The overall  f  can be 

defined as 

 trueareHallwhenHoneleastatrejectP jjf 00  

 kEorEorEP 21  

Expressing this more formally and applying the Bonferroni inequality, 
we obtain 

 
   41.4

1 1

21











  

k

j

k

j ccj

kf

kEP

EEEP



 
 

We can thus ensure that  f  is less than or equal to the desired  *   

by simply setting kc
*  . Since  f  in (4.41) is at most  * , the 

Bonferroni procedure is a conservative approach. 

To test 0:0 jjH  , j = 1, 2, . . . , k, with * f , we use (4.40) 

 42.4ˆ
jjjj gSt  

and reject jH 0  if 1,2* 


knkj tt
 . Bonferroni critical values vk

t
,2*  are 

available in Bailey (1977). See also Rencher (2002, pp. 562–565). The 
critical values vk

t
,2*  can also be found using many software packages. 

Alternatively, we can carry out the test by the use of p-values and 
reject jH 0  if kp * . 

More generally, to test 0βa:0 iiH  for di ,,2,1   with * f , we use 

(4.38) 

     43.4
β̂aaXXaβ̂a

2

11 ][
S

F iiii
i






 

and reject iH 0  if 
1,1,* 


kndi FF

 . The critical values 
d

F *
are available in 

many software packages. To use p-values, reject iH 0  if dp * . 

The above Bonferroni procedures do not require independence of the 

ĵ ’s; they are valid for any covariance structure on the ĵ ’s. However, 
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the logic of the Bonferroni procedure for testing 0βa:0 iiH for 
di ,,2,1   requires that the coefficient vectors 1a , 2a , . . . , da  be 

specified before seeing the data. If we wish to choose values of ia  after 
looking at the data, we must use the Scheffe´ procedure described 
below. Modifications of the Bonferroni approach have been proposed 
that are less conservative but still control f . For examples of these 

modified procedures, see Holm (1979), Shaffer (1986), Simes (1986), 
Holland and Copenhaver (1987), Hochberg (1988), Hommel (1988), 
Rom (1990), and Rencher (1995, Section 3.4.4). Comparisons of these 
procedures have been made by Holland (1991) and Broadbent (1993). 

A second approach to controlling f  due to Scheffe´ (1953; 1959, p. 

68)  yields simultaneous tests of 0βa:0 H  for all possible values of a 
including those chosen after looking at the data. We could also test 

tβa:0 H for arbitrary t. For any given a, the hypothesis 0βa:0 H  

is tested as usual by (4.38) 

   
2

11 β̂aaXXaβ̂a ][
S

F





 

 
 

 44.4
aXXa

β̂a
12

2





S

 

But the test proceeds by finding a critical value large enough to hold 
for all possible a. Accordingly, we now find the distribution of Famax . 

Theorem 4.5: 

(i) The maximum value of F in (4.44) is given by 

 
 

 45.4
β̂XXβ̂

aXXa

β̂a
max

212

2

a SS







  

(ii) If y is  Iβ,X 2nN , then   21β̂XXβ̂ Sk   is distributed as  1,1  knkF . 

Thus 

 
   1aXXa

β̂a
max

12

2

a 


 kS
 

is distributed as  1,1  knkF . 
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Proof: 

(i) Using the quotient rule, chain rule, we differentiate  /2
β̂a   

  aXXa 12 S   with respect to a and set the result equal to 0:  

 
 

       
 

0
a]XXa[

aXX2β̂aβ̂β̂a2a]XXa[

aXXa

β̂a

a
21

121

1

2

















  

Multiplying by   β̂a2a]XXa[ 21    and treating 11  matrices as 
scalars, we obtain 

    0aXXβ̂aβ̂a]XXa[ 11    

 
β̂XXβ̂XX

β̂a

aXXa
a

1









c
 

where   β̂aaXXa 1  c . Substituting β̂XXa  c  into (4.44) gives 

    
 
 

 
 

 
222

22

12

2

12

2

a

β̂XXβ̂

β̂XXβ̂

β̂XXβ̂

β̂XXXXXXβ̂

β̂XXβ̂

aXXa

β̂a
max

ScS

c

ccS

c

S

















  

(ii) Using 1IC  k  in (4.27), we have, by Theorem 4.4b (ii), that 

  21

β̂XXβ̂

Sk
F




  is distributed as  1,1  knkF . 

By Theorem 4.5(ii), we have 

 
   

*

1,1,*12

2

a
][

1aXXa

β̂a
max 







 knk
F

kS
P  

 
 

  *

1,1,*12

2

a
][ 1

aXXa

β̂a
max 







 knk
Fk

S
P  

Thus, to test 0βa:0 H  for any and all a (including values of a chosen 
after seeing the data) with * f , we calculate F in (4.44) and reject 

0H  if  
1,1,*1



knk

FkF


. 

To test for individual j ’s using Scheffe´’s procedure, we set 

 0,,0,1,0,,0a   with 1a  in the jth position. Then F in (4.44) reduces 
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to jjj gSF 22̂ in (4.39), and the square root is jjjj gSt ̂  in (4.42). 

By Theorem 4.5, we reject 0βa:0  jH   if  
1,1,*1



knkj Fkt


 .  

For practical purposes  ][ 3 nk , we have  

 
1,1,*1,2* 1



knkknk

Fkt


 

and thus the Bonferroni tests for individual j ’s in (4.42) are usually 

more powerful than the Scheffe´ tests. On the other hand, for a large 
number of linear combinations βa  , the Scheffe´ test is better since 

 
1,1,*1



knk

Fk


 is constant, while the critical value 1,*  knd
F

  for 

Bonferroni tests in (4.43) increases with the number of tests d and 
eventually exceeds the critical value for Scheffe´ tests. 

It has been assumed that the tests in this section for 0:0 jH   are 

carried out without regard to whether the overall hypothesis 0β: 10 H  

is rejected. However, if the test statistics jjjj gSt ̂  , j = 1, 2, . . . , k, 

in (4.42) are calculated only if 0β: 10 H  is rejected using F in (4.5), 
then clearly f  is reduced and the conservative critical values 

1,2* knk
t


 and  
1,1,*1



knk

Fk


 become even more conservative. 

Using this protected testing principle (Hocking 1996, p. 106), we can 
even use the critical value 

1,2* kn
t


 for all k tests and f  will still be 

close to * . [For illustrations of this familywise error rate structure, see 
Hummel and sligo (1971) and Rencher and Scott (1990).] A similar 
statement can be made for testing the overall hypothesis 0Cβ:0 H  
followed by t tests or F tests of 0β:0 icH using the rows of C.  

Example 4.5.2: We test 0: 101 H  and 0: 202 H  for the data in 
Table 3.1. Using (4.42) and the results in Examples 3.3.1(a), 3.33 and 
4.1, we have 

448.4
67709.0

0118.3

16207.08288.2

0118.3ˆ

11

1
1 

gS
t


 

643.2
48629.0

2855.1

08360.08288.2

2855.1ˆ

22

2
2 







gS
t
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Using 05.0  for each test, we reject both 01H  and 02H  because 
262.29,025.0 t . The (two-sided) p-values are 0.00160 and 0.0268, respe-

ctively. If we use 025.0205.0   for a Bonferroni test, we would not 
reject 02H  since 025.00268.0 p . However, using the protected testing 
principle, we would reject 02H  because the overall regression hypoth-
esis 0β: 10 H was rejected in Example 4.1. 

Applications using MATLAB Example 4.5.2 
 [The program name ta15.m]  

clc  
y=[2 3 2 7 6 8 10 7 8 12 11 14]'; 
x1=[0 2 2 2 4 4 4 6 6 6 8 8]'; 
x2=[2 6 7 5 9 8 7 10 11 9 15 13]'; 
n=length(x1);k=2;x=[ones(size(x1)) x1 x2]; 
beta=x\y,Y=x*beta;e=Y-y;MSE=e'*e/(n-3); 
% test of t 
d=sqrt(diag(inv(x'*x))) 
S=sqrt(MSE) 
g11=d(2)^2,g22=d(3)^2 
t1=beta(2)/(S*sqrt(g11)) 
t2=beta(3)/(S*sqrt(g22)) 
p1=(1-tcdf(abs(t1),n-k-1))*2 
p2=(1-tcdf(abs(t2),n-k-1))*2 

 
beta = 
       5.3754 
       3.0118 
      -1.2855 

 
d = 
       0.9873 
      0.40257 
      0.28913 

 
S = 
       1.6819 

 
g11 = 
      0.16207 

 
g22 = 
     0.083596 

t1 = 
       4.4482 

t2 = 
      -2.6435 

p1 = 
    0.0016044 

p2 = 
     0.026761 
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4.6: Confidence Intervals and Prediction Intervals 

In this section we consider a confidence region for β , confidence 
intervals for jβ , β̂a , E(y), and 2 , and prediction intervals for future 

observations. We assume throughout Section 4.6 that y is  Iβ,X 2nN . 

4.6.1 Confidence Region for β  

If C is equal to I and t is equal to β  in (4.35), q becomes k +1, we 
obtain a central F distribution, and we can make the probability 
statement 

       


  11ββ̂XXββ̂ ][ 1,1,
2

knkFSkP  

where  12  knSSES . From this statement, a  %1100   joint con-
fidence region for k ,,, 10   in β  is defined to consist of all vectors 
β  that satisfy 

       46.41ββ̂XXββ̂ 1,1,
2




 knkFSk  

For k = 1, this region can be plotted as an ellipse in two dimensions. 
For 1k , the ellipsoidal region in (4.46) is unwieldy to interpret and 
report, and we therefore consider intervals for the individual j ’s. 

4.6.2: Confidence Interval for j  

If 0j , we can subtract j  in (4.40) so that   jjjjj gSt   ˆ  has the 

central t distribution, where jjg  is the jth diagonal element of   1XX  . 

Then 

 



 


  1

ˆ ][ 1,21,2 kn
jj

kn t

jj
gS

tP  

Solving the inequality for j  gives 

      1ˆˆ
1,21,2 jjknjjjjknj gStgStP  

Before taking the sample, the probability that the random interval will 
contain j  is 1 . After taking the sample, the  %1100   confidence 

interval for j  
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 47.4ˆ
1,2 jjknj gSt   

is no longer random, and thus we say that we are  %1100  confident 
that the interval contains j . 

Note that the confidence coefficient 1  holds only for a single confi-
dence interval for one of the j ’s. For confidence intervals for all k + 1 

of the β ’s that hold simultaneously with overall confidence coefficient 
1 , see Section 4.6.7.  

Example 4.6.2: We compute a 95% confidence interval for each j  

using 2y  in the chemical reaction data in Table 3.4 (see Example 4.2a). 
The matrix   1XX   (see the answer to Problem 3.52) and the estimate β̂  
have the following values: 

 























 

02161.000176.000043.002041.0

00176.000408.000127.031252.0

00043.000127.000184.033885.0

02041.031252.033885.037550.65

XX 1  

















 



0338.1

2930.0

4046.0

0353.26

β̂  

For 1 , we obtain by (4.47), 

1115,025.01
ˆ gSt  

   00184.00781.41314.24046.0   

3723.04046.0   

For the other j ’s, we have 

 2459.44,3165.96

2812.700353.26:0




  8481.0,2621.0

5551.02930.0:2




  3115.2,2439.0

27777.10338.1:3




 

The confidence coefficient 0.95 holds for only one of the four confide-
ence intervals. For more than one interval, see Example 4.6.7. 
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Applications using MATLAB Example 4.6.2 
 [The program name ta16.m]  

clc  
clear all 
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];y2=data(:,2);x1=data(:,3);x2=data(:,4); 
      x3=data(:,5);y1=data(:,1);x1=data(:,3);x2=data(:,4);x3=data(:,5); 
% C.I. for parameter beta  
n=length(y1);k=3;V=n-k-1; 
x=[ones(size(x1)) x1 x2 x3];ixx=inv(x'*x),beta=x\y2 
SSE=y2'*y2-beta'*x'*y2,S=sqrt(SSE/(n-4)),alfa=0.05/2; 
t=abs(tinv(alfa,V)) 
clbeta=beta-t*S*sqrt(diag(ixx)); 
cubeta=beta+t*S*sqrt(diag(ixx)); 
CIbeta=[clbeta cubeta] 

Ans.  
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4.6.3: Confidence Interval for βa  

If 0βa  , we can subtract βa  from β̂a  in (4.44) to obtain 

 
  aXXa

βaβ̂a
12

2





S

F  

Which is distributed as  1,1 knF . And 

 
 48.4

aXXa

βaβ̂a
1




S
t 

is distributed as  1knt , and a  %1100  confidence interval for a single 

value of βa  is given by 

     49.4aXXaβ̂a 1
1,2


  St kn 

4.6.4: Confidence Interval for E( y) 

Let   kxxx 002010 ,,,,1x   denote a particular choice of   kxxx ,,,,1x 21  . 

Note that 0x  need not be one of the x’s in the sample; that is, 0x  need 
not be a row of X. If 0x  is very far outside the area covered by the 
sample however, the prediction may be poor. Let 0y  be an observation 
corresponding to 0x . Then 

εβx 00 y  

And [assuming that the model is correct so that   0ε E ] 

   50.4βx00 yE 

We wish to find a confidence interval for  0yE , that is, for the mean of 
the distribution of y-values corresponding to 0x . 

By Corollary 1 to Theorem 3.6d, the minimum variance unbiased 
estimator of  0yE  is given by 

   51.4β̂xˆ 00 yE 

Since (4.50) and (4.51) are of the form βa 0  and β̂a 0 , respectively, we 
obtain a  %1100   confidence interval for   βx00 yE  from (4.49): 
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     52.4xXXxβ̂x 0
1

01,20


  St kn 

The confidence coefficient 1  for the interval in (4.52) holds only 
for a single choice of the vector 0x . For intervals covering several 
values of 0x  or all possible values of 0x , see Section 4.6.7. 

We can express the confidence interval in (4.52) in terms of the 

centered model in Section 3.5,  1011 xxβ iy , where   kxxx 0020101 ,,,x   

and   kxxx ,,,x 211  . [We use the notation 01x  to distinguish this vector 

from   kxxx 002010 ,,,,1x   above.] For the centered model, (4.50), (4.51), 
and (4.52) become 

     53.4xxβ 10110 yE 

     54.4xxβ̂ˆ 10110  yyE 

           55.4xxXXxx
1

xxβ̂ 101
1

1011,21011  
 cckn n

Sty  

Note that in the form shown in (4.55), it is clear that if 01x  is close to 1x  
the interval is narrower; in fact, it is narrowest for xx01  . The width of 
the interval increases as the distance of 01x  from x increases. 

For the special case of simple linear regression, (4.50), (4.51), and 
(4.55) reduce to 

   56.40100 xyE   

   57.4ˆˆˆ 0100 xyE   

 
 
 

 58.4
1ˆˆ

1

2

2
0

2,2010









n

i i

n
xx

xx

n
Stx  

where S is given by (2.11). The width of the interval in (4.58) depends 
on how far 0x  is from x . 

Example 4.6.4: For the grades data in Example 4.2, we find a 95% 
confidence interval for  0yE , where 800 x . Using (4.58), we obtain 
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944.19530

056.5880

18

1
80ˆˆ

2

16,025.010


 St 

  2832.08547.131199.25386.80   

3183.85386.80   

 8569.88,2204.72  

Applications using MATLAB Example 4.6.4 
 [The program name ta17.m]  

clc  
clear all 
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x);E=[ones(size(x)) x];beta=E\y 
Yhad=E*beta;e=y-Yhad;MSE=e'*e/(n-2),S=sqrt(MSE) 
Sxx=sum((x-mean(x)).^2),alfa=0.05/2;V=n-2; 
% C. I. E(Y0)by using formula (4.55) 
x0=[1 80]';x01=80;t=abs(tinv(alfa,V)) 
EY0=x0'*beta 
EY0l=x0'*beta-t*S*sqrt(x0'*inv(x'*x)*x0); 
EY0u=x0'*beta+t*S*sqrt(x0'*inv(x'*x)*x0); 
CIEY058=[EY0l EY0u] 
% C. I. E(Y0)by using formula (4.58) 
EY0=beta(1)+beta(2)*80; 
EY0l=EY0-t*S*sqrt((1/n)+(x01-mean(x))^2/Sxx); 
EY0u=EY0+t*S*sqrt((1/n)+(x01-mean(x))^2/Sxx); 
CIEY055=[EY0l EY0u] 

Ans. 
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4.6.5: Prediction Interval for a Future Observation 

A “confidence interval” for a future observation 0y  corresponding to 

0x  is called a prediction interval. We speak of a prediction interval 
rather than a confidence interval because 0y  is an individual observ-
ation and is thereby a random variable rather than a parameter. To be 

 %1100  confident that the interval contains 0y , the prediction inter-
val will clearly have to be wider than a confidence interval for the par-
ameter  0yE .  

Since 000 βx y , we predict 0y  by β̂xˆ 00 y , which is also the estimator 
of   βx00 yE . The random variables 0y  and 0ŷ  are independent because 

0y  is a future observation to be obtained independently of the n observ-

ations used to compute β̂xˆ 00 y . Hence the variance of 00 ŷy   is 

     β̂xβxβ̂xˆ 0000000  VaryVaryyVar  

Since βx0  is a constant, this becomes 

        0
1

0
22

0000 xXXxβ̂xˆ   VarVaryyVar  

   59.4xXXx1 ][ 0
1

0
2   

which is estimated by   ][ 0
1

0
2 xXXx1 S . It can be shown that 

  0ˆ00  yyE  and that 2S  is independent of both 0y  and β̂xˆ 00 y . 
Therefore, the t statistic 

 
 60.4

xXXx1

0ˆ

0
1

0

00






S

yy
t 

is distributed as  1 knt , and 

 
 

   



   1

xXXx1

ˆ ][ 1,2

0
1

0

00
1,2 knkn t

S

yy
tP  

The inequality can be solved for 0y  to obtain the  %1100  prediction 
interval 

        0
1

01,2000
1

01,20 xXXx1ˆxXXx1ˆ 



   StyySty knkn   

or, using β̂xˆ 00 y , we have 
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     61.4xXXx1β̂x 0
1

01,20


  St kn 

Note that the confidence coefficient 1  for the prediction interval in 
(4.61) holds for only one value of 0x . 

In   0
1

0 xXXx1  , the second term,   0
1

0 xXXx  , is typically much 
smaller than 1 (provided k is much smaller than n) because the 
variance of β̂xˆ 00 y  is much less than the variance of 0y . [To illustrate, 
if XX  were diagonal and 0x  were in the area covered by the rows of 

X, then   0
1

0 xXXx   would be a sum with k +1 terms, each of the form 

 

n

i ijj xx
1

22
0

, which is of the order of 1/n.] Thus prediction intervals for 

0y  are generally much wider than confidence intervals for   βx00 yE . 

In terms of the centered model in Section 3.5, the  %1100   predict-
tion interval in (4.61) becomes 

           62.4xxXXxx
1

1xxβ̂ 101
1

1011,21011  
 cckn n

Sty  

For the case of simple linear regression, (4.61) and (4.62) reduce to 

 
 
 

 63.4
1

1ˆˆ

1

2

2
0

2,2010

 







n

i i

n
xx

xx

n
Stx  

where S is given by (2.11). In (4.63), it is clear that the second and 
third terms within the square root are much smaller than 1 unless 0x  is 
far removed from the interval bounded by the smallest and largest x’s. 

For a prediction interval for the mean of q future observations, see 
Problem 4.30. 

Example 4.6.5: Using the data from Example 2.2, we find a 95% 
prediction interval for 0y  when 80x 0  . Using (4.63), we obtain 

   
 

944.19530

056.5880

18

1
180ˆˆ

2

16,025.010


 St  

  0393.18547.131199.25386.80    

5258.305386.80   

 0644.111,0128.50  
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Note that the prediction interval for 0y  here is much wider than the 
confidence interval for  0yE  in Example 4.6.4. 

Applications using MATLAB Example 4.6.5 
 [The program name ta18.m]  

clc  
clear all 
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x);E=[ones(size(x)) x];beta=E\y; 
Yhad=E*beta;e=y-Yhad;MSE=e'*e/(n-2);S=sqrt(MSE); 
Sxx=sum((x-mean(x)).^2);alfa=0.05/2;V=n-2; 
t=abs(tinv(alfa,V)); 
% Prediction Interval for y0 
x0=80;Sxx=sum((x-mean(x)).^2),y0=beta(1)+x0*beta(2) 
PIL=y0-t*S*sqrt(1+1/n+(x0-mean(x))^2/Sxx); 
PIU=y0+t*S*sqrt(1+1/n+(x0-mean(x))^2/Sxx); 
PI=[PIL PIU] 

Ans. 

 

 
4.6.6: Confidence Interval for 2  

By Theorem 3.6b(ii),   221 Skn   is  
2

1kn . Therefore 

 
 

   64.41
1 ][ 2

1,22

2
2

1,21 


  


  knkn

Skn
P 

where  
2

1,2 kn  is the upper 2  percentage point of the chi-square 

distribution and  
2

1,21  kn  is the lower 2  percentage point. Solving 

the inequality for 2  yields the  %1100   confidence interval 

 
 

 
 

 65.4
11

2
1,21

2
2

2
1,2

2








knkn

SknSkn
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A  %1100  confidence interval for   is given by 

 
 

 
 

 66.4
11

2
1,21

2

2
1,2

2








knkn

SknSkn

 



 

Example 4.6.6: Using the data from Example 2.2, we find a 95% predi 
confidence interval for 2  and   . Using (4.65), we obtain 

 
 

 
 
2

16,975.0

2
2

2
16,025.0

2 1616





SS

  

     
9077.6

95.19116

845.28

95.19116 2     

61.44447.106 2    

Using (4.66), we obtain 

 
 

 
 
2

16,975.0

2

2
16,025.0

2 1616





SS

  

     
9077.6

95.19116

845.28

95.19116
   

086.21319.10 2    

Applications using MATLAB Example 4.6.6 
 [The program name ta19.m]  

clc  
clear all 
y=[95 80 0 0 79,77 72 66 98 90 0 95 35 50 72 55 75 66]'; 
x=[96 77 0 0 78 64 89 47 90 93 18 86 0 30 59 77 74 67]'; 
n=length(x);k=1;E=[ones(size(x)) x];beta=E\y;Yhad=E*beta; 
e=y-Yhad;MSE=e'*e/(n-2);Ssquare=MSE,alfa=0.05/2;V=n-k-1; 
% Confidence Interval for Sigma^2 
chi1=chi2inv(1-alfa,16),chi2=chi2inv(alfa,16) 
SigmasL=(n-2)*Ssquare/chi1;SigmasU=(n-2)*Ssquare/chi2; 
CISigmas=[SigmasL SigmasU] 
% Confidence Interval for Sigma 
SigmaL=sqrt((n-2)*Ssquare/chi1);SigmaU=sqrt((n-2)*Ssquare/chi2); 
CISigma=[SigmaL SigmaU] 
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Ans.  

 
 

4.6.7: Simultaneous Intervals 

By analogy to the discussion of testing several hypotheses (Section 
4.5.2), when several intervals are computed, two confidence coefficie-
nts can be considered: familywise confidence  f1  and individual 

confidence  c1 . Familywise confidence of  f1  means that we are 

 %1100 f  confident that every interval contains its respective 

parameter. 

In some cases, our goal is simply to control  c1  for each one of 
several confidence or prediction intervals so that no changes are 
needed to expressions (4.47), (4.49), (4.52), and (4.61). In other cases 
the desire is to control  f1 . To do so, both the Bonferroni and 

Scheffe´ methods can be adapted to the situation of multiple intervals. 
In yet other cases we may want to control other properties of multiple 
intervals (Benjamini and Yekutieli 2005). 

The Bonferroni procedure increases the width of each individual 
interval so that  f1  for the set of intervals is greater than or equal to 

the desired value  *1  . As an example suppose that it is desired to 
calculate the k confidence intervals for k ,,, 21  . Let jE  be the 

event that the jth interval includes j , and c
jE  be the complement of 

that event. Then by definition 

 kf EEEP  211   

 c
k

cc EEEP  211   

Assuming that   c
c
jEP   for j = 1, . . . , k, the Bonferroni inequality 

now implies that 
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cf k  11  

Hence we can ensure that f1  is greater than or equal to the desired 
*1   by setting kc

*11    for the individual intervals. 

Using this approach, Bonferroni confidence intervals for k ,,, 21   
are given by 

 67.4,,2,1,ˆ
1,2* kjgSt jjknkj 


 

where jjg  is the jth element of   1XX  . Bonferroni t values 
k

t
2*

are 

available in Bailey (1977) and can also be obtained in many software 
programs. For example, a probability calculator for the t, the F, and 
other distributions is available free from NCSS (download at 
www.ncss.com). 

Similarly for d linear functions βa,β,aβ,a 21 d  (chosen before seeing the 
data), Bonferroni confidence intervals are given by 

   68.4,,2,1,aXXaβ̂a 1

1,2* diS iikndi t  






 

 

These intervals hold simultaneously with familywise confidence of at 
least *1  . 

Bonferroni confidence intervals for   βx00 yE  for a few values of 0x , 
say, d00201 x,,x,x   are given by 

   69.4,,2,1,xXXxβ̂x 0
1

01,2*0 diS iikndi t  






 

 

[Note that 01x  here differs from 01x  in (4.53)–(4.55).] 

For simultaneous prediction of d new observations dyyy 00201 ,,,   at d 
values of 0x , say, d00201 x,,x,x  , we can use the Bonferroni prediction 
intervals 

   70.4,,2,1,xXXx1β̂x 0
1

01,2*0 diS iikndi t  






 

 

[see (4.61) and (4.69)]. 

Simultaneous Scheffe´ confidence intervals for all possible linear 
functions βa  (including those chosen after seeing the data) can be 
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based on the distribution of F
a

max [Theorem 4.5(ii)]. Thus a conserva-

tive confidence interval for any and all βa  is 

     71.4aXXa1β̂a 1

1,1,*








 


knk

FkS


 

The (potentially infinite number of) intervals in (4.71) have an overall 
confidence coefficient of at least *1  . For a few linear functions, the 
intervals in (4.68) will be narrower, but for a large number of linear 
functions, the intervals in (4.71) will be narrower. A comparison of 






  1,2* knd

t


 and     aXXa1 1

1,1,*








 


knk

Fk


 will show which is 

preferred in a given case. 

For confidence limits for   βa0 yE  for all possible values of 0x , we 
use (4.71): 

     72.4xXXx1β̂x 0
1

01,1,*0







 


knk

FkS
 

These intervals hold simultaneously with a confidence coefficient of 
*1  . Thus, (4.72) becomes a confidence region that can be applied to 

the entire regression surface for all values of 0x . The intervals in (4.71) 
and (4.72) are due to Scheffe´ (1953; 1959, p. 68) and Working and 
Hotelling (1929). 

Scheffe´-type prediction intervals for dyyy 00201 ,,,   are given by 

   73.4,,2,1,]xXXx1[dβ̂x 0
1

01,,*0 diFS iikhdi  






 

 

(see Problem 4.32). These d prediction intervals hold simultaneously 
with overall confidence coefficient at least *1  , but note that 






  1,,*d

khd
F


 is not constant. It depends on the number of 

predictions. 

Example 4.6.7: We compute 95% Bonferroni confidence limits for 1 , 

2 , and 3 , using 2y  in the chemical reaction data in Table 3.4; see 

Example 4.6.2 for   1XX   and β̂ . By (4.67), we have 



 206

  jjgSt 15,3205.01
ˆ   

   00184.00781.46937.24056.0   

4706.04056.0   

 8751.0,0660.0  

7016.02930.0:2   

 9946.0,4086.0  

6147.10338.1:3   

 6485.2,5809.0  

These three intervals hold simultaneously with confidence coefficient 
at least .95. 

Applications using MATLAB Example 4.6.7 
 [The program name ta20.m]  

clc  
clear all 
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];x1=data(:,3);x2=data(:,4);x3=data(:,5); 
  y1=data(:,1);y2=data(:,2); 
n=length(x1);k=3;alfa=0.05;       
% C.I. for beta  
x=[ones(size(x1)) x1 x2 x3]; 
ixx=inv(x'*x); 
beta=x\y2; 
SSE=y2'*y2-beta'*x'*y2; 
S=sqrt(SSE/(n-4)) 
t=abs(tinv(alfa/(2*k),n-k-1)) 
clbeta=beta(2:4)-t*S*sqrt(diag(ixx(2:4,2:4))); 
cubeta=beta(2:4)+t*S*sqrt(diag(ixx(2:4,2:4))); 
CIbeta=[clbeta cubeta]  
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Ans. 

 

 
4.7: Likelihood Ratio Tests 

The tests in Sections 4.1, 4.2, and 4.4 were derived using informal 
methods based on finding sums of squares that have chi-square 
distributions and are independent. These same tests can be obtained 
more formally by the likelihood ratio approach. Likelihood ratio tests 
have some good properties and sometimes have optimal properties. 

We describe the likelihood ratio method in the simple context of 
testing 0:0 H  versus 0:1 H . The likelihood function  2,L  
was defined in Section 3.6.2 as the joint density of the y’s. For a 

random sample   nyyy ,,,y 21   with density  Iβ,X 2nN , the likelihood 
function is given by (3.50) as 

   
     74.3

2

1
,

22XβyXβy
22

2 


   eL n 

The likelihood ratio method compares the maximum value of  2,L  
restricted by 0:0 H  to the maximum value of  2,L  under 0:1 H , 
which is essentially unrestricted. We denote the maximum value of 
 2,L  restricted by 0  as  2,max

0
LH  and the unrestricted 

maximum as  2,max
1

LH . If   is equal (or close) to 0, then 

 2,max
0

LH  should be close to  2,max
1

LH . If  2,max
0

LH  is not 

close to  2,max
1

LH , we would conclude that   nyyy ,,,y 21   

apparently did not come from  Iβ,X 2nN  with 0 . 

In this illustration, we can find  2,max
0

LH  by setting 0  and then 

estimating 2  as the value that maximizes  2,0 L . Under 0:1 H , 
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both   and 2  are estimated without restriction as the values that 
maximize  2,L . [In designating the unrestricted maximum as 

 2,max
1

LH , we are ignoring the restriction in 1H  that 0 .] 

It is customary to describe the likelihood ratio method in terms of 
maximizing L subject to  , the set of all values of   and 2  satisfying 

0H , and subject to  , the set of all values of    and 2  without 
restrictions (other than natural restrictions such as 02  ). However, to 
simplify notation in cases such as this in which 1H  includes all values 
of   except 0, we refer to maximizing L under 0H  and 1H . 

We compare the restricted maximum under 0H  with the unrestricted 
maximum under 1H  by the likelihood ratio 

 
 2

2

,max

,max

1

0




L

L
LR

H

H  

 
   75.4

,max

,0max
2

2




L

L
 

It is clear that 10  LR , because the maximum of L restricted to 0  
cannot exceed the unrestricted maximum. Smaller values of LR would 
favor 1H , and larger values would favor 0H . We thus reject 0H  if 

cLR  , where c is chosen so that    cLRP if 0H  is true. 

Wald (1943) showed that, under 0H  

LRLn2  is approximately  
2
  

For large n, where n is the number of parameters estimated under 1H  
minus the number estimated under 0H . In the case of 0:0 H  versus 

0:1 H , we have 112  kk  because   and 2  are estimated 
under 1H  while only 2  is estimated under 0H . In some cases, the 2  
approximation is not needed because LR turns out to be a function of a 
familiar test statistic, such as t or F, whose exact distribution is 
available. 

We now obtain the likelihood ratio test for 0:0 H . The resulting 
likelihood ratio is a function of the F statistic obtained in Problem 4.6 
by partitioning the total sum of squares. 
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Theorem 4.7a: If y is  Iβ,X 2nN , the likelihood ratio test for 0:0 H  
can be based on 

 
   1yXβ̂yy

1yXβ̂





kn

k
F 

We reject 0H  if 1,1,  knkFF  . 

Proof: To find    22 ,max,max
1

 LLH  , we use the maximum likelih-

ood estimators   yXXXβ̂ 1    and n














 


 β̂Xyβ̂Xyˆ 2  from Theorem 

3.6a. Substituting these in (4.74), we obtain 

      222 ˆ,ˆ,max,max
1

 LLLH   

 
    2ˆ2β̂Xyβ̂Xy

22ˆ2

1 


 

 en  

     
 76.4

β̂Xyβ̂Xy2
2

2

22

][
n

n

nn en











 

To find    22 ,0max,max
0

 LLH  , we solve   0,0Ln 22  L  to obtain 

 77.4
yy

ˆ 2
0 n


  

Then 

      2
0

22 ˆ,0,0max,max
0

 LLLH   

 
2
0ˆ2yy

22
0ˆ2

1 


 en  

   
 78.422

22

yy2 nn

nn en







 

Substituting (4.76) and (4.78) into (4.75), we obtain 

 
 

    2][
yy

β̂Xyβ̂Xy

,max

,max
2

2

1

0

n

L

L
LR

H

H
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     79.4
111

1
2][ n

knFk 
 

Where 

 
   1yXβ̂yy

1yXβ̂





kn

k
F  

Thus, rejecting 0:0 H  for a small value of LR is equivalent to 
rejecting 0H  for a large value of F. 

We now show that the F test in Theorem 4.4b for the general linear 
hypothesis 0Cβ:0 H  is a likelihood ratio test. 

Theorem 4.7b: If y is  Iβ,X 2nN , then the F test for 0Cβ:0 H  in 
Theorem 4.4b is equivalent to the likelihood ratio test. 

Proof: Under 0Cβ:1 H , which is essentially unrestricted,  2,max
1

LH  

is given by (4.76). To find    22 ,max,max
0

 LLH   subject to 0Cβ  , 

we use the method of Lagrange multipliers and work with  2,L  to 
simplify the differentiation: 

    0Cβλβ,Ln 2   L  

          
Cβλ

2

XβyXβy
Ln

2
2Ln

2 2
2 





 nn

 

Expanding    XβyXβy   and differentiating with respect to β , λ , and 
2 , we obtain 

   80.40λC2XβX2yX2
β

2 

 

 

 81.40βC
λ





 

 
     82.40XβyXβy

2

1

2 2222






 n

 

Eliminating λ  and solving for β  and 2 gives 

     83.4β̂C]CXX[CCXXβ̂ˆ 111
0
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     84.4ˆXyˆXy
1

ˆ 00
2
0  




n
 

     85.4β̂C]CXX[Cβ̂C
1

ˆ 112  



n

 

(Problems 4.35 and 4.36), where     nβ̂Xyβ̂Xyˆ 2 


  and   yXXXβ̂ 1    
are the maximum likelihood estimates from Theorem 3.6a. Thus 

    2
00

2 ˆ,ˆ,max
0

 LLH   

   
    2

000 ˆ

ˆ2

1 2ˆXyˆXy
22

0
2




ββ
nn

e  
  

     
2

112

22

β̂C]CXX[Cβ̂C2
n

n

nn

SSE

en







 











 

And 

 
 
 2

2

,max

,max

1

0




L

L
LR

H

H  

   

2

11 β̂C]CXX[Cβ̂C

n

SSE

SSE






















 

 

22

11

1

1

1
nn

knqFSSESSH 



















  

where     β̂C]CXX[Cβ̂C 11  


SSH ,    β̂Xyβ̂Xy 


SSE , and F is given 
in (4.27). 

 
PROBLEMS 

4.1: Show that 11 β̂XXβ̂ ccSSR   in (4.1) becomes   yXXXXy c
1

c  
cc  as in (4.2). 

4.2: (a) Show that    cc n HJ1IH  , as in (4.3) in Theorem 4.1a(i),    

where   c
1

c XXXXH  
ccc . 

 (b) Prove Theorem 4.1a(ii).  
(c) Prove Theorem 4.1a(iii). 
(d) Prove Theorem 4.1a(iv). 
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4.3: Show that 2
111 2βXXβ  cc as in Theorem 4.1b(i). 

4.4: Prove Theorem 4.1b(ii). 

4.5: Show that     11
2 βXXβ1 cckkSSRE  , as in the expected mean square 

column of Table 4.1. Employ the following two approaches: 

4.6: Develop a test for 0β:0 H  in the model εXβy  , where y is 
 Iβ,X 2nN . (It was noted at the beginning of Section 4.1 that this 

hypothesis is of little practical interest because it includes 00 β .) 
Use the partitioning   yXβ̂yXβ̂yyyy  , and proceed as follows: 

(a) Show that   yXXXXyyXβ̂ 1    and   y]XXXX[IyyXβ̂yy 1   . 
(b) Let   XXXXH 1   : Show that H and I - H are idempotent of 

rank k +1 and n – k - 1, respectively. 
(c) Show that 2Hyy  is  

2
,1 1

 k , where 2
1 2XβXβ   , and that 

  2yH1y   is  
2

1 kn . 

(d) Show that Hyy  and  yH1y  are independent. 
(e) Show that 

 
 

   1yH1y

1Hyy

1

yXβ̂
2 







kn

k

Sk
 

is distributed as  1,1,1  knkF . 

3.7: Show that 11 HHH   and 11 HHH  , as in (4.15), where H  and 1H  
are as defined in (4.11) and (4.12). 

3.8: Show that satisfied for the sum of quadratic forms in (4.12), as 
noted in the proof of Theorem 4.2b. 

3.9: Show that   2
221

1
11122221 2β]XXXXXXXX[β    as in Theorem 4.2b(ii). 

4.10: Show that   21
1

111222 XXXXXXXX   is positive definite, as noted 
below Theorem 4.2b. 

4.11: Show that     hhSSE 221
1

1112222
2

12 β]XXXXXXXX[β]ββ[    as 

in Table 4.3. 

4.12: Find the expected mean square corresponding to the numerator of 
the F statistic in (4.20) in Example 4.2b. 
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4.13: Show that y*
0̂  and   2*

0 ynSS  , as in (4.21) in Example 4.2c. 

4.14: In the proof of Theorem 4.2d, show that    22112211 β̂Xβ̂XXβ̂Xβ̂  

      221
1

1112222211121 β̂]XXXXXXXX[β̂β̂Aβ̂XXAβ̂β̂   . 

4.15 Express the test for 0β: 20 H  in terms of 2R , as in (4.25) in 
Theorem 4.3. 

4.16: Prove Theorem 4.4a(iv). 

4.17: Show that   CXXC 1    is positive definite, as noted following 
Theorem 4.4b. 

4.18: Prove Theorem 4.4c. 

4.19: Show that in the model εXβy   subject to 0Cβ   in (4.29), the 
estimator of β  is     β̂CCXXCCXXβ̂β̂ 111 ][  c  as in (4.30), 

where   yXXXβ̂ 1   . Use a Lagrange multiplier λ  and minimize 

 0CβλXβyXβy  










u  with respect to β  and λ  as follows: 

(a) Differentiate u with respect to λ  and set the result equal to 0 
to obtain 0β̂C c . 

(b) Differentiate u with respect to β  and set the result equal to 0 
to obtain 

   1λCXXβ̂β̂ 1

2
1  

c  

where   yXXXβ̂ 1   . 

(c) Multiply (1) in part (b) by C, use 0β̂C c  from part (a), solve 
for λ , and substitute back into (1). 

4.20: Show that yXβ̂β̂XXβ̂  ccc , thus demonstrating directly that the 

sum of squares due to the reduced model is yXβ̂ c  and that (4.31) 
holds. 

4.21: Show that for the general linear hypothesis 0Cβ:0 H  in 

Theorem 4.4d, we have     β̂CCXXCβ̂CyXβ̂yXβ̂ 11 ][  


 c  as 

in (4.32), where cβ̂  is as given in (4.30). 
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4.22: Prove Theorem 4.4e. 

4.23: Prove Theorem 4.4f(iv) by expressing SSH and SSE as quadratic 
forms in the same normally distributed random vector. 

4.24: Show that the estimator for β  in the reduced model εXβy   
subject to tCβ   is given by      tβ̂CCXXCCXXβ̂β̂ 111 ][  

c , 

where   yXXXβ̂ 1   . 

4.25: Show that yXβ̂yXβ̂ 1
*
1 

  in (4.37) is equal to kkk g2̂  in (4.39) (for j 
= k), as noted below (4.39). 

4.26: Obtain the confidence interval for βa  in (4.49) from the t statistic 
in (4.48). 

4.27: Show that the confidence interval for βa 0  in (4.52) is the same as 
that for the centered model in (4.55). 

4.28: Show that the confidence interval for 010 x   in (4.58) follows 
from (4.55). 

4.29: Show that     0
1

000 xXXx1ˆ  Syyt  in (4.60) is distributed 

as  1 knt . 

4.30: (a) Given that 


q

i i qyy
1 00  is the mean of q future observations 

at 0x , show that a  %1100   prediction interval for 0y  is 

given by     0
1

01,20 xXXx1β̂x 
  qSt kn . 

(b) Show that for simple linear regression, the prediction interval 
for 0y  in part (a) reduces to     Stx n 2,2010

ˆˆ
  

   
2

1

2
011  


n

i i xxxxnq . 

4.31: Obtain the confidence interval for 2  in (4.65) from the probab-
ility statement in (4.64). 

4.32: Show that the Scheffe´ prediction intervals for d future observa-
tions are given by (4.73). 

4.33: Verify (4.76)–(4.79) in the proof of Theorem 4.7a. 

4.34: Verify (4.80),   λC2XβX2yX2β 2   . 
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4.35: Show that the solution to (4.80)–(4.82) is given by 0̂  and 2
0̂  in 

(4.83) and (4.84). 

4.36: Show that         β̂C]CXX[Cβ̂Cˆβ̂Xyβ̂Xy 112
00

 





 n  as in (4.85). 

4.37: Use the gas vapor data in Table 4.3. 

(a) Test the overall regression hypothesis 0β: 10 H  using (4.5) 
[or (4.22)] and (4.23). 

(b) Test 0: 310  ββH , that is, that 1x  and 3x  do not significantly 
contribute above and beyond 2x  and 4x . 

(c) Test 0:0 jβH  for j = 1, 2, 3, 4 using jt  in (4.40). Use 205.0t  

for each test and also use a Bonferroni approach based on 
805.0t  (or compare the p value to 0.05/4). 

(d) Using general linear hypothesis tests, test ,1212: 43210 βββH   

2101 : βH , 3202 12: βH  , 4303 : βH   and 2104 : βH  
and 43 β . 

(e) Find confidence intervals for 1 , 2 , 3  and 4  using both 
(4.47) and (4.67). 

4.38: Use the land rent data in Table 3.5. 

(a) Test the overall regression hypothesis 0β: 10 H  using (4.5) 
[or (4.22)] and (4.23). 

(b) Test 0:0 jβH  for j = 1, 2, 3 using jt  in (4.40). Use 205.0t  for 

each test and also use a Bonferroni approach based on 605.0t  

(or compare the p value to 0.05/3). 

(c) Find confidence intervals for 1 , 2 , 3  using both (4.47) and 
(4.67). 

(d) Using (4.52), find a 95% confidence interval for   βx 00 yE , 
where  5.0,30,15,1x 0  . 

(e) Using (4.61), find a 95% prediction interval for  βx 00y , 
where  5.0,30,15,1x 0  . 
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4.39: Use 2y  in the chemical reaction data in Table 3.4. 

(a) Using (4.52), find a 95% confidence interval for   βx 00 yE , 
where  5,32,165,1x 0  . 

(b) Using (4.61), find a 95% prediction interval for  βx 00y , 
where  5,32,165,1x 0  . 

(c) Test 3210 22: βββH   using (4.27). (This was done for 1y  in 
Example 4.4.b.) 

4.40: Use 1y  in the chemical reaction data in Table 3.4. The full model 
with second order terms and the reduced model with only linear 
terms were fit in Problem 3.52. 

(a) Test 0: 9540  βββH  , that is, that the second-order 
terms are not useful in predicting 1y . (This was done for 2y  
in Example 4.2a.) 

(b) Test the significance of the increase in 2R  from the reduced 
model to the full model. (This was done for 2y  in Example 
4.3. See Problem 3.52 for values of 2R .) 

(c) Find a 95% confidence interval for each of 0 , 1 , 2 , 3  
using (4.47). 

(d) Find Bonferroni confidence intervals for 1 , 2 , 3  using 
(4.67). 

(e) Using (4.52), find a 95% confidence interval for   βx 00 yE , 
where  5,32,165,1x 0  . 

(f) Using (4.61), find a 95%, prediction interval for  βx 00y , 
where  5,32,165,1x 0  . 
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5: Introduction 

In Sections 3.8.2 and 3.9 we discussed some consequences of 
misspecification of the model. In this chapter we consider various 
approaches to checking the model and the attendant assumptions for 
adequacy and validity. Some properties of the residuals [see (3.11)] 
and the hat matrix are developed in Sections 5.1 and 5.2.We discuss 
outliers, the influence of individual observations, and leverage in 
Sections 5.3 and 5.4. 

For additional reading, see Snee (1977), Cook (1977), Belsley et al. 
(1980), Draper and Smith (1981, Chapter 6), Cook and Weisberg 
(1982), Beckman and Cook (1983), Weisberg (1985, Chapters 5, 6), 
Chatterjee and Hadi (1988), Myers (1990, Chapters 5–8), Sen and 
Srivastava (1990, Chapter 8), Montgomery and Peck (1992, pp. 67–
113, 159–192), Jørgensen (1993, Chapter 5), Graybill and Iyer (1994, 
Chapter 5), Hocking (1996, Chapter 9), Christensen (1996, Chapter 
13), Ryan (1997, Chapters 2, 5), Fox (1997, Chapters 11–13) and 
Kutner et al. (2005, Chapter 10). 

5.1: Residuals 

The usual model is given by (3.4) as εX βy   with assumptions 
  0ε E  and   Iε 2Cov , where y is 1n , X is  1 kn  of rank 

nk 1 , and β  is   11 k . The error vector ε  is unobservable unless β  
is known. To estimate ε  for a given sample, we use the residual vector 

 1.5ŷyβ̂Xyε̂  

As defined in (3.11). The n residuals in (5.1), ,ˆ,,ˆ,ˆ 21 n   are used in 
various plots and procedures for checking on the validity or adequacy 
of the model.  

We first consider some properties of the residual vector ε̂ . Using the 
least-squares estimator   yXXXβ̂ 1    in (3.6), the vector of predicted 
values β̂Xŷ  can be written as 

  yXXXXβ̂Xŷ 1    

 2.5Hy  
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where   XXXXH 1    (see Section 4.2). The nn  matrix H is called 
the hat matrix because it transforms y to ŷ . We also refer to H as a 
projection matrix for essentially the same reason; geometrically it 
projects y (perpendicularly) onto ŷ  (see Fig. 3.4). The hat matrix H is 
symmetric and idempotent.  

Multiplying X by H, we obtain 

   3.5XXXXXXHX 1    

Writing X in terms of its columns, we can write (5.3) as 

   kk Hx,,HxHj,x,,xj,HHX 11    

so that 

 4.5,,2,1,Hxx,jHj kiii  

Using (5.2), the residual vector ε̂  (5.1) can be expressed in terms of H: 

Hyyŷyε̂   

   5.5yHI 

We can rewrite (5.5) to express the residual vector ε̂  in terms of ε : 

    εXβHIyHIε̂   

   εHIHX βXβ   

   εHIXβXβ   [by (5.3)] 

   6.5εHI 

In terms of the elements ijh  of H, we have j

n

j ijii h   


1
ˆ , ni ,,2,1  . 

Thus, if the ijh ’s are small (in absolute value), ε̂  is close to ε . 

The following are some of the properties of ε̂  (see Problem 5.1). For 
the first four, we assume that   X βy E and   Iy 2Cov : 

   7.50ε̂ E  

       8.5HI]XXXX[Iε̂ 212   Cov  

       9.5HI]XXXX[Iy,ε̂ 212   Cov  

   10.5Oŷ,ε̂ Cov  
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 11.50jε̂ˆˆ
1

  
nn

n

i i  

     12.5yHIyy]XXXX[Iyyε̂ 1  SSE  

 13.50ŷε̂   

 14.50Xε̂   

In (5.7), the residual vector ε̂  has the same mean as the error term ε , 
but in (5.8)    HIε̂ 2  Cov  differs from the assumption   Iε 2Cov . 
Thus the residuals ,ˆ,,ˆ,ˆ 21 n   are not independent. However, in many 
cases, especially if n is large, the ijh ’s tend to be small (for ji  ), and 

the dependence shown in  HI2   does not unduly affect plots and other 
techniques for model validation. Each î  is seen to be correlated with 
each jy  in (5.9), but in (5.10) the î ’s are uncorrelated with the jŷ ’s. 

Some sample properties of the residuals are given in (5.11)–(5.14). The 
sample mean of the residuals is zero, as shown in (5.11). By (5.12), it 
can be seen that ε̂  and y are correlated in the sample since yε̂  is the 
numerator of 

 
         jyjyε̂ε̂

yε̂

jyjyε̂ε̂

jyε̂
yε̂

yyyy

yr








  

However, ε̂  and ŷ  are orthogonal by (5.13), and therefore 

 15.50ŷε̂ r 

Similarly, by (5.14), ε̂  is orthogonal to each column of X and 

 16.5,,2,1,0ε̂ ki
ixr  

 
Figure 5.1: Ideal residual plot when model is correct. 
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If the model and attendant assumptions are correct, then by (5.15), a 
plot of the residuals versus predicted values,  11 ˆ,ˆ y ,  22 ˆ,ˆ y , …,  nn ŷ,̂ , 
should show no systematic pattern. Likewise, by (5.16), the k plots of 
the residuals versus each of kxxx ,,, 21   should show only random 
variation. These plots are therefore useful for checking the model. A 
typical plot of this type is shown in Figure 5.1. It may also be useful to 
plot the residuals on normal probability paper and to plot residuals in 
time sequence (Christensen 1996, Section 13.2). 

If the model is incorrect, various plots involving residuals may show 
departures from the fitted model such as outliers, curvature, or non-
constant variance. The plots may also suggest remedial measures to 
improve the fit of the model. For example, the residuals could be 
plotted versus any of the ix ’s, and a simple curved pattern might 
suggest the addition of 2

ix  to the model. We will consider various 
approaches for detecting outliers in Section 5.3 and for finding 
influential observations in Section 5.4. Before doing so, we discuss 
some properties of the hat matrix in Section 5.2. 

5.2: The Hat Matrix 

It was noted following (9.2) that the hat matrix   XXXXH 1    is 
symmetric and idempotent. We now present some additional properties 
of this matrix. These properties will be useful in the discussion of 
outliers and influential observations in Sections 5.3 and 5.4. 

For the centered model 

 17.5εβXjy 1 c 

In (3.32), ŷ  becomes 

 18.5β̂Xjˆŷ 1c  

And the hat matrix is   ccccc XXXXH 1   , where 






























 

knknn

kk

kk

c

xxxxxx

xxxxxx

xxxxxx

n









2211

2222121

1212111

1XJ
1

IX  

By (3.36) and (3.37), we can write (5.18) as 
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  yHjyj
1

yXXXXjŷ c
1

c ccc n
y 






  

 

 19.5yHJ
1







  cn

 

Comparing (5.19) and (5.2), we have 

   20.5XXXXJ
1

HJ
1

H c
1

c  
ccc nn

 

We now examine some properties of the elements ijh  of H. 

Theorem 5.2: If X is  1 kn  of rank nk 1 , and if the first column 
of X is j, then the elements ijh  of   XXXXH 1    have the following 

properties: 

(i)   11  iihn  for i = 1, 2, . . . , n. 

(ii) 5.05.0  ijh  for all ij  . 

(iii)        11
1

11 xxXXxx1  
icciii nh , where  ikiii xxx ,,,x 211  , 

 kxxx ,,,x 211  , and   11 xx i  is the ith row of the centered 
matrix cX .  

(iv)   1H
1

  
khtr

n

i ii . 

Proof 

(i) The lower bound follows from (5.20), since ccXX  is positive 
definite. Since H is symmetric and idempotent, we use the 
relationship 2HH   to find an upper bound on iih . Let ih  be the 
ith row of H. Then 

   





















n

j ij

in

i

i

iniiiiii h

h

h

h

hhhh
1

22

1

21

,

,

,,,hh
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Dividing both sides of (5.21) by iih  [which is positive since 
 nhii 1 ], we obtain 

 22.51

2

ii

ij ij

ii h

h
h

  

which implies 1iih . 

(ii) (Chatterjee and Hadi 1988, p. 18.) We can write (5.21) in the 
form 

 


jir irijiiii hhhh
,
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or 

 


jir irijiiii hhhh
,

222  

Thus, 22
iiiiij hhh  , and since the maximum value of 2

iiii hh   is 41 , 

we have 412 ijh  for ij  . 

(iii) This follows from (5.20); see Problem 5.2b. 
(iv) See Problem 5.2c. 

By Theorem 5.2(iv), we see that as n increases, the values of iih  will 
tend to decrease. 

The function      11
1

11 xxXXxx  
icci  in Theorem 5.2(iii) is a standardized 

distance. The standardized distance (Mahalanobis distance) is for a 
population covariance matrix. The matrix ccXX  is proportional to a 

sample covariance matrix [see (3.44)]. Thus,      11
1

11 xxXXxx  
icci  is 

an estimated standardized distance and provides a good measure of the 
relative distance of each i1x  from the center of the points as 
represented by 1x . 

5.3: Outliers 

In some cases, the model appears to be correct for most of the data, but 
one residual is much larger (in absolute value) than the others. Such an 
outlier may be due to an error in recording or may be from another 
population or may simply be an unusual observation from the assumed 
distribution. For example, if the errors i  are distributed as  2,0 N , a 
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value of i  greater than 3  or less than 3   would occur with 
frequency .0027. 

If no explanation for an apparent outlier can be found, the dataset 
could be analyzed both with and without the outlying observation. If 
the results differ sufficiently to affect the conclusions, then both 
analyses could be maintained until additional data become available. 
Another alternative is to discard the outlier, even though no 
explanation has been found. A third possibility is to use robust 
methods that accommodate the outlying observation (Huber 1973, 
Andrews 1974, Hampel 1974, Welsch 1975, Devlin et al. 1975, 
Mosteller and Turkey 1977, Birch 1980, Krasker and Welsch 1982). 

One approach to checking for outliers is to plot the residuals î  versus 

iŷ  or versus i, the observation number. In our examination of residuals, 
we need to keep in mind that by (5.8), the variance of the residuals is 
not constant: 

     23.51ˆ 2
iii hVar   

By Theorem 5.2(i), 1iih ; hence,  iVar ̂  will be small if iih  is near 1. 
By Theorem 5.2(iii), iih  will be large if i1x  is far from 1x , where i1x  = 

 ikii xxx ,,, 21   and   kxxx ,,,x 211  . By (9.23), such observations 
will tend to have small residuals, which seem unfortunate because the 
model is less likely to hold far from 1x . A small residual at a point 
where i1x  is far from 1x  may result because the fitted model will tend 
to pass close to a point isolated from the bulk of the points, with a 
resulting poorer fit to the bulk of the data. This may mask an 
inadequacy of the true model in the region of i1x . 

An additional verification that large value of iih  are accompanied by 
small residuals is provided by the following inequality (see Problem 
5.4): 

 24.51
ε̂ε̂

ˆ1 2




 i
iih

n


 

For the reasons implicit in (5.23) and (5.24), it is desirable to scale the 
residuals so that they have the same variance. There are two common 
(and related) methods of scaling. 
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For the first method of scaling, we use    iii hVar  1ˆ 2  in (9.23) to 

obtain the standardized residuals  iii h1ˆ  , which have mean 0 and 

variance 1. Replacing   by S yields the studentized residual 

 
 25.5

1

ˆ

ii

i
i

hS
r




 

where  12  knSSES  is as defined in (3.24). The use of ir  in place 
of î  eliminates the location effect (due to iih ) on the size of residuals, 
as discussed following (5.23). A second method of scaling the 
residuals uses an estimate of   that excludes the ith observation 

     26.51ˆ iiiii hSt   

Where  iS  is the standard error computed with the 1n  observations 

remaining after omitting    ikiiii xxyy ,,x, 11 , in which iy  is the ith 
element of y and ix  is the ith row of X. If the ith observation is an 
outlier, it will more likely show up as such with the standardization in 
(5.26), which is called the externally studentized residual or the 
studentized deleted residual or R student. 

Another option is to examine the deleted residuals. The ith deleted 
residual,  i , is computed with  î  on the basis of 1n  observations 

with  iiy x,   deleted: 

       27.5β̂xˆˆ iiiiii yyy   

By definition  

            28.5XXXβ̂ 1
iiiii y  

Where  iX  is the    11  kn  matrix obtained by deleting ix   

 ikii xxx ,,,,1 21  , the ith row of X, and  iy  is the corresponding   11 n  

y vector after deleting iy . The deleted vector  iβ̂  can also be found 

without actually deleting  iiy x,   since 

     29.5xXX
1

ˆ
β̂β̂ 1

i
ii

i
i h





 

(see Problem 5.5). 
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The deleted residual    iiii y β̂xˆ   in (5.27) can be expressed in terms 

of î  and iih  as 

   30.5
1

ˆ
ˆ

ii

i
i h



 

(see Problem 5.6). Thus the n deleted residuals can be obtained without 
computing n regressions. The scaled residual it  in (5.26) can be 
expressed in terms of  î  in (5.30) as 

 

  
 31.5
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ˆ

i

i
i

arV
t




 

(see Problem 5.7). 

The deleted sample variance  
2
iS  used in (5.26) is defined as  

2
iS  = 

   1 knSSE i , where            iiiiiiSSE yXβ̂yy  . This can be found 

without excluding the ith observation as 

 
     32.5
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1ˆ

2
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(see Problem 5.8). 

Another option for outlier detection is to plot the ordinary residuals 
β̂xˆ iii y   against the deleted residuals  î  in (5.27) or (5.30). If the 

fit does not change substantially when the ith observation is deleted in 
computation of β̂ , the plotted points should approximately follow a 
straight line with a slope of 1. Any points that are relatively far from 
this line are potential outliers. 

If an outlier is from a distribution with a different mean, the model can 
be expressed as   θβx  iiyE , where ix  is the ith row of X. This is 
called the mean-shift outlier model. The distribution of it  in (5.26) or 

(5.31) is  1knt , and it  can therefore be used in a test of the hypothesis 

0θ:0 H . Since n tests will be made, a Bonferroni adjustment to the criti-
cal values can be used, or we can simply focus on the largest it  values. 

The n deleted residuals in (5.30) can be used for model validation or 
selection by defining the prediction sum of squares (PRESS): 
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Thus, a residual î  that corresponds to a large value of iih  contributes 
more to PRESS. For a given dataset, PRESS may be a better measure 
than SSE of how well the model will predict future observations. To 
use PRESS to compare alternative models when the objective is 
prediction, preference would be shown to models with small values of 
PRESS. 

5.4: Influential Observations and Leverage 

In Section 5.3, we emphasized a search for outliers that did not fit the 
model. In this section, we consider the effect that deletion of an obser-
vation  iiy x,   has on the estimates β̂  and β̂X . An observation that makes 
a major difference on these estimates is called an influential obser-
vation. A point  iiy x,   is potentially influential if it is an outlier in the y 
direction or if it is unusually far removed from the center of the x’s. 

We illustrate influential observations for the case of one x in Figure 
5.2. Points 1 and 3 are extreme in the x direction; points 2 and 3 would 
likely appear as outliers in the y direction. Even though point 1 is 
extreme in x, it will not unduly influence the slope or intercept. Point 3 
will have a dramatic influence on the slope and intercept since the 
regression line would pass near point 3. Point 2 is also influential, but 
much less so than point 3. 

Thus, influential points are likely to be found in areas where little or no 
other data were collected. Such points may be fitted very well, 
sometimes to the detriment of the fit to the other data. 

To investigate the influence of each observation, we begin with Hyŷ   
in (5.2), the elements of which are 

 34.5ˆ
1  


ij iiji

n

j iijiji yhyhyhy 

By (5.22), if iih  is large (close to 1), then the ijh ’s, ij  , are all small, 

and iy  contributes much more than the other y’s to iŷ . Hence, iih  is 
called the leverage of iy . Points with high leverage have high potential 
for influencing regression results. In general, if an observation  iiy x,   
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has a value of iih  near 1, then the estimated regression equation will be 
close to iy ; that is, ii yy ˆ  will be small. 

 
Figure 5.2: Simple linear regression showing three outliers. 

By Theorem 5.2(iv), the average value of the iih ’s is (k+1)/n. Hoaglin 

and Welsch (1978) suggest that a point with iih > 2(k+1)/n is a high 
leverage point. Alternatively, we can simply examine any observation 
whose value of iih  is unusually large relative to the other values of iih . 

In terms of fitting the model to the bulk of the data, high leverage 
points can be either good or bad, as illustrated by points 1 and 3 in 
Figure 5.2. Point 1 may reduce the variance of 0̂  and 1̂ . On the other 
hand, point 3 will drastically alter the fitted model. If point 3 is not the 
result of a recording error, then the researcher must choose between 
two competing fitted models. Typically, the model that fits the bulk of 
the data might be preferred until additional points can be observed in 
other areas. 

To formalize the influence of a point  iiy x,  , we consider the effect of 

its deletion on β  and β̂Xŷ  . The estimate of β  obtained by deleting 
the ith observation  iiy x,   is defined in (5.28) as           iiiii yXXXβ̂ 1   . 

We can compare  iβ̂  to β̂  by means of Cook’s distance, defined as 
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This can be rewritten as 
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In which iD  is proportional to the ordinary Euclidean distance between 

 iŷ  and ŷ . Thus if iD  is large, the observation  iiy x,   has substantial 

influence on both β̂  and ŷ . A more computationally convenient form 
of iD  is given by 
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TABLE 5.1: Residuals and Influence Measures for the Chemical Data 
with Dependent Variable 1y  

Observation  
iy iŷ î iih ir it iD 

1 41.5 42.19 -0.688 0.430 -0.394 -0.383 0.029 
2 33.8 31.00 2.798 0.310 1.457 1.520 0.239 
3 27.7 27.74 -0.042 0.155 -0.020 -0.019 0.000 
4 21.7 21.03 0.670 0.139 0.313 0.303 0.004 
5 19.9 19.40 0.495 0.129 0.230 0.222 0.002 
6 15 12.69 2.307 0.140 1.076 1.083 0.047 
7 12.2 12.28 -0.082 0.228 -0.040 -0.039 0.000 
8 4.3 5.57 -1.270 0.186 -0.610 -0.596 0.021 
9 19.3 20.22 -0.917 0.053 -0.408 -0.396 0.002 
10 6.40 4.758 1.642 0.233 0.811 0.801 0.050 
11 37.6 35.68 1.923 0.240 0.954 0.951 0.072 
12 18 13.09 4.906 0.164 2.320 2.800 0.264 
13 26.3 27.34 -1.040 0.146 -0.487 -0.474 0.010 
14 9.9 13.51 -3.605 0.245 -1.795 -1.956 0.261 
15 25 26.93 -1.929 0.250 -0.964 -0.961 0.077 
16 14.1 15.44 -1.342 0.258 -0.674 -0.661 0.039 
17 15.2 15.44 -0.242 0.258 -0.121 -0.117 0.001 
18 15.9 19.54 -3.642 0.217 -1.780 -1.937 0.220 
19 19.6 19.54 0.058 0.217  0.028 0.027 0.000 
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(see Problem 5.9). Muller and Mok (1997) discuss the distribution of 
iD  and provide a table of critical values. 

Example 5.4: We illustrate several diagnostic tools for the chemical 
reaction data of Table 3.4 using 1y . In Table 5.1, we give î , iih , and 
some functions of these from Sections 5.3 and 5.4. 

The guideline for iih  in Section 5.4 is 2(k+1)/n = 2(4)/19 = 0.421. The 
only value of iih  that exceeds 0.421 is the first, 430.011 h . Thus the 
first observation has potential for influencing the model fit, but this 
influence does not appear in 383.01 t  and 029.01 D . Other relatively 
large values of iih  are seen for observations 2, 11, 14, 15, 16, and 17. 
Of these only observation 14 has a very large (absolute) value of it . 
Observation 12 has large values of î , ir , it  and iD  and is a potentially 
influential outlier. 

The value of PRESS as defined in (5.33) is PRESS = 130.76, which 
can be compared to SSE = 80.17. 

Applications using MATLAB Example 5.4 
 [The program name ta21.m]  

clc 
clear all 
data=[41.5 45.9 162 23 3;33.8 53.3 162 23 8;27.7 57.5 162 30 5 
      21.7 58.8 162 30 8;19.9 60.6 172 25 5;15.0 58.0 172 25 8 
      12.2 58.6 172 30 5;4.3 52.4 172 30 8;19.3 56.9 167 27.5 6.5 
      6.4 55.4 177 27.5 6.5;37.6 46.9 157 27.5 6.5;18 57.3 167 32.5 6.5 
      26.3 55.0 167 22.5 6.5;9.9 58.9 167 27.5 9.5;25.0 50.3 167 27.5 3.5 
      14.1 61.1 177 20 6.5;15.2 62.9 177 20 6.5;15.9 60.0 160 34 7.5 
      19.6 60.6 160 34 7.5];x1=data(:,3);x2=data(:,4);x3=data(:,5); 
  y1=data(:,1);n=length(x1);x=[ones(size(x1)) x1 x2 x3]; 
ixx=inv(x'*x);beta=x\y1;SSE=y1'*y1-beta'*x'*y1;S=sqrt(SSE/(n-4)); 
Y1=x*beta;E=y1-Y1;observation=(1:19)';H=x*ixx*x';h=diag(H); 
r=E./(S*sqrt(1-h)); 
for i=1:n 
    x(i,:)=[];y1(i)=[];beta=x\y1;SSE=y1'*y1-beta'*x'*y1; 
    s(i)=sqrt(SSE/(n-5));y1=data(:,1);x1=data(:,3);x2=data(:,4); 
    x3=data(:,5);x=[ones(size(x1)) x1 x2 x3];t(i)=E(i)/(s(i)*sqrt(1-h(i))); 
    D(i)=(r(i)^2/(4))*(h(i)/(1-h(i))); 
end 
t=t';D=D'; 
result=[observation y1 Y1 E h r t D],PRESS=sum((E./(1-h)).^2),SSE 



 231

 
PRESS  =  

          130.76  

SSE  =  

         80.169 

 
PROBLEMS 

5.1: Verify the following properties of the residual vector ε̂  as given in 
(5.7)–(5.14): 

(a)   0ε̂ E  (e) 0ˆˆ
1

  

n

i i n  

(b)    HIε̂ 2  Cov  (f)  yHIyyε̂   

(c)    HIy,ε̂ 2  Cov  (g) 0ŷε̂   

(d)   Oŷ,ε̂ Cov  (h) 0Xε̂   
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5.2: (a) In the proof of Theorem 5.2(ii), verify that the maximum value 
of 2

iiii hh   is 14 

(b) Prove Theorem 5.2(iii).      (c) Prove Theorem 5.2(iv). 

5.3: Show that an alternative expression for iih  in Theorem 5.2(iii) is 
the following: 

    


k

r ir
r

iiii n
h

1

2
1111 θcos

1
xxxx

1


 

Where irθ  is the angle between  11 xx i  and ra , the rth 
eigenvector of ccXX  (Cook and Weisberg 1982, p. 13). Thus iih  is 

large if    1111 xxxx  ii  is large or if irθ  is small for some r. 

5.4: Show that 1ε̂ε̂ˆ
1 2  iiih
n

  as in (5.24). The following steps are 

suggested: 

(a) Let H_ be the hat matrix corresponding to the augmented 
matrix (X, y). Then 

         yX,yX,yX,yX,H 1* ][  
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yyXy

yXXX
yX,
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 Use the inverse of a partitioned matrix with XXa11  , 
yXa12  , and yya 22   to obtain 

 
     

  ]
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b  

 ][H yyyHyHyyHyy
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HH * 
b

 

 Where   yXXXXyyy 1  b . 

(b) Show that the above expression factors into 

   
  ε̂ε̂

ε̂ε̂
H

yHIy

HIyyHI
HH *
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Which gives ε̂ε̂ˆ 2*  iiiii hh  . 

(c) The proof is easily completed by noting that *H  is a hat matrix 
and therefore   11 *  iihn  by Theorem 5.2(i). 

5.5: Show that      iiiii h  1xXXˆβ̂β̂ 1  as in (5.29). The following 

steps are suggested: 

(a) Show that     iiii xxXXXX   and that     iiii yxyXyX  . 

(b) Show that         iiii yxXXβ̂yXXX 11   . 

(c) Using the following adaptation of equation: 

 
cBc1

BccB
BccB

1

11
11









  

show that 
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XXxxXX
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(d) Using the result of parts (b) and (c), show that 

    i
ii

i
i h

xXX
1

ˆ
β̂β̂ 1




  

5.6: Show that    iiii h 1ˆˆ   as in (5.30). 

5.7: Show that     iii arVt  ˆˆˆ  in (5.31) is the same as    iiiii hSt  1̂  

in (5.26). The following steps are suggested: 

(a) Using    iiii h 1ˆˆ   in (5.30), show that     iii hVar  1ˆ 2 . 

(b) If   iVar ̂  in part (a) is estimated by       iiii hSarV  1ˆˆ 2 , show 

that         iiiiii hSarV  1ˆˆˆ  . 

5.8: Show that            iiiiiiSSE β̂Xyyy   can be written in the form 

   iiii hSSESSE  1ˆ 2  

as in (5.32). One way to do this is as follows: 

(a) Show that    
2yyyy iii y . 
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(b) Using Problem 5.5a,d, we have 

          ][ xXX
1

ˆ
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Show that this can be written as 

     
ii

i
iiii h
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1

ˆ
β̂Xyβ̂Xy

2
2 

 

(c) Show that 

   iiii hSSESSE  1ˆ 2  

 

5.9: Show that   iiiiii hkhD r  112  in (5.37) is the same as iD  in 
(5.35). This may be done by substituting (5.29) into (5.35). 

5.10: For the gas vapor data in Table 3.3, compute the diagnostic 
measures iŷ , î , iih , ir , it  and iD . Display these in a table 
similar to Table 5.1. Are there outliers or potentially influential 
observations? Calculate PRESS and compare to SSE. 

5.11: For the land rent data in Table 3.5, compute the diagnostic 
measures iŷ , î , iih , ir , it  and iD . Display these in a table similar 
to Table 5.1. Are there outliers or potentially influential observa-
tions? Calculate PRESS and compare to SSE. 

5.12: For the chemical reaction data of Table 3.4 with dependent 
variable 2y , compute the diagnostic measures iŷ , î , iih , ir , it  
and iD . Display these in a table similar to Table 5.1. Are there 
outliers or potentially influential observations? Calculate PRESS 
and compare to SSE. 
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Random x’s 
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6: Introduction 

Throughout Chapters 3–5 we assumed that the x variables were fixed; 
that is, that they remain constant in repeated sampling. However, in 
many regression applications, they are random variables. In this 
chapter we obtain estimators and test statistics for a regression model 
with random x variables. Many of these estimators and test statistics 
are the same as those for fixed x’s, but their properties are somewhat 
different. 

In the random-x case, k +1 variables kxxxy ,,,, 21   are measured on each 
of the n subjects or experimental units in the sample. These n observa-
tion vectors yield the data 

 1.6
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xxxy

xxxy









 

The rows of this array are random vectors of the second type. The 
variables kxxxy ,,,, 21   in a row are typically correlated and have 
different variances; that is, for the random vector    x,,,,, 21  yxxxy k , 
we have 
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where   is not a diagonal matrix. The vectors themselves [rows of the 
array in (6.1)] are ordinarily mutually independent (uncorrelated) if 
they arise from a random sample. 

In Sections 6.1–6.5 we assume that y and the x variables have a 
multivariate normal distribution. Many of the results in Sections 6.6–
6.8 do not require a normality assumption. 

6.1: Multivariate Normal Regression Model 
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The estimation and testing results in Sections 6.1–6.5 are based on the 
assumption that    x,,,,, 21  yxxxy k  is distributed as   ,1 kN  with 
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where x is the mean vector for the x’s, yx  is the vector of covariances 

between y and the x’s, and xx  is the covariance matrix for the x’s. 

We have 

     4.6xx| 1
xxxyxyyE    

 5.6xβ10    

Where 

 6.61
0 xxxyxy    

 7.6β 1
1 yxxx

 

We also obtain 

   8.6x| 21   
yxxxyxyyyVar 

The mean,    xxxyxyyE    xx| 1 , is a linear function of x, but the 

variance, yxxxyxyy  12  , is not a function x. Thus under the multi-

variate normal assumption, (6.4) and (6.8) provide a linear model with 
constant variance, which is analogous to the fixed-x case. Note, 
however, that   xβx| 10  yE in (6.5) does not allow for curvature 
such as   2

210 xβxβyE   . Thus   xβx| 10  yE  represents a model 
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that is linear in the x’s as well as the β ’s. This differs from the linear 
model in the fixed-x case, which requires only linearity in the β ’s. 

6.2: Estimation and testing in Multivariate Normal Regression 

Before obtaining estimators of 0 , 1β , and 2  in (6.6)–(6.8), we must 
first estimate   and  . Maximum likelihood estimators of   and  are 
given in the following theorem. 

Theorem 6.2a: If  11 x, y ,  22 x, y , . . . ,  nny x,   [rows of the array in 
(6.1)] is a random sample from   ,1 kN , with   and   as given in 
(6.2) and (6.3), the maximum likelihood estimators are 
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where the partitioning of ̂  and S is analogous to the partitioning of   
and   in (6.2) and (6.3). The elements of the sample covariance matrix 
S are defined in (3.40) and in (6.14). 

Proof: Denote  iiy x,   by iv , i = 1, 2, . . . , n. As noted below (6.1), 1v , 

2v , . . . , nv  are independent because they arise from a random sample. 
The likelihood function (joint density) is therefore given by the product 
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Note that     


n

i ifL
1

,;v,   is a product of n multivariate normal 

densities, each involving k +1 random variables. Thus there are  1kn  
random variables as compared to the likelihood  2,L  in (3.50) that 
involves n random variables nyyy ,,, 21   [the x’s are fixed in (3.50)]. 
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To find the maximum likelihood estimator for  , we expand and sum 
the exponent in (6.11) and then take the logarithm to obtain 
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Differentiating (6.12) with respect to   and setting the result equal to 
0, we obtain 
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where   kxxx ,,,x 21   is the vector of sample means of the x’s. To 
find the maximum likelihood estimator of  , we rewrite the exponent 
of (6.11) and then take the logarithm to obtain 
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Differentiating this with respect to 1 , and setting the result equal to 
0, we obtain 
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Since vˆ  , the last two terms disappear and we obtain 
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See Problem 6.1 for verification that     Sn
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In partitioned form, the sample covariance matrix S can be written as 
in (6.10) 
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where yxS  is the vector of sample covariances between y and the x’s 

and xxS  is the sample covariance matrix for the x’s. For example 
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[see (3.41)–(3.43)].   yyyySE   and   jjjjSE  .   yjyjSE  and   ijijSE  . 

Thus   SE , where   is given in (6.3). The maximum likelihood 

estimator   nSn 1ˆ   is therefore biased. 

In order to find maximum likelihood estimators of 0 , 1β , and 2  we 
first note the invariance property of maximum likelihood estimators. 

Theorem 6.2b: The maximum likelihood estimator of a function of 
one or more parameters is the same function of the corresponding 
estimators; that is, if θ̂  is the maximum likelihood estimator of the 
vector or matrix of parameters θ , then  θ̂g  is the maximum likelihood 
estimator of  θg . 

Proof: See Hogg and Craig (1995, p. 265). 
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Example 6.2: We illustrate the use of the invariance property in 
Theorem 6.2b by showing that the sample correlation matrix R is the 
maximum likelihood estimator of the population correlation matrix   

when sampling from the multivariate normal distribution. The relation-
ship between  and   is given by 11 DD    , where   21][diagD  , 

so that 
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The maximum likelihood estimator of jj1  is jĵ1 , where 
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i jijjj yyn . Thus  pp ˆ1,,ˆ1,ˆ1diagD̂ 2211
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and we obtain 
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Maximum likelihood estimators of 0 , 1β , and 2  are now given in the 
following theorem. 

Theorem 6.2c: If  11 x, y ,  22 x, y , . . . ,  nny x,  , is a random sample 
from   ,1 kN , where   and   are given by (6.2) and (6.3), the 
maximum likelihood estimators for 0 , 1β , and 2  in (6.6)–(6.8) are as 
follows: 

 15.6xˆ 1
0

 xxyx SSy  
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 16.6β̂ 1
1 yxxx SS  

 17.6
1

ˆ 1222
yxxxyxyy SSSSSwhereS

n

n 


 

The estimator 2S  is a bias-corrected estimator of 2 . 

Proof: By the invariance property of maximum likelihood estimators 
(Theorem 6.2b), we insert (6.9) and (6.10) into (6.6), (6.7), and (6.8) to 
obtain the desired results (using the unbiased estimator S in place of ̂). 

The estimators 0̂ , 1β̂ , and 2S  have a minimum variance property 
analogous to that of the corresponding estimators for the case of 
normal y’s and fixed x’s in Theorem 3.6d. It can be shown that ̂  and 
S in (6.9) and (6.10) are jointly sufficient for   and   (see Problem 
6.2). Then, with some additional properties that can be demonstrated, it 
follows that 0̂ , 1β̂ , and 2S  are minimum variance unbiased estimators 
for 0 , 1β , and 2  (Graybill 1976, p. 380). 

The maximum likelihood estimators 0̂  and 1β̂  in (6.15) and (6.16) are 
the same algebraic functions of the observations as the least-squares 
estimators given in (3.47) and (3.46) for the fixed-x case. The estima-
tors in (6.15) and (6.16) are also identical to the maximum likelihood 
estimators for normal y’s and fixed x’s in Section 3.6.2 (see Problem 
3.17). However, even though the estimators in the random-x case and 
fixed-x case are the same, their distributions differ. When y and the x’s 
are multivariate normal, 1β̂  does not have a multivariate normal 
distribution as it does in the fixed-x case with normal y’s [Theorem 
3.6b(i)]. For large n, the distribution is similar to the multivariate 
normal, but for small n, the distribution has heavier tails than the 
multivariate normal. 

In spite of the non-normality of 1β̂  in the random-x model, the F tests 
and t tests and associated confidence regions and intervals of Chapter 4 
(fixed-x model) are still appropriate. To see this, note that since the 
conditional distribution of y for a given value of x is normal, the 

conditional distribution of the vector of observations   nyyy ,,,y 21   
for a given value of the X matrix is multivariate normal. Therefore, a 
test statistic such as (4.35) is distributed conditionally as an F for the 
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given value of X when 0H  is true. However, the central F distribution 
depends only on degrees of freedom; it does not depend on X. Thus 
under 0H , the statistic has (unconditionally) an F distribution for all 
values of X, and so tests can be carried out exactly as in the fixed-x 
case. 

The main difference is that when 0H  is false, the non-centrality 
parameter is a function of X, which is random. Hence the non-central F 
distribution does not apply to the random-x case. This only affects such 
things as power calculations. 

Confidence intervals for the j ’s in Section 4.6.2 and for linear 

functions of the j ’s in Section 4.6.3 are based on the central t 

distribution [e.g., see (4.48)]. Thus they also remain valid for the 
random-x case. However, the expected width of the interval differs in 
the two cases (random x’s and fixed x’s) because of randomness in X. 

In Section 6.5, we obtain the F test for 0β: 10 H  using the likelihood 
ratio approach. 

6.3: Standardized Regression Coefficients 

We now show that the regression coefficient vector 1β̂  in (6.16) can be 
expressed in terms of sample correlations. By analogy to (6.14), the 
sample correlation matrix can be written in partitioned form as 
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where yxr  is the vector of correlations between y and the x’s and xxR  is 

the correlation matrix for the x’s. For example 
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R can be converted to S by 

DRDS  

where   21][diagD S , which can be written in partitioned form as 
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Using the partitioned form of S in (6.14), DRDS can be written as 
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So that 

 20.6DRD xxxxxxS  

 21.6D ryxxyyx SS  

where  kx SSS ,,,diagD 21   and yyyy SSS  2  is the sample standard 

deviation of y. When (6.20) and (6.21) are substituted into (6.16), we 
obtain an expression for 1β̂  in terms of correlations: 

 22.6RDβ̂ r11
1 yxxxxyS  

The regression coefficients k ˆ,,ˆ,ˆ
21   in 1β̂ can be standardized so as 

to show the effect of standardized x values (sometimes called z scores). 
We illustrate this for k = 2. The model in centered form [see (3.30) and 
an expression following (3.38)] is 

   222111
ˆˆˆ xxxxyy iii    

This can be expressed in terms of standardized variables as 
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Where jjj SS   is the standard deviation of jx . We thus define the 

standardized coefficients as 

j
y

j
j S

S
 ˆˆ *   

These coefficients are often referred to as beta weights or beta 
coefficients. Since they are used with standardized variables   jjij Sxx   

in (6.23), the *ˆ
j ’s can be readily compared to each other, whereas the 

ĵ ’s cannot be so compared. [Division by yS  in (6.23) is customary 

but not necessary; the relative values of 11̂S  and 22 ̂S  are the same as 
those of  ySS 11̂  and ySS 22 ̂ .] 

The beta weights can be expressed in vector form as 

1
*
1 β̂D

1
β̂ x

yS
  

Using (6.22), this can be written as 

 24.6r1*
1 Rβ̂ yxxx

 

Note that *
1β̂  in (6.24) is not the same as *

1β̂  from the reduced model in 

(4.8). Note also the analogy of yxxxr
1*

1 Rβ̂   in (6.24) to yxxx SS 1
1β̂   in 

(6.16). In effect, xxR  and xyr  are the covariance matrix and covariance 

vector for standardized variables. 

Replacing 1
xxS  and yxS  by 1R 

xx  and xyr  leads to regression coefficients 

for standardized variables. 

Example 6.3: The following six hematology variables were measured 
on 51 workers (Royston 1983): 

 y = lymphocyte count 3x  white blood cell count  01.0  
1x hemoglobin concentration 4x  neutrophil count 
2x  packed-cell volume 5x  serum lead concentration 



 246

The data are given in Table 6.1. For y , x , xxS  and yxS , we have 

 98.22y ,  882.20627.25824.53196.45108.15x   





























946.163553.16788.65235.123506.0

3553.1158.58273.653545.135098.0

6788.6273.6567.200155.1025540.3

5235.13545.1155.104008.549440.1

23506.035098.025540.349440.169074.0

xxS  

TABLE 6.1: Hematology Data 

Observation Number y 1x  2x  3x  4x  5x  

1  14  13.4  39  41  25  17  
2  15  14.6  46  50  30  20  
3  19  13.5  42  45  21  18  
4  23  15  46  46  16  18  
5  17  14.6  44  51  31  19  
6  20  14  44  49  24  19  
7  21  16.4  49  43  17  18  
8  16  14.8  44  44  26  29  
9  27  15.2  46  41  13  27  

10  34  15.5  48  84  42  36  
11  26  15.2  47  56  27  22  
12  28  16.9  50  51  17  23  
13  24  14.8  44  47  20  23  
14  26  16.2  45  56  25  19  
15  23  14.7  43  40  13  17  
16  9  14.7  42  34  22  13  
17  18  16.5  45  54  32  17  
18  28  15.4  45  69  36  24  
19  17  15.1  45  46  29  17  
20  14  14.2  46  42  25  28  
21  8  15.9  46  52  34  16  
22  25  16  47  47  14  18  
23  37  17.4  50  86  39  17  
24  20  14.3  43  55  31  19  
25  15  14.8  44  42  24  19  
26  9  14.9  43  43  32  17  
27  16  15.5  45  52  30  20  
28  18  14.5  43  39  18  25  
29  17  14.4  45  60  37  23  
30  23  14.6  44  47  21  27  
31  43  15.3  45  79  23  23  
32  17  14.9  45  34  15  24  
33  23  15.8  47  60  32  21  
34  31  14.4  44  77  39  23  
35  11  14.7  46  37  23  23  
36  25  14.8  43  52  19  22  
37  30  15.4  45  60  25  18  
38  32  16.2  50  81  38  18  
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39  17  15  45  49  26  24  
40  22  15.1  47  60  33  16  
41  20  16  46  46  22  22  
42  20  15.3  48  55  23  23  
43  20  14.5  41  62  36  21  
44  26  14.2  41  49  20  20  
45  40  15  45  72  25  25  
46  22  14.2  46  58  31  22  
47  61  14.9  45  84  17  17  
48  12  16.2  48  31  15  18  
49  20  14.5  45  40  18  20  
50  35  16.4  49  69  22  24  
51  38  14.7  44  78  34  16 
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By (6.15) to (6.17), we obtain 
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By (10.24), the standardized coefficient vector is given by 
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r1*
1 Rβ̂ yxxx  

Applications using MATLAB Example 6.3 
 [The program name ta22.m]  

clc  
clear all 
data=[14    13.4    39  41  25  17; 15  14.6    46  50  30  20;19   13.5    42  45  21  18 
    23  15  46  46  16  18; 17  14.6    44  51  31  19; 20  14  44  49  24  19; 21  16.4    
49  43  17  18    16  14.8    44  44  26  29; 27  15.2    46  41  13  27;34   15.5    48  
84  42  36;26   15.2    47  56  27  22    28  16.9    50  51  17  23; 24  14.8    44  47  
20  23; 26  16.2    45  56  25  19; 23  14.7    43  40  13  17  9   14.7    42  34  22  13; 
18  16.5    45  54  32  17; 28  15.4    45  69  36  24; 17  15.1    45  46  29  17   14  
14.2    46  42  25  28; 8   15.9    46  52  34  16; 25  16  47  47  14  18; 37  17.4    50  
86  39  17  20  14.3    43  55  31  19;15   14.8    44  42  24  19; 9   14.9    43  43  32  
17;16   15.5    45  52  30  20      18  14.5    43  39  18  25; 17  14.4    45  60  37  23; 
23  14.6    44  47  21  27; 43  15.3    45  79  23  23  17  14.9    45  34  15  24; 23  
15.8    47  60  32  21; 31  14.4    44  77  39  23;11   14.7    46  37  23  23      25  
14.8    43  52  19  22; 30  15.4    45  60  25  18; 32  16.2    50  81  38  18; 17  15  45  
49  26  24  22  15.1    47  60  33  16; 20  16  46  46  22  22;20   15.3    48  55  23  
23; 20  14.5    41  62  36  21;     26  14.2    41  49  20  20; 40  15  45  72  25  25; 22  
14.2    46  58  31  22; 61  14.9    45  84  17  17  12  16.2    48  31  15  18;20   14.5    
45  40  18  20;35   16.4    49  69  22  24;38   14.7    44  78  34  16]; 
y=data(:,1);x1=data(:,2);x2=data(:,3);x3=data(:,4); 
x4=data(:,5);x5=data(:,6);n=length(x1);my=mean(y) 
x=[x1 x2 x3 x4 x5];mx=mean(x)',Rxx=corr(x) 
ryx=corr(y,x)',Dx=[diag(diag(cov(x)))].^.5, 
Sxx=Dx*Rxx*Dx,Syx=std(y)*Dx*ryx,beta1=Sxx^(-1)*Syx 
beta0=my-Syx'*Sxx^(-1)*mx,Ssq=var(y)-Syx'*Sxx^(-1)*Syx 
beta1star=inv(Rxx)*ryx 
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Ans. 
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6.4: 2R  in multivariate Normal Regression 

In the case of fixed x’s, we defined 2R  as the proportion of variation in 
y due to regression [see (3.55)]. In the case of random x’s, we obtain  R 
as an estimate of a population multiple correlation between y and the 
x’s. Then 2R  is the square of this sample multiple correlation. 

The population multiple correlation coefficient xy  is defined as the 

correlation between y and the linear function  xxxyxyw    x1 : 

   25.6,
wy

yw

xy wyCorr



  

(We use the subscript xy  to distinguish xy  from  , the correlation 

between y and x in the bivariate normal case; see Sections 2.4, and 
6.5). By (6.4), w is equal to  xyE , which is the population analogue of 

110 xβ̂ˆˆ  y , the sample predicted value of y. As x varies randomly, 
the population predicted value  xxxyxyw    x1  becomes a random 

variable. 

It is easily established that  wyCov ,  and  wVar  have the same value: 

     26.6, 1
yxxxyxwVarwyCov   

Then the population multiple correlation xy  in (6.25) becomes 
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And the population coefficient of determination or population squared 
multiple correlation 2

xy  is given by 

 27.6
1

2
x

yy

yxxxyx

y 





 

We now list some properties of xy  and 2
xy . 

1. xy  is the maximum correlation between y and any linear function 

of x: 

 28.6x,maxx 


 yy 

This is an alternative definition of xy  that is not based on the 

multivariate normal distribution as is the definition in (6.25). 

2. 2
xy  can be expressed in terms of determinants: 

 29.612
x

xxyy
y 





 

where   and xx  are defined in (6.3). 

3. 2
xy  is invariant to linear transformations on y or on the x’s; that is, 

if u = ay and v = Bx, where B is nonsingular, then 

 30.62
x

2
v yu   

(Note that v here is not the same as iv  used in the proof of 
Theorem 6.2a.) 

4. Using   yxxxyxwVar  1  in (6.26), 2
xy  in (6.27) can be written in 

the form 

 
   31.62

x yVar

wVar
y  

Since  xxxyxyw    x1  is the population regression equation, 
2

xy  in (6.31) represents the proportion of the variance of y that 
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can be attributed to the regression relationship with the variables 
in x. In this sense, 2

xy  is analogous to 2R  in the fixed-x case in 

(3.55). 

5. By (6.8) and (6.27),  xyVar  can be expressed in terms of 2
xy : 

 
   32.6
1
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2
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1









 

yyy
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6. If we consider wy   as a residual or error term, then wy   is 
uncorrelated with the x’s 

   33.60x,  wyCov 

(see Problem 6.8).  

We can obtain a maximum likelihood estimator for 2
xy  by substi-

tuting estimators from (6.14) for the parameters in (6.27): 

 34.6
1

2

yy

yxxxyx

S

SSS
R


  

We use the notation 2R  rather than 2
x

ˆ
y because (6.34) is recognized as 

having the same form as 2R  for the fixed-x case in (3.59).We refer to 
2R  as the sample coefficient of determination or as the sample squared 

multiple correlation. The square root of 2R  

 35.6
1

yy

yxxxyx

S

SSS
R


  

is the sample multiple correlation coefficient. 

We now list several properties of R  and 2R , some of which are 
analogous to properties of 2

xy  above. 

1. R is equal to the correlation between y and  kk xxy  ˆˆˆˆ 110   

xβ̂ˆ
10  : 

 36.6ŷyrR  

2. R is equal to the maximum correlation between y and any linear 
combination of the x’s, xa : 
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 37.6xa,a
max  yrR 

3. 2R  can be expressed in terms of correlations: 

 38.6R rr 12
yxxxyxR  

Where yxr  and xxR  are from the sample correlation matrix R 

partitioned as in (6.18). 

4. 2R  can be obtained from 1R  : 

 39.6
1

12
yyr

R   

Where yyr  is the first diagonal element of 1R  . Using the other 
diagonal elements of 1R  , this relationship can be extended to give 
the multiple correlation of any jx  with the other x’s and y. Thus 

from 1R   we obtain multiple correlations, as opposed to the 
simple correlations in R. 

5. 2R  can be expressed in terms of determinants: 

 40.612

xxyy SS

S
R  

 41.6
R

R
12

xx

R  

Where xxS  and xxR  are defined in (6.14) and (6.18). 

6. From (6.24) and (6.38), we can express 2R  in terms of beta 
weights: 

 42.6β̂*
1

2 ryxR  

Where yxxx r1*
1 Rβ̂  . This equation does not imply that 2R  is the 

sum of squared partial correlations (Section 6.8). 

7. If 02
x y , the expected value of 2R  is given by 

   43.6
1

2




n

k
RE 

Thus 2R  is biased when 2
xy  is 0 [this is analogous to (5.57)]. 
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8. 22 max yjj rR  , where yjr  is an element of  ykyyyx rrr ,,, 21r  . 

9. 2R  is invariant to full rank linear transformations on y or on the 
x’s. 

Example 6.4: For the hematology data in Table 6.1, xxS , yxS , xxR , and 

yxr  were obtained in Example 6.3. Using either (6.34) or (6.38), we 

obtain 

95803.02 R  

Applications using 
MATLAB 

Example 6.4 [The program name ta23.m]
Add to ta22  

Rs=Syx'*Sxx^(-1)*Syx/Syy 
yhat=beta0+beta1'*x';ryyhat=corr(y,yhat') 
6.5: Test and confidence intervals for 2R  

Note that by (6.27), 02
x y  becomes 0

1
2

x 





yy

yxxxyx

y 


  

which leads to 0yx  since xx  is positive definite. Then by (6.7), 

yxxx
1

1β  , and 0: 2
x0 yH   is equivalent to 0β: 10 H . 

The F statistic for fixed x’s is given in (4.5), (4.22), and (4.23) as 

 
   1yXβ̂yy

yXβ̂ 2





kn

kyn
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 44.5

11 2

2




knR

kR
  

The test statistic in (6.44) can be obtained by the likelihood ratio 
approach in the case of random x’s (Anderson 1984, pp. 140–142): 

Theorem 6.5: If  11 x, y ,  22 x, y , . . . ,  nny x,   is a random sample from 
  ,1 kN , where   and   are given by (6.2) and (6.3), the likelihood 

ratio test for 0β: 10 H  or equivalently 0: 2
x0 yH   can be based on F 

in (6.44). We reject 0H  if 1,,  knkFF  . 
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Proof: Using the notation  iii y x,v  , as in the proof of Theorem 6.2a, 

the likelihood function     


n

i ifL
1

,;v,   is given by (6.11), and 

the likelihood ratio is 

 
 




,max

,max

1

0




L

L
LR

H

H  

Under 1H , the parameters   and   are essentially unrestricted, and we 
have 

      ˆ,ˆ,max,max
1

 LLLH  

where ̂  and ̂  are the maximum likelihood estimators in (6.9) and 

(6.10). Since 












   ii vv

1
 is a scalar, the exponent of  ,L  in 

(6.11) can be written as 
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Then substitution of ̂  and ̂  for   and   in  ,L  gives 
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Under 0: 2
x0 yH  , we have 0yx , and   in (6.3) becomes 

 45.6
0

0
0 













xx

yy
 

Whose maximum likelihood estimator is 

 46.6ˆ0

0ˆˆ
0 













xx

yy
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Using 0̂  in (6.46) and vˆ   in (6.9), we have 
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This becomes 

 
 

     47.6
ˆˆ2

ˆ,ˆ
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21
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xx
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yy

kn
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Thus 

 48.6
ˆˆ

ˆ

2
2

2

n

xx
n
yy

n

LR






  

Substituting   nSn 1ˆ   and using (6.40), we obtain 

   49.61
22 n

RLR   

We reject 0H  for   221
n

R , which is equivalent to 

    1,,11 2

2




 knkF
knR

kR
F   

since  22 1 RR   is a monotone increasing function of 2R  and F is dist-
ributed as  1,, knkF   when 0H  is true (Anderson 1984, pp. 138–139). 

When k = 1, F in (6.44) reduces to    22 12 rrnF  . Then 

21

2

r

rn
t




  

[see (2.20)] has a t distribution with n - 2 degrees of freedom (df) when 
( y, x) has a bivariate normal distribution with 0 . 

If ( y, x) is bivariate normal and 0 , then     nVar r
221   and the 

function 

   50.6
1 2






rn

u 
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Is approximately standard normal for large n. However, the distribu-
tion of u approaches normality very slowly as n increases (Kendall and 
Stuart 1969, p. 236). Its use is questionable for n < 500. 

Fisher (1921) found a function of r that approaches normality much 
faster than does (6.50) and can thereby be used with much smaller n 
than that required for (6.50). In addition, the variance is almost 
independent of r. Fisher’s function is 

 51.6tanh
1

1
ln

2

1 1 r
r

r
z 




 

Where r1tanh   is the inverse hyperbolic tangent of r. The approximate 
mean and variance of z are 

   52.6tanh
1

1
ln

2

1 1 

 




zE  

   53.6
3

1




n
zVar  

We can use Fisher’s z transformation in (6.51) to test hypotheses such 
as 00 :  H  or 210 :  H . To test 00 :  H  vs. 01 :  H , we calculate 

 
 54.6

31

tanh 0
1








n

z 
 

Which is approximately distributed as the standard normal N(0, 1). We 
reject 0H  if 2 z , where rz 1tanh   and 2z  is the upper 2  

percentage point of the standard normal distribution. To test 211 :  H  
vs. 211 :  H  for two independent samples of sizes 1n  and 2n   yielding 
sample correlations 1r  and 2r , we calculate 

   
 55.6

3131 21

21






nn

zz
v 

and reject 0H  if 2 z , where 1
1

1 tanh rz   and 2
1

2 tanh rz  . To test 

qH   210 :  for 2q , see Problem 6.18. 

To obtain a confidence interval for  , we note that since z in (6.51) is 
approximately normal, we can write 
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 56.61
31

tanh
2

1
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z
n

z
zP 

Solving the inequality for  , we obtain the approximate 100( 1 )% 
confidence interval 

 57.6
3

tanh
3

tanh 22
























n

z
z

n

z
z   

A confidence interval for 2
xy  was given by Helland (1987). 

Example 6.5a: For the hematology data in Table 6.1, we obtained 2R  
in Example 6.4. The overall F test of 0β: 10 H  or 0: 2

x0 yH   is 

carried out using F in (6.44): 

   11 2

2




knR

kR
F     44.205

4595803.01

595803.0



  

The p value is zero. 

Applications using MATLAB Example 6.5a  
[The program name ta24.m]  

clc 
clear all 
data=[14    13.4    39  41  25  17; 15  14.6    46  50  30  20;19   13.5    42  45  21  18 
    23  15  46  46  16  18; 17  14.6    44  51  31  19; 20  14  44  49  24  19; 21  16.4    
49  43  17  18     16  14.8    44  44  26  29; 27  15.2    46  41  13  27;34   15.5    48  
84  42  36;26   15.2    47  56  27  22   28  16.9    50  51  17  23; 24  14.8    44  47  
20  23; 26  16.2    45  56  25  19; 23  14.7    43  40  13  17   9   14.7    42  34  22  
13; 18  16.5    45  54  32  17; 28  15.4    45  69  36  24; 17  15.1    45  46  29  17 
    14  14.2    46  42  25  28; 8   15.9    46  52  34  16; 25  16  47  47  14  18; 37  
17.4    50  86  39  17   20  14.3    43  55  31  19;15   14.8    44  42  24  19; 9   14.9    
43  43  32  17;16   15.5    45  52  30  20     18  14.5    43  39  18  25; 17  14.4    45  
60  37  23; 23  14.6    44  47  21  27; 43  15.3    45  79  23  23     17  14.9    45  34  
15  24; 23  15.8    47  60  32  21; 31  14.4    44  77  39  23;11   14.7    46  37  23  23 
    25  14.8    43  52  19  22; 30  15.4    45  60  25  18; 32  16.2    50  81  38  18; 17  
15  45  49  26  24  22  15.1    47  60  33  16; 20  16  46  46  22  22;20   15.3    48  
55  23  23; 20  14.5    41  62  36  21;   26  14.2    41  49  20  20; 40  15  45  72  25  
25; 22  14.2    46  58  31  22; 61  14.9    45  84  17  17   12  16.2    48  31  15  18;20   
14.5    45  40  18  20;35   16.4    49  69  22  24;38   14.7    44  78  34  16]; 
y=data(:,1);x1=data(:,2);x2=data(:,3);x3=data(:,4); 
x4=data(:,5);x5=data(:,6);n=length(x1);k=5;my=mean(y); 
x=[x1 x2 x3 x4 x5];mx=mean(x)';Rxx=corr(x); 
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ryx=corr(y,x)';Dx=[diag(diag(cov(x)))].^.5;Syy=var(y); 
Sxx=Dx*Rxx*Dx;Syx=std(y)*Dx*ryx;beta1=Sxx^(-1)*Syx; 
beta0=my-Syx'*Sxx^(-1)*mx;Ssq=var(y)-Syx'*Sxx^(-1)*Syx; 
beta1star=inv(Rxx)*ryx; Rs=Syx'*Sxx^(-1)*Syx/Syy 
F=(Rs/k)/((1-Rs)/(n-k-1)); p=1-fcdf(F,k,n-k-1) 

Ans.   

Rs =                               F =                         p = 
      0.95803                            205.44                    0 

 
Example 6.5b: To illustrate Fisher’s z transformation in (6.51) and its 
use to compare two independent correlations in (6.55), we divide the 
hematology data in Table 6.1 into two sub samples of sizes 261 n  and 

252 n  (the first 26 observations and the last 25 observations). For the 
correlation between y and 1x  in each of the two sub-samples, we obtain 

49938.01 r  and 05739.02 r . The z transformation in (6.51) for each of 
these two values is given by 

54849.0tanh 1
1

1   rz  

05745.0tanh 2
1

2   rz  

To test 210 :  H , we use the approximate test statistic (6.55) to obtain 

   
7183.1

32513261

05745.054849.0





v  

Since 96.17183.1 025.0  z 1.6969, we do not reject 0H . 

To obtain approximate 95% confidence limits for 1 , we use (6.57): 

Lower limit for 1  : 13889.0
23

96.1
54849.0tanh 








  

Upper limit for 1  : 74301.0
23

96.1
54849.0tanh 








  

For 2 , the limits are given by 

Lower limit for 2  : 34558.0
22

96.1
05745.0tanh 
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Upper limit for 2  : 44249.0
22

96.1
05745.0tanh 








  

Applications using MATLAB Example 6.5b   
[The program name ta25.m]  

clc 
clear all 
data=[14    13.4    39  41  25  17; 15  14.6    46  50  30  20;19   13.5    42  45  21  18 
    23  15  46  46  16  18; 17  14.6    44  51  31  19; 20  14  44  49  24  19; 21  16.4    
49  43  17  18 16  14.8    44  44  26  29; 27  15.2    46  41  13  27;34   15.5    48  84  
42  36;26   15.2    47  56  27  22  28  16.9    50  51  17  23; 24  14.8    44  47  20  
23; 26  16.2    45  56  25  19; 23  14.7    43  40  13  17  9   14.7    42  34  22  13; 18  
16.5    45  54  32  17; 28  15.4    45  69  36  24; 17  15.1    45  46  29  17 14  14.2    
46  42  25  28; 8   15.9    46  52  34  16; 25  16  47  47  14  18; 37  17.4    50  86  39  
17  20  14.3    43  55  31  19;15   14.8    44  42  24  19; 9   14.9    43  43  32  17;16   
15.5    45  52  30  20 18  14.5  43  39  18  25; 17  14.4    45  60  37  23; 23  14.6    
44  47  21  27; 43  15.3    45  79  23  23 17  14.9    45  34  15  24; 23  15.8    47  60  
32  21; 31  14.4    44  77  39  23;11   14.7    46  37  23  23  25  14.8    43  52  19 22; 
30  15.4    45  60  25  18; 32  16.2    50  81  38  18; 17  15  45  49  26  24 22  15.1 
47  60  33  16; 20  16  46  46  22  22;20   15.3    48  55  23  23; 20  14.5    41  62  
36  21; 26  14.2    41  49  20  20; 40  15  45  72  25  25; 22  14.2    46  58  31  22; 
61  14.9    45  84  17  17  12  16.2    48  31  15  18;20   14.5    45  40  18  20;35   
16.4    49  69  22  24;38   14.7    44  78  34  16]; 
y1=data(1:26,1);x1=data(1:26,2);y2=data(27:51,1);x2=data(27:51,2); 
n1=length(x1);n2=length(x2);r1=corr(y1,x1),r2=corr(y2,x2),alfa=0.05; 
z1=atanh(r1),z2=atanh(r2),v=(z1-z2)/sqrt(1/(n1-1)+1/(n2-1)), 
z=abs(tinv(alfa/2,inf)); 
LowerLimitForr1 = tanh(z1-z/sqrt(n1-3)),UpperLimitForr1 = tanh(z1+z/sqrt(n1-3)) 
LowerLimitForr2 = tanh(z2-z/sqrt(n2-3)),UpperLimitForr2 = tanh(z2+z/sqrt(n2-3)) 

Ans.  

r1 =                                    r2 = 

        0.49938                                0.057391 

z1 =                                   z2 =                                 v =        

        0.54849                                0.057454                    1.7183 

LowerLimitForr1 =                          UpperLimitForr1 = 

                              0.1389                                               0.74301       

LowerLimitForr2 =                          UpperLimitForr2 = 

                              -0.34558                                            0.44249 
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6.6: Effect of each variable on 2R   

The contribution of a variable jx  to the multiple correlation R will, in 

general, be different from its bivariate correlation with y; that is, the 
increase in 2R  when jx  is added is not equal to 2

jyxr . This increase in 
2R  can be either more or less than 2

jyxr . It seems clear that relationships 

with other variables can render a variable partially redundant and 
thereby reduce the contribution of jx  to 2R , but it is not intuitively 

apparent how the contribution of jx  to 2R  can exceed 2

jyxr . The latter 

phenomenon has been illustrated numerically by Flury (1989) and 
Hamilton (1987). 
In this section, we provide a breakdown of the factors that determine 
how much each variable adds to 2R  and show how the increase in 2R  
can exceed 2

jyxr  (Rencher 1993). We first introduce some notation. The 

variable of interest is denoted by z, which can be one of the x’s or a 
new variable added to the x’s. We make the following additional 
notational definitions: 

2
ywR  squared multiple correlation between y and   zxxx k ,,,,w 21  .  

2
yxR  squared multiple correlation between y and   kxxx ,,,x 21  .  

212
zzxxxzxzx SSSSR   = squared multiple correlation between y and x. 

yzr  simple correlation between y and z. 

  
kyxyxyxyx rrr ,,,

21
r   vector of correlations between y and x. 

  
kzxzxzxzx rrr ,,,

21
r   vector of correlations between z and x. 

zxxxzx r1* Rˆ   is the vector of standardized regression coefficients (beta 

weights) of z regressed on x [see (6.24)]. 

The effect of z on 2R  is formulated in the following theorem. 

Theorem 6.6: The increase in 2R  due to z can be expressed as 
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   58.6
1

ˆ
2

2

22

zx

yzyz
yxyw R

rr
RR




  

Where yxzxyzr r*ˆˆ


   is a predicted value of yzr  based on the relationship 

of z to the x’s. 

Proof: See Problem 6.19. 

Since the right side of (6.58) is positive, 2R  cannot decrease with an 
additional variable, which is a verification of property 3 in Section 3.7. 
If z is orthogonal to x (i.e., if 0zxr ), then 0ˆ * zx , which implies that 

0ˆ yzr  and 02 zxR . In this case, (6.58) can be written as 222
yzyxyw rRR  , 

which verifies property 5 of Section 3.7. 

It is clear in Theorem 6.6 that the contribution of z to 2R  can either be 
less than or greater than 2

yzr . If yzr̂  is close to yzr , the contribution of z is 

less than 2
yzr . There are three ways in which the contribution of z can 

exceed 2
yzr : (1) yzr̂  is substantially larger in absolute value than yzr , (2) 

yzr̂  and yzr  are of opposite signs, and (3) 2
zxR  is large. 

In many cases, the researcher may find it helpful to know why a 
variable contributed more than expected or less than expected. For 
example, admission to a university or professional school may be 
based on previous grades and the score on a standardized national test. 
An applicant for admission to a university with limited enrollment 
would submit high school grades and a national test score. These might 
be entered into a regression equation to obtain a predicted value of 
first-year grade-point average at the university. It is typically found 
that the standardized test increases 2R  only slightly above that based 
on high school grades alone. This small increase in 2R  would be 
disappointing to admissions officials who had hoped that the national 
test score might be a more useful predictor than high school grades. 
The designers of such standardized tests may find it beneficial to know 
precisely why the test makes such an unexpectedly small contribution 
relative to high school grades. 

In Theorem 6.6, we have available the specific information needed by 
the designer of the standardized test. To illustrate the use of (6.58), let 
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y be the grade-point average for the first year at the university, let z be 
the score on the standardized test, and let kxxx ,,, 21   be high school 
grades in key subject areas. By (6.58), the increase in 2R  due to z is 
   22 1ˆ zxyzyz Rrr  , in which we see that z adds little to 2R  if yzr̂  is close 

to yzr . We could examine the coefficients in yxzxyzr r*ˆˆ


   to determine 

which of the 
jyxr̂ ’s in yxr  have the most effect. This information could 

be used in redesigning the questions so as to reduce these particular 

jyxr̂ ’s. It may also be possible to increase the contribution of z to 2
ywR  

by increasing 2
zxR  (thereby reducing 21 zxR ). This might be done by 

designing the questions in the standardized test so that the test score z 
is more correlated with high school grades, qxxx ,,, 21  . 

Theil and Chung (1988) proposed a measure of the relative importance 
of a variable in multiple regression based on information theory. 

Example 6.6: For the hematology data in Table 6.1, the overall 2
ywR  

was found in Example 6.4 to be 0.95803. From Theorem 6.6, the 
increase in 2R  due to a variable z has the breakdown  22

yxyw RR  

   22 1ˆ zxyzyz Rrr  , where z represents any one of 521 ,,, xxx  , and x 

represents the other four variables. The values of yzr̂ , yzr , 2
zxR , 22

yxyw RR   , 

and F are given below for each variable in turn as z: 

z yzr̂ yzr  2
zxR  22

yxyw RR   F p-value 

1x  0.23995 0.23331 0.64078 0.000114 0.12235 0.72813

2x  0.29014 0.25162 0.64939 0.001718 1.8416 0.18153

3x  0.17303 0.79073 0.44327 0.878690 942.12 0 

4x  -0.05259 0.02264 0.38109 0.330820 354.7 0 

5x  0.27356 0.12584 0.12586 0.000480 0.51484 0.47676

The F value is from the partial F test in (4.25), (4.37), or (4.39) for the 
significance of the increase in 2R  due to each variable. 

An interesting variable here is 4x , whose value of yzr  is .02264, the 

smallest among the five variables. Despite this small individual 
correlation with y, 4x  contributes much more to 2

ywR  than do all other 
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variables except 3x  because yzr̂  is much greater for 4x  than for the other 

variables. This illustrates how the contribution of a variable can be 
augmented in the presence of other variables as reflected in yzr̂ . 

The difference between the two major contributors 3x  and 4x  may be 
very revealing to the researcher. The contribution of 3x  to 2

ywR  is due 

mostly to its own correlation with y, whereas virtually all the effect of 
4x  comes from its association with the other variables as reflected in 

yzr̂ . 

Applications using MATLAB Example 6.6   
[The program name ta26.m]  

clc 
clear all 
data=[14    13.4    39  41  25  17; 15  14.6    46  50  30  20;19   13.5    42  45  21  18 
    23  15  46  46  16  18; 17  14.6    44  51  31  19; 20  14  44  49  24  19; 21  16.4    
49  43  17  18  16  14.8    44  44  26  29; 27  15.2    46  41  13  27;34   15.5    48  84  
42  36;26   15.2    47  56  27  22  28  16.9    50  51  17  23; 24  14.8    44  47  20  
23; 26  16.2    45  56  25  19; 23  14.7    43  40  13  17     9   14.7    42  34  22  13; 
18  16.5    45  54  32  17; 28  15.4    45  69  36  24; 17  15.1    45  46  29  17  14  
14.2    46  42  25  28; 8   15.9    46  52  34  16; 25  16  47  47  14  18; 37  17.4    50  
86  39  17   20  14.3    43  55  31  19;15   14.8    44  42  24  29; 9   14.9    43  43  32  
17;16   15.5    45  52  30  20      18  14.5    43  39  18  25; 17  14.4    45  60  37  23; 
23  14.6    44  47  21  27; 43  15.3    45  79  23  23  17  14.9    45  34  15  24; 23  
15.8    47  60  32  21; 31  14.4    44  77  39  23;11   14.7    46  37  23  23 25  14.8    
43  52  19  22; 30  15.4    45  60  25  18; 32  16.2    50  81  38  18; 17  15  45  49  
26  24 22  15.1    47  60  33  16; 20  16  46  46  22  22;20   15.3    48  55  23  23; 20  
14.5    41  62  36  21; 26  14.2    41  49  20  20; 40  15  45  72  25  25; 22  14.2    46  
58  31  22; 61  14.9    45  84  17  17 12  16.2    48  31  15  18;20   14.5    45  40  18  
20;35   16.4    49  69  22  24;38   14.7    44  78  34  16]; 
y=data(:,1);x1=data(:,2); x2=data(:,3);x3=data(:,4); x4=data(:,5); 
x5=data(:,6);n=length(x1);k=5;my=mean(y); 
x=[x1 x2 x3 x4 x5]; mx=mean(x)';Rxx=corr(x); ryx=corr(y,x)'; 
Dx=[diag(diag(cov(x)))].^.5; Syy=var(y);Sxx=Dx*Rxx*Dx;Syx=std(y)*Dx*ryx; 
Rs=Syx'*Sxx^(-1)*Syx/Syy 
X1=[ones(size(x1)) x2 x3 x4 x5];X2=[ones(size(x1)) x1 x3 x4 x5]; 
X3=[ones(size(x1)) x1 x2 x4 x5];X4=[ones(size(x1)) x1 x2 x3 x5]; 
X5=[ones(size(x1)) x1 x2 x3 x4];ryz=corr(x,y) 
[B,BL,R,RI,S]=regress(y,X1),Rsyx1=S(1); 
[B,BL,R,RI,S]=regress(y,X2);Rsyx2=S(1); 
[B,BL,R,RI,S]=regress(y,X3);Rsyx3=S(1); 
[B,BL,R,RI,S]=regress(y,X4);Rsyx4=S(1); 
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[B,BL,R,RI,S]=regress(y,X5);Rsyx5=S(1); 
Rsyx=[Rsyx1 Rsyx2 Rsyx3 Rsyx4 Rsyx5]' 
dfbetweenRsandRsyx=Rs-Rsyx 
[B1,BL,R,RI,S]=regress(x1,X1);Rsz1=S(1); 
[B2,BL,R,RI,S]=regress(x2,X2);Rsz2=S(1); 
[B3,BL,R,RI,S]=regress(x3,X3);Rsz3=S(1); 
[B4,BL,R,RI,S]=regress(x4,X4);Rsz4=S(1); 
[B5,BL,R,RI,S]=regress(x5,X5);Rsz5=S(1); 
Rszx=[Rsz1 Rsz2 Rsz3 Rsz4 Rsz5] 
rzx=[(Rszx).^(0.5)]' 
% std regression 
x1=(x1-mx(1))/std(x1);x2=(x2-mx(2))/std(x2);x3=(x3-mx(3))/std(x3); 
x4=(x4-mx(4))/std(x4);x5=(x5-mx(5))/std(x5); 
X1=[ones(size(x1)) x2 x3 x4 x5];X2=[ones(size(x1)) x1 x3 x4 x5]; 
X3=[ones(size(x1)) x1 x2 x4 x5];X4=[ones(size(x1)) x1 x2 x3 x5]; 
X5=[ones(size(x1)) x1 x2 x3 x4];betaxz1=regress(x1,X1); 
betaxz2=regress(x2,X2);betaxz3=regress(x3,X3); 
betaxz4=regress(x4,X4);betaxz5=regress(x5,X5); 
betaxz=[betaxz1 betaxz2 betaxz3 betaxz4 betaxz5]; rzxhat=betaxz'*ryx 

Ans.   

Rs = 
      0.95805  
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6.7: Prediction for multivariate Normal or non-Normal data 

In this section, we consider an approach to modeling and estimation in 
the random-x case that is somewhat reminiscent of least squares in the 
fixed-x case. Suppose that    kxxxyy ,,,,x, 21   is not necessarily 
assumed to be multivariate normal and we wish to find a function t(x) 
for predicting y. In order to find a predicted value t(x) that is expected 
to be “close” to y, we will choose the function t(x) that minimizes the 
mean squared error   2xtyE  , where the expectation is in the joint 
distribution of kxxxy ,,,, 21  . This function is given in the following 
theorem. 

Theorem 6.7: For the random vector  x, y , the function t(x) that 

minimizes the mean squared error   2xtyE   is given by  xyE .

Proof: For notational simplicity, we use k = 1. The joint density  xyg ,  
can be written as      xhxyfxyg , . Then 

        xyxygxtyxtyE dd  ,
22

       xyxhxyfxty dd 
2

       xyxyfxtyxh dd  }{
2

To find the function t(x) that minimizes  2tyE  , we differentiate with 
respect to t and set the result equal to 0 [for a more general proof not 
involving differentiation, see Graybill (1976, pp. 432–434) or 
Christensen (1996, p. 119)]. Assuming that we can interchange 
integration and differentiation, we obtain 

            012 }{
2







xyxyfxtyxh
xty dd

t
E

which gives 

        02 ][   xdyxyfxtyxyyfxh dd

      02 ][  xxtxh dxyE
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