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Introduction 

This book has been prepared for the beginners to help them understand 

basic to advanced functionality of MATLAB. After completing this 

chapter 1 (Which included an explanation of the Matlab language) you 

will find yourself at a moderate level of expertise in using MATLAB 

from where you can take yourself to next levels. 

On other side, I have long been fascinated by the interplay of variables 

in multivariate data and by the challenge of unraveling the effect of 

each variable. My continuing objective has been to present the power 

and utility of multivariate analysis in a highly readable format. 

Practitioners and researchers in all applied disciplines often measure 

several variables on each subject or experimental unit. In some cases, it 

may be productive to isolate each variable in a system and study it 

separately. Typically, however, the variables are not only correlated 

with each other, but each variable is influenced by the other variables 

as it affects a test statistic or descriptive statistic. Thus, in many 

instances, the variables are intertwined in such a way that when 

analyzed individually they yield little information about the system. 

Using multivariate analysis, the variables can be examined 

simultaneously in order to access the key features of the process that 

produced them. The multivariate approach enables us to (1) explore the 

joint performance of the variables and (2) determine the effect of each 

variable in the presence of the others. 

Multivariate analysis provides both descriptive and inferential 

procedures—we can search for patterns in the data or test hypotheses 

about patterns of a priori interest. With multivariate descriptive 

techniques, we can peer beneath the tangled web of variables on the 

surface and extract the essence of the system. Multivariate inferential 

procedures include hypothesis tests that (1) process any number of 

variables without inflating the Type I error rate and (2) allow for 

whatever intercorrelations the variables possess. A wide variety of 

multivariate descriptive and inferential procedures is readily accessible 

in statistical software packages. 
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

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












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996.27494.134456.51512.4

494.13039.30225.108639.4

4456.5225.10604.185494.7

1512.48639.45494.71361.9

S2

Table 2.3: Four Psychological Test Scores on 32 Males and 32 Females 

Males Females 

1y 2y 3y 4y 1y 2y 3y 4y

15 17 24 14 13 14 12 21 

17 15 32 26 14 12 14 26 

15 14 29 23 12 19 21 21 

13 12 10 16 12 13 10 16 

20 17 26 28 11 20 16 16 

15 21 26 21 12 9 14 18 

15 13 26 22 10 13 18 24 

13 5 22 22 10 8 13 23 

14 7 30 17 12 20 19 23 

17 15 30 27 11 10 11 27 

17 17 26 20 12 18 25 25 

17 20 28 24 14 18 13 26 

15 15 29 24 14 10 25 28 

18 19 32 28 13 16 8 14 

18 18 31 27 14 8 13 25 

15 14 26 21 13 16 23 28 

18 17 33 26 16 21 26 26 

10 14 19 17 14 17 14 14 

18 21 30 29 16 16 15 23 

18 21 34 26 13 16 23 24 

13 17 30 24 2 6 16 21 

16 16 16 16 14 16 22 26 

11 15 25 23 17 17 22 28 

16 13 26 16 16 13 16 14 

16 13 23 21 15 14 20 26 

18 18 34 24 12 10 12 9 

16 15 28 27 14 17 24 23 

15 16 29 24 13 15 18 20 

18 19 32 23 11 16 18 28 

18 16 33 23 7 7 19 18 

17 20 21 21 12 15 7 28 

19 19 30 28 6 5 6 13
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The sample covariance matrices do not appear to indicate a disparity in 

the population covariance matrices. (A significance test to check this 

assumption is carried out in Example 4.3.2, and the hypothesis 

210 : H is not rejected.) The pooled covariance matrix is 

    ][ 21pl S132S132
23232

1
S 


























32.2298.13856.5701.4

98.1336.29492.8693.5

856.5492.889.15047.6

701.4693.5047.6164.7

By (2.9), we obtain 

    601.97yySyy 21

1

pl21

21

212 





 

nn

nn
T

From interpolation in Table A.7, we obtain 363.152

62,4,01.0 T , and we 

therefore reject 210 μμ: H . See Example 2.5 for a discussion of which 

variables contribute most to separation of the two groups. 

Applications using MATLABExample 2.4.2[The program name mt4.m]

clc  

clear all 

data=[15 17 24 14 13 14 12 21;17 15 32 26 14 12 14 26; 15 14 29 23 12 19 21 

21;13 12 10 16 12 13 10 16;20 17 26 28 11 20 16 16;15 21 26 21 12 9 14 18; 

15 13 26 22 10 13 18 24;13 5 22 22 10 8 13 23;14 7 30 17 12 20 19 23;17 15 30 27 

11 10 11 27;17 17 26 20 12 18 25 25;17 20 28 24 14 18 13 26;15 15 29 24 14 10 

25 28; 18 19 32 28 13 16 8 14;18 18 31 27 14 8 13 25;15 14 26 21 13 16 23 28; 

18 17 33 26 16 21 26 26;10 14 19 17 14 17 14 14;18 21 30 29 16 16 15 23; 

18 21 34 26 13 16 23 24;13 17 30 24 2 6 16 21;16 16 16 16 14 16 22 26; 

11 15 25 23 17 17 22 28;16 13 26 16 16 13 16 14;16 13 23 21 15 14 20 26; 

18 18 34 24 12 10 12 9;16 15 28 27 14 17 24 23;15 16 29 24 13 15 18 20; 

18 19 32 23 11 16 18 28;18 16 33 23 7 7 19 18;17 20 21 21 12 15 7 28; 

19 19 30 28 6 5 6 13];y11=data(:,1);y12=data(:,2);y13=data(:,3); 

y14=data(:,4);y21=data(:,5);y22=data(:,6);y23=data(:,7); 

y24=data(:,8);y24=data(:,8);m1=mean(data(:,1:4))',m2=mean(data(:,5:8))' 

S1=cov(data(:,1:4))',S2=cov(data(:,5:8))',n1=length(y11);n2=length(y21); 

Spl=(1/(n1+n2-2))*((n1-1)*S1+(n2-1)*S2) 

Ts=((n1*n2)/(n1+n2))*(m1-m2)'*inv(Spl)*(m1-m2) 

alfa=0.01;p=4;v=n1+n2-p-1;  

tabTs=(finv(1-alfa,p,v)*(n1+n2-2)*p)/v 
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Ans. 

2.4.3: Likelihood Ratio Tests 

The maximum likelihood approach to estimation was introduced ; the 

likelihood function is the joint density of ny,,y,y 21  . The values of the 

parameters that maximize the likelihood function are the maximum 

likelihood estimators. 

The likelihood ratio method of test construction uses the ratio of the 

maximum value of the likelihood function assuming 0H is true to the 

maximum under 1H , which is essentially unrestricted. Likelihood ratio 

tests usually have good power and sometimes have optimum power 

over a wide class of alternatives. 

When applied to multivariate normal samples and 210 μμ: H , the 

likelihood ratio approach leads directly to Hotelling’s 2T -test in (2.9). 

Similarly, in the one sample case, the 2T -statistic in (2.5) is the 

likelihood ratio test. Thus the 2T -test, which we introduced rather 

informally, is the best test according to certain criteria. 
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2.5: TESTS ON INDIVIDUAL VARIABLES CONDITIONAL ON 

REJECTION OF 0H  BY THE 2T -TEST 

If the hypothesis 210 μμ: H  is rejected, the implication is that jj μμ 21   

for at least one pj ,,2,1  . But there is no guarantee that 
jj μμH 210 :   

will be rejected for some j by a univariate test. However, if we 

consider a linear combination of the variables, ya z , then there is at 

least one coefficient vector a for which 

 
 

 12.2
11

a
2

21

21

zsnn

zz
t




 

will reject the corresponding hypothesis 
210 μμ: zzH   or 210 μaμa: H . 

11 yaz  and 22 yaz , the variance estimator 2

zs  is the pooled estimator 

aSa pl
 . Thus (2.12) can be written as 

 
  

 13.2
aSa

yaya
a

pl2121

21






nnnn
t 

Since  at  can be negative, we work with  a2t . The linear function 

ya z  is a projection of y onto a line through the origin. We seek the 

line (direction) on which the difference 21 yy   is maximized when 

projected. The projected difference  21 yya   [standardized by aSa pl
  as 

in (2.13)] will be less in any other direction than that parallel to the line 

joining 1y  and 2y . The value of a that projects onto this line, or, 

equivalently, maximizes  a2t  in (2.13), is (any multiple of) 

   14.2yySa 21

1

pl   

Since a in (2.14) projects 21 yy   onto a line parallel to the line joining 

1y  and 2y , we would expect that   2a2 Tt  , and this is indeed the case 

(see Problem 2.3). 

When  21

1

pl yySa   , then ya z  is called the discriminant function. 

Sometimes the vector a itself in (2.14) is loosely referred to as the 

discriminant function. 
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If 210 μμ: H is rejected by 2T in (2.9), the discriminant function ya 

will lead to rejection of 210 μaμa: H using (2.13), with  21

1

pl yySa   .

We can then examine each ja in a for an indication of the contribution 

of the corresponding jy  to rejection of 0H . This follow-up 

examination of each ja should be done only if 210 μμ: H is rejected 

by 2T . The discriminant function will appear again in Section 2.6.2 

and in Chapters 5 and 6. 

We list these and other procedures that could be used to check each 

variable following rejection of 0H by a two-sample 2T -test: 

1. Univariate t-tests, one for each variable,

  
 15.2,,2,1,

2121

21
pj

snnnn

yy

jj

jj

jt 





where jjs is the jth diagonal element of plS . Reject 
jj μμH 210 :  if

2,2 21  nntt j  . For confidence intervals on
jj μμ 21  , see Rencher

(1998, Section 3.6). 

2. To adjust the α-level resulting from performing the p tests in

(2.15), we could use a Bonferroni critical value 2,2 21 nnpt  for 

(2.15) (Bonferroni 1936). A critical value pt 2  is much greater 

than the corresponding 2t , and the resulting overall α-level is 

conservative. Bonferroni critical values vpt ,2 are given in Table 

A.8, from Bailey (1977).

3. Another critical value that could be used with (2.15) is

2,, 21 nnpT , where T is the square root of 2

T from Table A.7;

that is, 2

2121 2,,2,,   nnpnnp TT  . This allows for all p variables 

to be tested as well as all possible linear combinations, as in 

(2.13), even linear combinations chosen after seeing the data. 

Consequently, the use of T  is even more conservative than using 

pt 2 ; that is, 
2,22,, 2121   nnpnnp tT  . 
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4. Partial F- or t-tests [test of each variable adjusted for the other 

variables; see (2.32) in Section 2.8]. 

5. Standardized discriminant function coefficients (see Section 5.5) 

6. Correlations between the variables and the discriminant function 

(see Section 5.7.3). 

7. Stepwise discriminant analysis (see Section 5.9). 

The first three methods are univariate approaches that do not use 

covariances or correlations among the variables in the computation of 

the test statistic. The last four methods are multivariate in the sense 

that the correlation structure is explicitly taken into account in the 

computation. 

Method 6, involving the correlation between each variable and the 

discriminant function, is recommended in many texts and software 

packages. However, Rencher (1988) has shown that these correlations 

are proportional to individual t- or F-tests (see Section 5.7.3). Thus this 

method is equivalent to method 1 and is a univariate rather than a 

multivariate approach. Method 7 is often used to identify a subset of 

important variables or even to rank the variables according to order of 

entry. But Rencher and Larson (1980) have shown that stepwise 

methods have a high risk of selecting spurious variables, unless the 

sample size is very large. 

We now consider the univariate procedures 1, 2, and 3. The probability 

of rejecting one or more of the p univariate tests when 0H  is true is 

called the overall α or experimentwise error rate. If we do univariate 

tests only, with no 2T -test, then the tests based on pt 2 and T  in 

procedures 2 and 3 are conservative (overall α too low), and tests based 

on 2t  in procedure 1 are liberal (overall α too high). However, when 

these tests are carried out only after rejection by the 2T -test (such tests 

are sometimes called protected tests), the experimentwise error rates 

change. Obviously the tests will reject less often (under 0H ) if they are 

carried out only if 2T  rejects. Thus the tests using pt 2  and T  become 

even more conservative, and the test using 2t  becomes more 

acceptable. 
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Hummel and Sligo (1971) studied the experimentwise error rate for 

univariate t-tests following rejection of 0H by the 2T -test (protected 

tests). Using α = 0.05, they found that using 2t  for a critical value 

yields an overall α acceptably close to the nominal 0.05. In fact, it is 

slightly conservative, making this the preferred univariate test (within 

the limits of their study). They also compared this procedure with that 

of performing univariate tests without a prior 2T -test (unprotected 

tests). For this case, the overall α is too high, as expected. Table 2.2 

gives an excerpt of Hummel and Sligo’s results. The sample size is for 

each of the two samples; the 2r in common is for every pair of 

variables. 

Hummel and Sligo therefore recommended performing the multivar-

iate 2T -test followed by univariate t-tests. This procedure appears to 

have the desired overall α level and will clearly have better power than 

tests using T  or pt 2  as a critical value. Table 2.2 also highlights the 

importance of using univariate t-tests only if the multivariate 2T -test is 

significant. The inflated α’s resulting if t-tests are used without regard 

to the outcome of the 2T -test are clearly evident. Thus among the three 

univariate procedures (procedures 1, 2, and 3), the first appears to be 

preferred. 

Among the multivariate approaches (procedures 4, 5, and 7), we prefer 

the fifth procedure, which compares the (absolute value of) coefficients 

in the discriminant function to find the effect of each variable in 

separating the two groups of observations. These coefficients will often 

tell a different story from the univariate tests, because the univariate 

tests do not take into account the correlations among the variables or 

the effect of each variable on 2T  in the presence of the other variables. 

A variable will typically have a different effect in the presence of other 

variables than it has by itself. In the discriminant function ya z =  

pp yayaya  2211 , where  21

1

pl yySa   , the coefficients paaa ,,, 21 

indicate the relative importance of the variables in a multivariate 

context, something the univariate t-tests cannot do. If the variables are 

not commensurate (similar in scale and variance), the coefficients 

should be standardized, as in Section 5.5; this allows for more valid 

comparisons among the variables. Rencher and Scott (1990) provided a 

decomposition of the information in the standardized discriminant 
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function coefficients. For a detailed analysis of the effect of each 

variable in the presence of the other variables, see Rencher (1993; 

1998, Sections 3.3.5 and 3.5.3). 

Table 2.4: Comparison of Experimentwise Error Rates (Nominal α= .05) 

Example 2.5: For the psychological data in Table 2.3, we obtained 1y , 

2y , and plS in Example 2.4.2. The discriminant function coefficient 

vector is obtained from (2.14) as 

 
























 

3097.0

4660.0

2033.0

5104.0

yySa 21

1

pl
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Thus the linear combination that best separates the two groups is 

4321 3097.04660.02033.05104.0ya yyyy   

in which 1y  and 3y  appear to contribute most to separation of the two 

groups. (After standardization, the relative contribution of the variables 

changes somewhat; see the answer to Problem 5.7 in Appendix B.) 

Applications using MATLAB Example 2.5[The program name mt5.m] 
clc  

clear all 

data=[15 17 24 14 13 14 12 21;17 15 32 26 14 12 14 26; 15 14 29 23 

12 19 21 21;13 12 10 16 12 13 10 16;20 17 26 28 11 20 16 16;15 21 26 

21 12 9 14 18; 15 13 26 22 10 13 18 24;13 5 22 22 10 8 13 23;14 7 30 

17 12 20 19 23;17 15 30 27 11 10 11 27; 17 17 26 20 12 18 25 25;17 

20 28 24 14 18 13 26;15 15 29 24 14 10 25 28;18 19 32 28 13 16 8 

14;18 18 31 27 14 8 13 25;15 14 26 21 13 16 23 28;18 17 33 26 16 21 

26 26;10 14 19 17 14 17 14 14;18 21 30 29 16 16 15 23;  18 21 34 26 

13 16 23 24;13 17 30 24 2 6 16 21;16 16 16 16 14 16 22 26;11 15 25 

23 17 17 22 28;16 13 26 16 16 13 16 14;16 13 23 21 15 14 20 26;18 18 

34 24 12 10 12 9;16 15 28 27 14 17 24 23;15 16 29 24 13 15 18 20; 

18 19 32 23 11 16 18 28;18 16 33 23 7 7 19 18;17 20 21 21 12 15 7 28;  

19 19 30 28 6 5 6 13];y11=data(:,1);y12=data(:,2);y13=data(:,3); 

y14=data(:,4);y21=data(:,5);y22=data(:,6);y23=data(:,7); 

y24=data(:,8);y24=data(:,8); 

m1=mean(data(:,1:4))'; 

m2=mean(data(:,5:8))'; 

S1=cov(data(:,1:4))';S2=cov(data(:,5:8))'; 

n1=length(y11);n2=length(y21);  

Spl=(1/(n1+n2-2))*((n1-1)*S1+(n2-1)*S2); 

a=inv(Spl)*(m1-m2), 

Ans.  
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2.6: COMPUTATION OF 2T  

If one has a program available with matrix manipulation capability, it 

is a simple matter to compute 2T  using (2.9). However, this approach 

is somewhat cumbersome for those not accustomed to the use of such a 

programming language, and many would prefer a more automated 

procedure. But very few general-purpose statistical programs provide 

for direct calculation of the two-sample 2T -statistic, perhaps because it 

is so easy to obtain from other procedures. We will discuss two types 

of widely available procedures that can be used to compute 2T . 

2.6.1: Obtaining 2T  from a MANOVA Program 

Multivariate analysis of variance (MANOVA) is discussed in Chapter 

3, and the reader may wish to return to the present section after 

becoming familiar with that material. One-way MANOVA involves a 

comparison of mean vectors from several samples. Typically, the 

number of samples is three or more, but the procedure will also 

accommodate two samples. The two-sample 2T  test is thus a special 

case of MANOVA. 

Four common test statistics are defined in Section 3.1: Wilks’  , the 

Lawley–Hotelling  sU , Pillai’s  sV , and Roy’s largest root θ. Without 

concerning ourselves here with how these are defined or calculated, we 

show how to use each to obtain the two-sample 2T : 

   16.2
1

221

2




 nnT

     17.2U221

2 snnT  

 
 

 
 18.2

V1

V
221

2

s

s

nnT


 

   19.2
θ1

θ
221

2


 nnT 

(For the special case of two groups,   θV s .) These relationships are 

demonstrated in Section 3.1.7. If the MANOVA program gives 

eigenvectors of HE 1  (E and H are defined in Section 3.1.2), the 

eigenvector corresponding to the largest eigenvalue will be equal to (a 

constant multiple of) the discriminant function  21

1

pl yyS  . 
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2.6.2: Obtaining 2T  from Multiple Regression 

In this section, the y’s become independent variables in a regression 

model. For each observation vector i1y  and i2y  in a two-sample 2T , 

define a “dummy” group variable as 

 
21

2

nn

n
wi


  for each of 

112111 y,,y,y n in sample 1 

 
21

1

nn

n


  for each of 

222212 y,,y,y n in sample 2 

Then 0w  for all 21 nn   observations. The prediction equation for the 

regression of w on the y’s can be written as  

ippiii ybybybbw  22110
ˆ  

where i ranges over all 21 nn   observations and the least squares 

estimate 0b  is [see (7.15)]  

pp ybybybwb  22110  

Substituting this into the regression equation, we obtain 

      pippiii yybyybyybww  222111
ˆ  

      pippii yybyybyyb  222111
 (since 0w ) 

Let  pbbb ,,,b 21   be the vector of regression coefficients and 2R  be 

the squared multiple correlation. Then we have the following 

relationships: 

   20.2
1

2
2

2

21

2

R

R
nnT


 

     21.2b2yySa 2

21

21

21
21

1

pl Tnn
nn

nn



  

Thus with ordinary multiple regression, one can easily obtain 2T  and 

the discriminant function  21

1

pl yyS  . We simply define iw  as above for 

each of the 21 nn   observations, regress the w’s on the y’s, and use the 

resulting 2R  in (2.20). For b, delete the intercept from the regression 

coefficients for use in (2.21). Actually, since only the relative values of 

the elements of  21

1

pl yySa    are of interest, it is not necessary to 
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convert from b to a in (2.21). We can use b directly or standardize the 

values pbbb ,,, 21   as in Section 5.5. 

Example 2.6.2: We illustrate the regression approach to computation 

of 2T  using the psychological data in Table 2.3. We set  212 nnnw 

= 32/64 = 1/2 for each observation in group 1 (males) and equal to 

  21211  nnn  in the second group (females). When w is regressed 

on the 64 y’s, we obtain 

61153.0,

031044.0

046721.0

02038.0

05117.0

75114.0

2

4

3

2

1

0























































R

b

b

b

b

b

By (2.20),     601.97
61153.01

61153.0
23232

1
2

2

2

21

2 






R

R
nnT

as was obtained before in Example 2.4.2. Note that  4321 ,,,b bbbb = 

(.05117,−.02038, .046721,−.031044), with the intercept deleted, is 

proportional to the discriminant function coefficient vector a from 

Example 2.5, as we would expect from (2.21). 

Applications using MATLABExample 2.5[The program name mt6.m]
clc 

clear all 

data=[15 17 24 14 13 14 12 21;17 15 32 26 14 12 14 26; 15 14 29 23 12 19 21 

21;13 12 10 16 12 13 10 16;20 17 26 28 11 20 16 16;15 21 26 21 12 9 14 18; 15 13 

26 22 10 13 18 24;13 5 22 22 10 8 13 23;14 7 30 17 12 20 19 23;17 15 30 27 11 10 

11 27; 17 17 26 20 12 18 25 25;17 20 28 24 14 18 13 26;15 15 29 24 14 10 25 28; 

18 19 32 28 13 16 8 14;18 18 31 27 14 8 13 25;15 14 26 21 13 16 23 28; 18 17 33 

26 16 21 26 26;10 14 19 17 14 17 14 14;18 21 30 29 16 16 15 23; 18 21 34 26 13 

16 23 24;13 17 30 24 2 6 16 21;16 16 16 16 14 16 22 26;11 15 25 23 17 17 22 

28;16 13 26 16 16 13 16 14;16 13 23 21 15 14 20 26; 18 18 34 24 12 10 12 9;16 15 

28 27 14 17 24 23;15 16 29 24 13 15 18 20; 18 19 32 23 11 16 18 28;18 16 33 23 7 

7 19 18;17 20 21 21 12 15 7 28; 19 19 30 28 6 5 6 13]; y11=data(:,1); y12= 

data(:,2); y13=data(:,3); y14=data(:,4);y21=data(:,5);y22=data(:,6); y23=data(:,7); 

y24=data(:,8);n1=length(y11);n2=length(y21); w1=n2/(n1+n2);w2=-n1/(n1+n2); 

data1=[y11 y12 y13 y14];data2=[y21 y22 y23 y24]; w=[ones(size(y11))*w1; 

ones(size(y21))*w2]; x=[data1;data2]; n=n1+n2;x=[ones(n,1) x];b=x\w, W=x*b; 

e=w-W; Rs=corr(w,W)^2 ,Ts=(n1+n2-2)*Rs/(1-Rs) 
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Ans.  

 
 

2.7: PAIRED OBSERVATIONS TEST 

As usual, we begin with the univariate case to set the stage for the 

multivariate presentation. 

2.7.1: Univariate Case 

Suppose two samples are not independent because there exists a 

natural pairing between the ith observation iy  in the first sample and 

the ith observation ix  in the second sample for all i, as, for example, 

when a treatment is applied twice to the same individual or when 

subjects are matched according to some criterion, such as IQ or family 

background. With such pairing, the samples are often referred to as 

paired observations or matched pairs. The two samples thus obtained 

are correlated, and the two-sample test statistic in (2.9) is not 

appropriate because the samples must be independent in order for (2.9) 

to have a t-distribution. [The two-sample test in (2.9) is somewhat 

robust to heterogeneity of variances and to lack of normality but not to 

dependence.] We reduce the two samples to one by working with the 

differences between the paired observations, as in the following layout 

for two treatments applied to the same subject: 
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To obtain a t-test, it is not sufficient to assume individual normality for 

each of y and x. To allow for the covariance between y and x, we need 

the additional assumption that y and x have a bivariate normal 

distribution with 

























2

2

,μ
xyx

yxy

x

y








 

where iii xyd   is  2, dxyN   , where 222 2 xyxyd   . From 

nddd ,,, 21   we calculate 

 


n

i idd
n 1

1
 and   




n

i id dds
n 1

22

1

1
 

To test xyH  :0 , that is, 0:0 dH  , we use the one-sample statistic 

 22.2
ns

d
t

d

 

which is distributed as 1nt  if 0H  is true. We reject 0H  in favor of 

0:1 dH   if |t| > 1,2 nt . It is not necessary to assume 22

xy    because 

there are no restrictions on  . 

This test has only n − 1 degrees of freedom compared with 2(n − 1) for 

the two independent-sample t-test (2.8). In general, the pairing reduces 

the within-sample variation ds  and thereby increases the power. 

If we mistakenly treated the two samples as independent and used (2.8) 

with nnn  21 , we would have 

ns

xy

ns

xy
t

2

plpl 22





  

However, 

   

  nnnn

snsn
E

n

s
E

xyxy

22222

pl

2

11
2

2  
































 

whereas     nxyVar yxxy  222  . Thus if the test statistic for 

independent samples (2.8) is used for paired data, it does not have a t-

distribution and, in fact, underestimates the true average t-value 
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(assuming 0H  is false), since yxxyxy  22222   if 0yx , which 

would be typical in this situation. One could therefore use 

 
 23.2

222 nsss

xy
t

yxxy 


 

but dsdnt  in (2.22) is equal to it and somewhat simpler to use. 

2.7.2: Multivariate Case 

Here we assume the same natural pairing of sampling units as in the 

univariate case, but we measure p variables on each sampling unit. 

Thus iy  from the first sample is paired with ix  from the second sample, 

i = 1, 2, . . . , n. In terms of two treatments applied to each sampling 

unit, this situation is as follows: 

 

In Section 2.7.1, we made the assumption that y and x have a bivariate 

normal distribution, in which y and x are correlated. Here we assume y 

and x are correlated and have a multivariate normal distribution: 
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To test 0:0 dH  , which is equivalent to 
xyH  :0
 since   xyEd  

xy   , we calculate 

 


n

i i
n

1
dd

1
 and    






n

i iid
n

1
ddddS

1

1
 

We then have 

 24.2dSdd
S

d 1

1

2 











 d

d n
n

T 

Under 0H , this paired comparison 2T -statistic is distributed as 2

1, npT . 

We reject 0H  if 2

1,,

2

 npTT  . Note that dS  estimates   xyCov  
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