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Time series analysis 

Time series analysis refers to problems in which observations are collected at regular 

time intervals and there are correlations among successive observations. 

Applications cover virtually all areas of Statistics but some of the most important 

include economic and financial time series and many areas of environmental or 

ecological data. 

In this course, I shall cover some of the most important methods for dealing with 

these problems. In the case of time series, these include the basic definitions of 

autocorrelations etc., then time-domain model fitting including autoregressive and 

moving average processes, spectral methods, and some discussion of the effect of 

time series correlations on other kinds of statistical inference, such as the estimation 

of means and regression coefficients. 
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1 Models for time series

1.1 Time series data

A time series is a set of statistics, usually collected at regular intervals. Time series

data occur naturally in many application areas.

• economics - e.g., monthly data for unemployment, hospital admissions, etc.

• finance - e.g., daily exchange rate, a share price, etc.

• environmental - e.g., daily rainfall, air quality readings.

• medicine - e.g., ECG brain wave activity every 2−8 secs.

The methods of time series analysis pre-date those for general stochastic processes

and Markov Chains. The aims of time series analysis are to describe and summarise
time series data, fit low-dimensional models, and make forecasts.

We write our real-valued series of observations as . . . , X−2, X−1, X0, X1, X2, . . ., a
doubly infinite sequence of real-valued random variables indexed by Z.

1.2 Trend, seasonality, cycles and residuals

One simple method of describing a series is that of classical decomposition. The
notion is that the series can be decomposed into four elements:

Trend (Tt) — long term movements in the mean;

Seasonal effects (It) — cyclical fluctuations related to the calendar;

Cycles (Ct) — other cyclical fluctuations (such as a business cycles);

Residuals (Et) — other random or systematic fluctuations.

The idea is to create separate models for these four elements and then combine
them, either additively

Xt = Tt + It + Ct + Et

or multiplicatively

Xt = Tt · It · Ct · Et .

1.3 Stationary processes

1. A sequence {Xt, t ∈ Z} is strongly stationary or strictly stationary if

(Xt1, . . . , Xtk)
D
=(Xt1+h, . . . , Xtk+h)

for all sets of time points t1, . . . , tk and integer h.

2. A sequence is weakly stationary, or second order stationary if
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(a) E(Xt) = µ, and

(b) cov(Xt, Xt+k) = γk,

where µ is constant and γk is independent of t.

3. The sequence {γk, k ∈ Z} is called the autocovariance function.

4. We also define

ρk = γk/γ0 = corr(Xt, Xt+k)

and call {ρk, k ∈ Z} the autocorrelation function (ACF).

Remarks.

1. A strictly stationary process is weakly stationary.

2. If the process is Gaussian, that is (Xt1, . . . , Xtk) is multivariate normal, for all

t1, . . . , tk, then weak stationarity implies strong stationarity.

3. γ0 = var(Xt) > 0, assuming Xt is genuinely random.

4. By symmetry, γk = γ−k, for all k.

1.4 Autoregressive processes

The autoregressive process of order p is denoted AR(p), and defined by

Xt =

p
∑

r=1

φrXt−r + ǫt (1.1)

where φ1, . . . , φr are fixed constants and {ǫt} is a sequence of independent (or uncor-
related) random variables with mean 0 and variance σ2.

The AR(1) process is defined by

Xt = φ1Xt−1 + ǫt . (1.2)

To find its autocovariance function we make successive substitutions, to get

Xt = ǫt + φ1(ǫt−1 + φ1(ǫt−2 + · · · )) = ǫt + φ1ǫt−1 + φ2
1ǫt−2 + · · ·

The fact that {Xt} is second order stationary follows from the observation that
E(Xt) = 0 and that the autocovariance function can be calculated as follows:

γ0 = E
(

ǫt + φ1ǫt−1 + φ2
1ǫt−2 + · · ·

)2
=
(

1 + φ2
1 + φ4

1 + · · ·
)

σ2 =
σ2

1 − φ2
1

γk = E

( ∞
∑

r=0

φr
1ǫt−r

∞
∑

s=0

φs
1ǫt+k−s

)

=
σ2φk

1

1 − φ2
1

.

2



There is an easier way to obtain these results. Multiply equation (1.2) by Xt−k

and take the expected value, to give

E(XtXt−k) = E(φ1Xt−1Xt−k) + E(ǫtXt−k) .

Thus γk = φ1γk−1, k = 1, 2, . . .
Similarly, squaring (1.2) and taking the expected value gives

E(X2
t ) = φ1E(X2

t−1) + 2φ1E(Xt−1ǫt) + E(ǫ2
t ) = φ2

1E(X2
t−1) + 0 + σ2

and so γ0 = σ2/(1 − φ2
1).

More generally, the AR(p) process is defined as

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + ǫt . (1.3)

Again, the autocorrelation function can be found by multiplying (1.3) by Xt−k, taking

the expected value and dividing by γ0, thus producing the Yule-Walker equations

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p, k = 1, 2, . . .

These are linear recurrence relations, with general solution of the form

ρk = C1ω
|k|
1 + · · · + Cpω

|k|
p ,

where ω1, . . . , ωp are the roots of

ωp − φ1ω
p−1 − φ2ω

p−2 − · · · − φp = 0

and C1, . . . , Cp are determined by ρ0 = 1 and the equations for k = 1, . . . , p − 1. It
is natural to require γk → 0 as k → ∞, in which case the roots must lie inside the
unit circle, that is, |ωi| < 1. Thus there is a restriction on the values of φ1, . . . , φp

that can be chosen.

1.5 Moving average processes

The moving average process of order q is denoted MA(q) and defined by

Xt =

q
∑

s=0

θsǫt−s (1.4)

where θ1, . . . , θq are fixed constants, θ0 = 1, and {ǫt} is a sequence of independent

(or uncorrelated) random variables with mean 0 and variance σ2.
It is clear from the definition that this is second order stationary and that

γk =

{

0, |k| > q

σ2
∑q−|k|

s=0 θsθs+k, |k| ≤ q
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We remark that two moving average processes can have the same autocorrelation
function. For example,

Xt = ǫt + θǫt−1 and Xt = ǫt + (1/θ)ǫt−1

both have ρ1 = θ/(1 + θ2), ρk = 0, |k| > 1. However, the first gives

ǫt = Xt − θǫt−1 = Xt − θ(Xt−1 − θǫt−2) = Xt − θXt−1 + θ2Xt−2 − · · ·

This is only valid for |θ| < 1, a so-called invertible process. No two invertible
processes have the same autocorrelation function.

1.6 White noise

The sequence {ǫt}, consisting of independent (or uncorrelated) random variables with

mean 0 and variance σ2 is called white noise (for reasons that will become clear
later.) It is a second order stationary series with γ0 = σ2 and γk = 0, k 6= 0.

1.7 The turning point test

We may wish to test whether a series can be considered to be white noise, or whether
a more complicated model is required. In later chapters we shall consider various

ways to do this, for example, we might estimate the autocovariance function, say
{γ̂k}, and observe whether or not γ̂k is near zero for all k > 0.

However, a very simple diagnostic is the turning point test, which examines a

series {Xt} to test whether it is purely random. The idea is that if {Xt} is purely
random then three successive values are equally likely to occur in any of the six

possible orders.

In four cases there is a turning point in the middle. Thus in a series of n points
we might expect (2/3)(n− 2) turning points.

In fact, it can be shown that for large n, the number of turning points should
be distributed as about N(2n/3, 8n/45). We reject (at the 5% level) the hypothesis
that the series is unsystematic if the number of turning points lies outside the range

2n/3 ± 1.96
√

8n/45.
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2 Models of stationary processes

2.1 Purely indeterministic processes

Suppose {Xt} is a second order stationary process, with mean 0. Its autocovariance

function is
γk = E(XtXt+k) = cov(Xt, Xt+k), k ∈ Z.

1. As {Xt} is stationary, γk does not depend on t.

2. A process is said to be purely-indeterministic if the regression of Xt on

Xt−q, Xt−q−1, . . . has explanatory power tending to 0 as q → ∞. That is, the
residual variance tends to var(Xt).

An important theorem due to Wold (1938) states that every purely-
indeterministic second order stationary process {Xt} can be written in the form

Xt = µ + θ0Zt + θ1Zt−1 + θ2Zt−2 + · · ·
where {Zt} is a sequence of uncorrelated random variables.

3. A Gaussian process is one for which Xt1, . . . , Xtn has a joint normal distri-
bution for all t1, . . . , tn. No two distinct Gaussian processes have the same

autocovariance function.

2.2 ARMA processes

The autoregressive moving average process, ARMA(p, q), is defined by

Xt −
p
∑

r=1

φrXt−r =

q
∑

s=0

θsǫt−s

where again {ǫt} is white noise. This process is stationary for appropriate φ, θ.

Example 2.1

Consider the state space model

Xt = φXt−1 + ǫt ,

Yt = Xt + ηt .

Suppose {Xt} is unobserved, {Yt} is observed and {ǫt} and {ηt} are independent

white noise sequences. Note that {Xt} is AR(1). We can write

ξt = Yt − φYt−1

= (Xt + ηt) − φ(Xt−1 + ηt−1)

= (Xt − φXt−1) + (ηt − φηt−1)

= ǫt + ηt − φηt−1
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Now ξt is stationary and cov(ξt, ξt+k) = 0, k ≥ 2. As such, ξt can be modelled as a
MA(1) process and {Yt} as ARMA(1, 1).

2.3 ARIMA processes

If the original process {Yt} is not stationary, we can look at the first order difference

process
Xt = ∇Yt = Yt − Yt−1

or the second order differences

Xt = ∇2Yt = ∇(∇Y )t = Yt − 2Yt−1 + Yt−2

and so on. If we ever find that the differenced process is a stationary process we can
look for a ARMA model of that.

The process {Yt} is said to be an autoregressive integrated moving average

process, ARIMA(p, d, q), if Xt = ∇dYt is an ARMA(p, q) process.

AR, MA, ARMA and ARIMA processes can be used to model many time series.
A key tool in identifying a model is an estimate of the autocovariance function.

2.4 Estimation of the autocovariance function

Suppose we have data (X1, . . . , XT ) from a stationary time series. We can estimate

• the mean by X̄ = (1/T )
∑T

1 Xt,

• the autocovariance by ck = γ̂k = (1/T )
∑T

t=k+1(Xt − X̄)(Xt−k − X̄), and

• the autocorrelation by rk = ρ̂k = γ̂k/γ̂0.

The plot of rk against k is known as the correlogram. If it is known that µ is 0

there is no need to correct for the mean and γk can be estimated by

γ̂k = (1/T )
∑T

t=k+1 XtXt−k .

Notice that in defining γ̂k we divide by T rather than by (T − k). When T is

large relative to k it does not much matter which divisor we use. However, for
mathematical simplicity and other reasons there are advantages in dividing by T .

Suppose the stationary process {Xt} has autocovariance function {γk}. Then

var

(

T
∑

t=1

atXt

)

=

T
∑

t=1

T
∑

s=1

atas cov(Xt, Xs) =

T
∑

t=1

T
∑

s=1

atasγ|t−s| ≥ 0.

A sequence {γk} for which this holds for every T ≥ 1 and set of constants (a1, . . . , aT )

is called a nonnegative definite sequence. The following theorem states that {γk}
is a valid autocovariance function if and only if it is nonnegative definite.
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Theorem 2.2 (Blochner) The following are equivalent.

1. There exists a stationary sequence with autocovariance function {γk}.
2. {γk} is nonnegative definite.

3. The spectral density function,

f(ω) =
1

π

∞
∑

k=−∞
γke

ikω =
1

π
γ0 +

2

π

∞
∑

k=1

γk cos(ωk) ,

is positive if it exists.

Dividing by T rather than by (T − k) in the definition of γ̂k

• ensures that {γ̂k} is nonnegative definite (and thus that it could be the autoco-
variance function of a stationary process), and

• can reduce the L2-error of rk.

2.5 Identifying a MA(q) process

In a later lecture we consider the problem of identifying an ARMA or ARIMA model
for a given time series. A key tool in doing this is the correlogram.

The MA(q) process Xt has ρk = 0 for all k, |k| > q. So a diagnostic for MA(q) is
that |rk| drops to near zero beyond some threshold.

2.6 Identifying an AR(p) process

The AR(p) process has ρk decaying exponentially. This can be difficult to recognise
in the correlogram. Suppose we have a process Xt which we believe is AR(k) with

Xt =

k
∑

j=1

φj,kXt−j + ǫt

with ǫt independent of X1, . . . , Xt−1.

Given the data X1, . . . , XT , the least squares estimates of (φ1,k, . . . , φk,k) are ob-
tained by minimizing

1

T

T
∑

t=k+1

(

Xt −
k
∑

j=1

φj,kXt−j

)2

.

This is approximately equivalent to solving equations similar to the Yule-Walker

equations,

γ̂j =
k
∑

ℓ=1

φ̂ℓ,kγ̂|j−ℓ|, j = 1, . . . , k

These can be solved by the Levinson-Durbin recursion:
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Step 0. σ2
0 := γ̂0, φ̂1,1 = γ̂1/γ̂0, k := 0

Step 1. Repeat until φ̂k,k near 0:

k := k + 1

φ̂k,k :=

(

γ̂k −
k−1
∑

j=1

φ̂j,k−1γ̂k−j

)/

σ2
k−1

φ̂j,k := φ̂j,k−1 − φ̂k,kφ̂k−j,k−1, for j = 1, . . . , k − 1

σ2
k := σ2

k−1(1 − φ̂2
k,k)

We test whether the order k fit is an improvement over the order k− 1 fit by looking
to see if φ̂k,k is far from zero.

The statistic φ̂k,k is called the kth sample partial autocorrelation coefficient

(PACF). If the process Xt is genuinely AR(p) then the population PACF, φk,k, is

exactly zero for all k > p. Thus a diagnostic for AR(p) is that the sample PACFs
are close to zero for k > p.

2.7 Distributions of the ACF and PACF

Both the sample ACF and PACF are approximately normally distributed about
their population values, and have standard deviation of about 1/

√
T , where T is the

length of the series. A rule of thumb it that ρk is negligible (and similarly φk,k) if

rk (similarly φ̂k,k) lies between ±2/
√

T . (2 is an approximation to 1.96. Recall that
if Z1, . . . , Zn ∼ N(µ, 1), a test of size 0.05 of the hypothesis H0 : µ = 0 against

H1 : µ 6= 0 rejects H0 if and only if Z̄ lies outside ±1.96/
√

n).
Care is needed in applying this rule of thumb. It is important to realize

that the sample autocorrelations, r1, r2, . . ., (and sample partial autocorrelations,
φ̂1,1, φ̂2,2, . . .) are not independently distributed. The probability that any one rk

should lie outside ±2/
√

T depends on the values of the other rk.
A ‘portmanteau’ test of white noise (due to Box & Pierce and Ljung & Box) can

be based on the fact that approximately

Q′
m = T (T + 2)

m
∑

k=1

(T − k)−1r2
k ∼ χ2

m .

The sensitivity of the test to departure from white noise depends on the choice of
m. If the true model is ARMA(p, q) then greatest power is obtained (rejection of the

white noise hypothesis is most probable) when m is about p + q.
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4 Estimation of the spectrum

4.1 The periodogram

Suppose we have T = 2m + 1 observations of a time series, y1, . . . , yT . Define the

Fourier frequencies, ωj = 2πj/T , j = 1, . . . , m, and consider the regression model

yt = α0 +
m
∑

j=1

αj cos(ωjt) +
m
∑

j=1

βj sin(ωjt) ,

which can be written as a general linear model, Y = Xθ + ǫ, where

Y =





y1
...

yT



 , X =





1 c11 s11 · · · cm1 sm1
...

...
...

...
...

1 c1T s1T · · · cmT smT



 , θ =



















α0

α1

β1
...

αm

βm



















, ǫ =





ǫ1
...

ǫT





′

cjt = cos(ωjt), sjt = sin(ωjt) .

The least squares estimates in this model are given by

θ̂ = (X⊤X)−1X⊤Y .

Note that
T
∑

t=1

eiωjt =
eiωj(1 − eiωjT )

1 − eiωj
= 0

=⇒
T
∑

t=1

cjt + i

T
∑

t=1

sjt = 0 =⇒
T
∑

t=1

cjt =

T
∑

t=1

sjt = 0

and

T
∑

t=1

cjtsjt = 1
2

T
∑

t=1

sin(2ωjt) = 0 ,

T
∑

t=1

c2
jt = 1

2

T
∑

t=1

{1 + cos(2ωjt)} = T/2 ,

T
∑

t=1

s2
jt = 1

2

T
∑

t=1

{1 − cos(2ωjt)} = T/2 ,

T
∑

t=1

cjtskt =

T
∑

t=1

cjtckt =

T
∑

t=1

sjtskt = 0, j 6= k .
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Using these, we have

θ̂ =











α̂0

α̂1
...

β̂m











=











T 0 · · · 0
0 T/2 · · · 0
...

...
...

0 0 · · · T/2











−1









∑

t yt
∑

t c1tyt
...

∑

t smtyt











=











ȳ
(2/T )

∑

t c1tyt
...

(2/T )
∑

t smtyt











and the regression sum of squares is

Ŷ ⊤Ŷ = Y ⊤X(X⊤X)−1X⊤Y = T ȳ2 +

m
∑

j=1

2

T





{

T
∑

t=1

cjtyt

}2

+

{

T
∑

t=1

sjtyt

}2


 .

Since we are fitting T unknown parameters to T data points, the model fits with no
residual error, i.e., Ŷ = Y . Hence

T
∑

t=1

(yt − ȳ)2 =

m
∑

j=1

2

T





{

T
∑

t=1

cjtyt

}2

+

{

T
∑

t=1

sjtyt

}2


 .

This motivates definition of the periodogram as

I(ω) =
1

πT





{

T
∑

t=1

yt cos(ωt)

}2

+

{

T
∑

t=1

yt sin(ωt)

}2


 .

A factor of (1/2π) has been introduced into this definition so that the sample variance,
γ̂0 = (1/T )

∑T
t=1(yt − ȳ)2, equates to the sum of the areas of m rectangles, whose

heights are I(ω1), . . . , I(ωm), whose widths are 2π/T , and whose bases are centred
at ω1, . . . , ωm. I.e., γ̂0 = (2π/T )

∑m
j=1 I(ωj). These rectangles approximate the area

under the curve I(ω), 0 ≤ ω ≤ π.

0

I(ω)

I(ω5)

ω5

2π/T
π
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Using the fact that
∑T

t=1 cjt =
∑T

t=1 sjt = 0, we can write

πTI(ωj) =

{

T
∑

t=1

yt cos(ωjt)

}2

+

{

T
∑

t=1

yt sin(ωjt)

}2

=

{

T
∑

t=1

(yt − ȳ) cos(ωjt)

}2

+

{

T
∑

t=1

(yt − ȳ) sin(ωjt)

}2

=

∣

∣

∣

∣

∣

T
∑

t=1

(yt − ȳ)eiωjt

∣

∣

∣

∣

∣

2

=
T
∑

t=1

(yt − ȳ)eiωjt
T
∑

s=1

(ys − ȳ)e−iωjs

=
T
∑

t=1

(yt − ȳ)2 + 2
T−1
∑

k=1

T
∑

t=k+1

(yt − ȳ)(yt−k − ȳ) cos(ωjk) .

Hence

I(ωj) =
1

π
γ̂0 +

2

π

T−1
∑

k=1

γ̂k cos(ωjk) .

I(ω) is therefore a sample version of the spectral density f(ω).

4.2 Distribution of spectral estimates

If the process is stationary and the spectral density exists then I(ω) is an almost
unbiased estimator of f(ω), but it is a rather poor estimator without some smoothing.

Suppose {yt} is Gaussian white noise, i.e., y1, . . . , yT are iid N(0, σ2). Then for
any Fourier frequency ω = 2πj/T ,

I(ω) =
1

πT

[

A(ω)2 + B(ω)2
]

, (4.1)

where

A(ω) =

T
∑

t=1

yt cos(ωt) , B(ω) =

T
∑

t=1

yt sin(ωt) . (4.2)

Clearly A(ω) and B(ω) have zero means, and

var[A(ω)] = σ2
T
∑

t=1

cos2(ωt) = Tσ2/2 ,

var[B(ω)] = σ2
T
∑

t=1

sin2(ωt) = Tσ2/2 ,
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cov[A(ω), B(ω)] = E

[

T
∑

t=1

T
∑

s=1

ytys cos(ωt) sin(ωs)

]

= σ2
T
∑

t=1

cos(ωt) sin(ωt) = 0 .

Hence A(ω)
√

2/Tσ2 and B(ω)
√

2/Tσ2 are independently distributed as N(0, 1), and

2
[

A(ω)2 + B(ω)2
]

/(Tσ2) is distributed as χ2
2. This gives I(ω) ∼ (σ2/π)χ2

2/2. Thus
we see that I(w) is an unbiased estimator of the spectrum, f(ω) = σ2/π, but it is not

consistent, since var[I(ω)] = σ4/π2 does not tend to 0 as T → ∞. This is perhaps
surprising, but is explained by the fact that as T increases we are attempting to
estimate I(ω) for an increasing number of Fourier frequencies, with the consequence

that the precision of each estimate does not change.
By a similar argument, we can show that for any two Fourier frequencies, ωj and

ωk the estimates I(ωj) and I(ωk) are statistically independent. These conclusions
hold more generally.

Theorem 4.1 Let {Yt} be a stationary Gaussian process with spectrum f(ω). Let

I(·) be the periodogram based on samples Y1, . . . , YT , and let ωj = 2πj/T , j < T/2,
be a Fourier frequency. Then in the limit as T → ∞,

(a) I(ωj) ∼ f(ωj)χ
2
2/2.

(b) I(ωj) and I(ωk) are independent for j 6= k.

Assuming that the underlying spectrum is smooth, f(ω) is nearly constant over a
small range of ω. This motivates use of an estimator for the spectrum of

f̂(ωj) =
1

2p + 1

p
∑

ℓ=−p

I(ωj+ℓ) .

Then f̂(ωj) ∼ f(ωj)χ
2
2(2p+1)/[2(2p+1)], which has variance f(ω)2/(2p+1). The idea

is to let p → ∞ as T → ∞.

4.3 The fast Fourier transform

I(ωj) can be calculated from (4.1)–(4.2), or from

I(ωj) =
1

πT

∣

∣

∣

∣

∣

T
∑

t=1

yte
iωjt

∣

∣

∣

∣

∣

2

.

Either way, this requires of order T multiplications. Hence to calculate the complete

periodogram, i.e., I(ω1), . . . , I(ωm), requires of order T 2 multiplications. Computa-
tion effort can be reduced significantly by use of the fast Fourier transform, which

computes I(ω1), . . . , I(ωm) using only order T log2 T multiplications.
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6 Estimation of trend and seasonality

6.1 Moving averages

Consider a decomposition into trend, seasonal, cyclic and residual components.

Xt = Tt + It + Ct + Et .

Thus far we have been concerned with modelling {Et}. We have also seen that the
periodogram can be useful for recognising the presence of {Ct}.

We can estimate trend using a symmetric moving average,

T̂t =
k
∑

s=−k

asXt+s ,

where as = a−s. In this case the transfer function is real-valued.

The choice of moving averages requires care. For example, we might try to esti-
mate the trend with

T̂t = 1
3 (Xt−1 + Xt + Xt+1) .

But suppose Xt = Tt + ǫt, where trend is the quadratic Tt = a + bt + ct2. Then

T̂t = Tt + 2
3c + 1

3(ǫt−1 + ǫt + ǫt+1) ,

so ET̂t = EXt + 2
3c and thus T̂ is a biased estimator of the trend.

This problem is avoided if we estimate trend by fitting a polynomial of sufficient
degree, e.g., to find a cubic that best fits seven successive points we minimize

3
∑

t=−3

(

Xt − b0 − b1t − b2t
2 − b3t

3
)2

.

So
∑

Xt = 7b̂0 + 28b̂2
∑

tXt = 28b̂1 + 196b̂3
∑

t2Xt = 28b̂0 + 196b̂2
∑

t3Xt = 196b̂1 + 1588b̂3

Then

b̂0 = 1
21

(

7
∑

Xt −
∑

t2Xt

)

= 1
21

(−2X−3 + 3X−2 + 6X−1 + 7X0 + 6X1 + 3X2 − 2X3) .

We estimate the trend at time 0 by T̂0 = b̂0, and similarly,

T̂t = 1
21 (−2Xt−3 + 3Xt−2 + 6Xt−1 + 7Xt + 6Xt+1 + 3Xt+2 − 2Xt+3) .
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A notation for this moving average is 1
21[−2, 3, 6, 7, 6, 3,−2]. Note that the weights

sum to 1. In general, we can fit a polynomial of degree q to 2q+1 points by applying a

symmetric moving average. (We fit to an odd number of points so that the midpoint
of fitted range coincides with a point in time at which data is measured.)

A value for q can be identified using the variate difference method: if {Xt} is
indeed a polynomial of degree q, plus residual error {ǫt}, then the trend in ∆rXt is

a polynomial of degree q − r and

∆qXt = constant + ∆qǫt = constant + ǫt −
(

q

1

)

ǫt−1 +

(

q

2

)

ǫt−2 − · · · + (−1)qǫt−q .

The variance of ∆qXt is therefore

var(∆qǫt) =

[

1 +

(

q

1

)2

+

(

q

2

)2

+ · · · + 1

]

σ2 =

(

2q

q

)

σ2 ,

where the simplification in the final line comes from looking at the coefficient of zq

in expansions of both sides of

(1 + z)q(1 + z)q = (1 + z)2q .

Define Vr = var(∆rXt)/
(

2r
r

)

. The fact that the plot of Vr against r should flatten out
at r ≥ q can be used to identify q.

6.2 Centred moving averages

If there is a seasonal component then a centred-moving average is useful. Sup-

pose data is measured quarterly, then applying twice the moving average 1
4 [1, 1, 1, 1]

is equivalent to applying once the moving average 1
8[1, 2, 2, 2, 1]. Notice that this so-

called centred average of fours weights each quarter equally. Thus if Xt = It + ǫt,

where It has period 4, and I1 + I2 + I3 + I4 = 0, then T̂t has no seasonal com-
ponent. Similarly, if data were monthly we use a centred average of 12s, that is,
1
24[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1].

6.3 The Slutzky-Yule effect

To remove both trend and seasonal components we might successively apply a number
of moving averages, one or more to remove trend and another to remove seasonal

effects. This is the procedure followed by some standard forecasting packages.
However, there is a danger that application of successive moving averages can

introduce spurious effects. The Slutzky-Yule effect is concerned with the fact that
a moving average repeatedly applied to a purely random series can introduce artificial

cycles. Slutzky (1927) showed that some trade cycles of the nineteenth century were
no more than artifacts of moving averages that had been used to smooth the data.
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To illustrate this idea, suppose the moving average 1
6[−1, 2, 4, 2,−1] is applied k

times to a white noise series. This moving average has transfer function, a(ω) = 1
6
(4+

4 cosω−2 cos 2ω), which is maximal at ω = π/3. The smoothed series has a spectral
density, say fk(ω), proportional to a(ω)2k, and hence for ω 6= π/3, fk(ω)/fk(π/3) → 0

as k → ∞. Thus in the limit the smoothed series is a periodic wave with period 6.

6.4 Exponential smoothing

Single exponential smoothing

Suppose the mean level of a series drifts slowly over time. A naive one-step-ahead
forecast is Xt(1) = Xt. However, we might let all past observations play a part in
the forecast, but give greater weights to those that are more recent. Choose weights

to decrease exponentially and let

Xt(1) =
1 − ω

1 − ωt

(

Xt + ωXt−1 + ω2Xt−2 + · · · + ωt−1X1

)

,

where 0 < ω < 1. Define St as the right hand side of the above as t → ∞, i.e.,

St = (1 − ω)

∞
∑

s=0

ωsXt−s .

St can serve as a one-step-ahead forecast, Xt(1). St is known as simple exponential

smoothing. Let α = 1 − ω. Simple algebra gives

St = αXt + (1 − α)St−1

Xt(1) = Xt−1(1) + α[Xt − Xt−1(1)] .

This shows that the one-step-ahead forecast at time t is the one-step-ahead forecast
at time t − 1, modified by α times the forecasting error incurred at time t − 1.

To get things started we might set S0 equal to the average of the first few data

points. We can play around with α, choosing it to minimize the mean square fore-
casting error. In practice, α in the range 0.25–0.5 usually works well.

Double exponential smoothing

Suppose the series is approximately linear, but with a slowly varying trend. If it
were true that Xt = b0 + b1t + ǫt, then

St = (1 − ω)
∞
∑

s=0

ωs (b0 + b1(t − s) + ǫt)

= b0 + b1t − b1(1 − ω)

∞
∑

s=0

ωss + b1(1 − ω)

∞
∑

s=0

ωsǫt−s ,
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and hence
ESt = b0 + b1t − b1ω/(1 − ω) = EXt+1 − b1/(1 − ω) .

Thus the forecast has a bias of −b1/(1−ω). To eliminate this bias let S1
t = St be the

first smoothing, and S2
t = αS1

t + (1−α)S2
t−1 be the simple exponential smoothing of

S1
t . Then

ES2
t = ES1

t − b1ω/(1 − ω) = EXt − 2b1ω/(1 − ω) ,

E(2S1
t − S2

t ) = b0 + b1t, E(S1
t − S2

t ) = b1(1 − α)/α .

This suggests the estimates b̂0 + b̂1t = 2S1
t − S2

t and b̂1 = α(S1
t − S2

t )/(1 − α). The

forecasting equation is then

Xt(s) = b̂0 + b̂1(t + s) = (2S1
t − S2

t ) + sα(S1
t − S2

t )/(1− α) .

As with single exponential smoothing we can experiment with choices of α and find
S1

0 and S2
0 by fitting a regression line, Xt = β̂0 + β̂1t, to the first few points of the

series and solving

S1
0 = β̂0 − (1 − α)β̂1/α, S2

0 = β̂0 − 2(1 − α)β̂1/α .

6.5 Calculation of seasonal indices

Suppose data is quarterly and we want to fit an additive model. Let Î1 be the

average of X1, X5, X9, . . ., let Î2 be the average of X2, X6, X10, . . ., and so on for Î3

and Î4. The cumulative seasonal effects over the course of year should cancel, so that
if Xt = a + It, then Xt + Xt+1 + Xt+2 + Xt+3 = 4a. To ensure this we take our final

estimates of the seasonal indices as I∗t = Ît − 1
4(Î1 + · · · + Î4).

If the model is multiplicative and Xt = aIt, we again wish to see the cumulative

effects over a year cancel, so that Xt +Xt+1 +Xt+2 +Xt+3 = 4a. This means that we
should take I∗t = Ît − 1

4(Î1 + · · · + Î4) + 1, adjusting so the mean of I∗1 , I
∗
2 , I

∗
3 , I

∗
4 is 1.

When both trend and seasonality are to be extracted a two-stage procedure is
recommended:

(a) Make a first estimate of trend, say T̂ 1
t .

Subtract this from {Xt} and calculate first estimates of the seasonal indices, say

I1
t , from Xt − T̂ 1

t .

The first estimate of the deseasonalized series is Y 1
t = Xt − I1

t .

(b) Make a second estimate of the trend by smoothing Y 1
t , say T̂ 2

t .

Subtract this from {Xt} and calculate second estimates of the seasonal indices,

say I2
t , from Xt − T̂ 2

t .

The second estimate of the deseasonalized series is Y 2
t = Xt − I2

t .
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7 Fitting ARIMA models

7.1 The Box-Jenkins procedure

A general ARIMA(p, d, q) model is φ(B)∇(B)dX = θ(B)ǫ, where ∇(B) = I − B.

The Box-Jenkins procedure is concerned with fitting an ARIMA model to data.
It has three parts: identification, estimation, and verification.

7.2 Identification

The data may require pre-processing to make it stationary. To achieve stationarity

we may do any of the following.

• Look at it.

• Re-scale it (for instance, by a logarithmic or exponential transform.)

• Remove deterministic components.

• Difference it. That is, take ∇(B)dX until stationary. In practice d = 1, 2 should

suffice.

We recognise stationarity by the observation that the autocorrelations decay to

zero exponentially fast.
Once the series is stationary, we can try to fit an ARMA(p, q) model. We consider

the correlogram rk = γ̂k/γ̂0 and the partial autocorrelations φ̂k,k. We have already
made the following observations.

• An MA(q) process has negligible ACF after the qth term.

• An AR(p) process has negligible PACF after the pth term.

As we have noted, very approximately, both the sample ACF and PACF have stan-
dard deviation of around 1/

√
T , where T is the length of the series. A rule of thumb

is that ACF and PACF values are negligible when they lie between ±2/
√

T . An

ARMA(p, q) process has kth order sample ACF and PACF decaying geometrically
for k > max(p, q).

7.3 Estimation

AR processes

To fit a pure AR(p), i.e., Xt =
∑p

r=1 φrXt−r + ǫt we can use the Yule-Walker

equations γk =
∑p

r=1 φrγ|k−r|. We fit φ by solving γ̂k =
∑p

1 φrγ̂|k−r|, k = 1, . . . , p.

These can be solved by a Levinson-Durbin recursion, (similar to that used to solve
for partial autocorrelations in Section 2.6). This recursion also gives the estimated
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residual variance σ̂2
p, and helps in choice of p through the approximate log likelihood

−2 log L ≃ T log(σ̂2
p).

Another popular way to choose p is by minimizing Akaike’s AIC (an information

criterion), defined as AIC = −2 log L + 2k, where k is the number of parameters

estimated, (in the above case p). As motivation, suppose that in a general modelling
context we attempt to fit a model with parameterised likelihood function f(X | θ),

θ ∈ Θ, and this includes the true model for some θ0 ∈ Θ. Let X = (X1, . . . , Xn) be a
vector of n independent samples and let θ̂(X) be the maximum likelihood estimator
of θ. Suppose Y is a further independent sample. Then

−2nEY EX log f
(

Y | θ̂(X)
)

= −2EX log f
(

X | θ̂(X)
)

+ 2k + O
(

1/
√

n
)

,

where k = |Θ|. The left hand side is 2n times the conditional entropy of Y given

θ̂(X), i.e., the average number of bits required to specify Y given θ̂(X). The right
hand side is approximately the AIC and this is to be minimized over a set of models,

say (f1, Θ1), . . . , (fm, Θm).

ARMA processes

Generally, we use the maximum likelihood estimators, or at least squares numerical

approximations to the MLEs. The essential idea is prediction error decomposition.
We can factorize the joint density of (X1, . . . , XT ) as

f(X1, . . . , XT ) = f(X1)
T
∏

t=2

f(Xt | X1, . . . , Xt−1) .

Suppose the conditional distribution of Xt given (X1, . . . , Xt−1) is normal with mean

X̂t and variance Pt−1, and suppose also that X1 is normal N(X̂1, P0). Here X̂t and
Pt−1 are functions of the unknown parameters φ1, . . . , φp, θ1, . . . , θq and the data.

The log likelihood is

−2 logL = −2 log f =
T
∑

t=1

[

log(2π) + log Pt−1 +
(Xt − X̂t)

2

Pt−1

]

.

We can minimize this with respect to φ1, . . . , φp, θ1, . . . , θq to fit ARMA(p, q).
Additionally, the second derivative matrix of − log L (at the MLE) is the observed

information matrix, whose inverse is an approximation to the variance-covariance

matrix of the estimators.
In practice, fitting ARMA(p, q) the log likelihood (−2 logL) is modified to sum

only over the range {m + 1, . . . , T}, where m is small.

Example 7.1

For AR(p), take m = p so X̂t =
∑p

r=1 φrXt−r, t ≥ m + 1, Pt−1 = σ2
ǫ .
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Note. When using this approximation to compare models with different numbers
of parameters we should always use the same m.

Again we might choose p and q by minimizing the AIC of −2 logL + 2k, where
k = p + q is the total number of parameters in the model.

7.4 Verification

The third stage in the Box-Jenkins algorithm is to check whether the model fits the

data. There are several tools we may use.

• Overfitting. Add extra parameters to the model and use likelihood ratio test or

t-test to check that they are not significant.

• Residuals analysis. Calculate the residuals from the model and plot them. The

autocorrelation functions, ACFs, PACFs, spectral densities, estimates, etc., and
confirm that they are consistent with white noise.

7.5 Tests for white noise

Tests for white noise include the following.

(a) The turning point test (explained in Lecture 1) compares the number of peaks

and troughs to the number that would be expected for a white noise series.

(b) The Box–Pierce test is based on the statistic

Qm = T
m
∑

k=1

r2
k ,

where rk is the kth sample autocorrelation coefficient of the residual series, and
p + q < m ≪ T . It is called a ‘portmanteau test’, because it is based on the

all-inclusive statistic. If the model is correct then Qm ∼ χ2
m−p−q approximately.

In fact, rk has variance (T − k)/(T (T + 2)), and a somewhat more powerful test

uses the Ljung-Box statistic quoted in Section 2.7,

Q′
m = T (T + 2)

m
∑

k=1

(T − k)−1r2
k ,

where again, Q′
m ∼ χ2

m−p−q approximately.

(c) Another test for white noise can be constructed from the periodogram. Recall

that I(ωj) ∼ (σ2/π)χ2
2/2 and that I(ω1), . . . , I(ωm) are mutually independent.

Define Cj =
∑j

k=1 I(ωk) and Uj = Cj/Cm. Recall that χ2
2 is the same as the expo-

nential distribution and that if Y1, . . . , Ym are i.i.d. exponential random variables,
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then (Y1 + · · · + Yj)/(Y1 + · · · + Ym), j = 1, . . . , m − 1, have the distribution of
an ordered sample of m − 1 uniform random variables drawn from [0, 1]. Hence

under the hypothesis that {Xt} is Gaussian white noise Uj, j = 1, . . . , m − 1
have the distribution of an ordered sample of m − 1 uniform random variables

on [0, 1]. The standard test for this is the Kolomogorov-Smirnov test, which uses
as a test statistic, D, defined as the maximum difference between the theoret-

ical distribution function for U [0, 1], F (u) = u, and the empirical distribution
F̂ (u) = {#(Uj ≤ u)}/(m− 1). Percentage points for D can be found in tables.

7.6 Forecasting with ARMA models

Recall that φ(B)X = θ(B)ǫ, so the power series coefficients of C(z) = θ(z)/φ(z) =
∑∞

r=0 crz
r give an expression for Xt as Xt =

∑∞
r=0 crǫt−r.

But also, ǫ = D(B)X, where D(z) = φ(z)/θ(z) =
∑∞

r=0 drz
r — as long as the

zeros of θ lie strictly outside the unit circle and thus ǫt =
∑∞

r=0 drXt−r.
The advantage of the representation above is that given (. . . , Xt−1, Xt) we can

calculate values for (. . . , ǫt−1, ǫt) and so can forecast Xt+1.
In general, if we want to forecast XT+k from (. . . , XT−1, XT ) we use

X̂T,k =

∞
∑

r=k

crǫT+k−r =

∞
∑

r=0

ck+rǫT−r ,

which has the least mean squared error over all linear combinations of (. . . , ǫT−1, ǫT ).
In fact,

E

(

(X̂T,k − XT+k)
2
)

= σ2
ǫ

k−1
∑

r=0

c2
r .

In practice, there is an alternative recursive approach. Define

X̂T,k =

{

XT+k, −(T − 1) ≤ k ≤ 0 ,

optimal predictor of XT+k given X1, . . . ,XT , 1 ≤ k .

We have the recursive relation

X̂T,k =

p
∑

r=1

φrX̂T,k−r + ǫ̂T+k +

q
∑

s=1

θsǫ̂T+k−s

For k = −(T − 1),−(T − 2), . . . , 0 this gives estimates of ǫ̂t for t = 1, . . . , T .
For k > 0, this gives a forecast X̂T,k for XT+k. We take ǫ̂t = 0 for t > T .

But this needs to be started off. We need to know (Xt, t ≤ 0) and ǫt, t ≤ 0.
There are two standard approaches.

1. Conditional approach: take Xt = ǫt = 0, t ≤ 0.

2. Backcasting: we forecast the series in the reverse direction to determine estima-

tors of X0, X−1, . . . and ǫ0, ǫ−1, . . . .
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1.1: Introduction 

This chapter gives you aggressively a gentle introduction to MATLAB programming 

language. It is designed to give students fluency in MATLAB programming 

language. Problem-based MATLAB examples have been given in a simple and easy 

way to make your learning fast and effective.  

MATLAB is a programming language developed by MathWorks. It started as a 

matrix programming language with simple linear algebra programming. It can be run 

both under interactive sessions and as a batch job. 

We assume you have a little knowledge of any computer programming and 

understand concepts like variables, constants, expressions, statements, etc. If you 

have done programming in any other high-level language like C, C++, or Java, then 

it will be very beneficial, and learning MATLAB will be fun for you. 

MATLAB (MATrix LABoratory) is a fourth-generation high-level programming 

language and interactive environment for numerical computation, visualization, and 

programming.  

It allows matrix manipulations; plotting of functions and data; implementation of 

algorithms; creation of user interfaces; interfacing with programs written in other 

languages, including C, C++, Java, and FORTRAN; analyzing data developing 

algorithms; creating models and applications.  

It has numerous built-in commands and math functions that help you in mathematical 

calculations, generating plots, and performing numerical methods. 

The reporting of a simulation experiment should receive the same care and 

consideration that would be accorded the reporting of other scientific experiments. 

Hoaglin and Andrews (1975) outline the items that should be included in a report of 

a simulation study. In addition to a careful general description of the experiment, the 

report should include a mention of the random number generator used, any variance-

reducing methods employed, and a justification of the simulation sample size. The 

Journal of the American Statistical Association includes these reporting standards in 

its style guide for authors. 

Closely related to the choice of the sample size is the standard deviation of the 
estimates that result from the study. The sample standard deviations actually 
achieved should be included as part of the report. Standard deviations are often 
reported in parentheses beside the estimates with which they are associated. A 
formal analysis, of course, would use the sample variance of each estimate to assess 
the significance of the differences observed between points in the design space; 
that is, a formal analysis of the simulation experiment would be a standard analysis 
of variance. 
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1.2: MATLAB's Power of Computational Mathematics  

MATLAB is used in every facet of computational mathematics. Following are some 

commonly used mathematical calculations where it is used most commonly:  

- Dealing with Matrices and Arrays  

- 2-D and 3-D Plotting and graphics  

- Linear Algebra  

- Algebraic Equations  

- Non-linear Functions  

- Statistics  

- Data Analysis  

- Calculus and Differential Equations  

- Numerical Calculations  

- Integration  

- Transforms  

- Curve Fitting  

- Various other special functions  

1.3: Features of MATLAB 

The following are the basic features of MATLAB: 

• High-level language for numerical computation, visualization, and application 

development. 

• Interactive environment for iterative exploration, design, and problem solving. 

• Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, 

optimization, numerical integration, and solving ordinary differential equations. 

• Built-in graphics for visualizing data and tools for creating custom plots. 

• Development tools for improving code quality and maintainability and maximizing 

performance. 

• Tools for building applications with custom graphical interfaces. 

• Functions for integrating MATLAB based algorithms with external applications 

and languages such as C, Java, .NET, and Microsoft Excel. 

1.4: Desktop Basics 

MATLAB development IDE can be launched from the icon created on the desktop. 

The main working window in MATLAB is called the desktop. When MATLAB is 

started, the desktop appears in its default layout: 

MATLAB (R2013a) Environment 
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The desktop has the following panels:  

• Current Folder — Access your files. 

• Command Window — Enter commands at the command line, indicated by the 

prompt (>>). 

• Workspace — Explore data that you create or import from files. 

As you work in MATLAB, you issue commands that create variables and call 

functions. 

For example, create a variable named x by typing this statement at the command line: 

>> x = 3 

MATLAB adds variable x to the workspace and displays the result in the Command 

Window. 

x = 

       3 

Create a few more variables. 

>> y = 5 

y = 

 5 

>> z = x + y 

z = 
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>> d = cos(x) 

d = 

 -0.989995 

When you do not specify an output variable, MATLAB uses the variable ans, short 

for answer, to store the results of your calculation. 

>> sin(x) 

ans   =  

        0.14112 

If you end a statement with a semicolon, MATLAB performs the computation, but 

suppresses the display of output in the Command Window. 

>> e = x * y; 

You can recall previous commands by pressing the up- and down-arrow keys, ↑ and 

↓. Press the arrow keys either at an empty command line or after you type the first 

few characters of a command. For example, to recall the command y = 5, type b, and 

then press the up-arrow key. 

1.5: Matrices and Vectors 

MATLAB is an abbreviation for "matrix laboratory." While other programming 

languages mostly work with numbers one at a time, MATLAB is designed to operate 

primarily on whole matrices and Vectors. 

All MATLAB variables are multidimensional Vectors, no matter what type of data. 

A matrix is a two-dimensional Vectors often used for linear algebra. 

Vector Creation 

To create a vector with four elements in a single row, separate the elements with 

either a comma (,) or a space 

>>  a = [1 2 3 4] 

a  =   

 

 4     3     2     1         

This type of array is a row vector. 

To create a matrix that has multiple rows, separate the rows with semicolons. 

>>  a = [1 2 3; 4 5 6; 7 8 10] 

a = 

 1    2    3 

 4    5    6 

 7    8    10 
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Another way to create a matrix is to use a function, such as ones, zeros, or rand. For 

example, create a 5-by-1 column vector of zeros. 

>> z = zeros(5,1) 

z  = 

 0 

 0 

 0 

 0 

 0 
 

And we have: 

>> y = ones(1,5) 

y  =  

     1     1     1     1          1 

1.5.1: Assignment and Operators 

Assignment (assign b to a)                            =         a = b 

Addition                                                        +         a + b 

Subtraction                                                    -          a - b 

Multiplication: Matrix                                   *         a * b 

Multiplication: Element-by-Element             .*         a .* b 

Division: Matrix                                            /          a / b 

Division: Element-by-Element                      ./          a ./ b 

Power: Matrix                                               ^          a ^ b 

Power: Element-by-Element                         .^         a .^ b   

1.5.2: Extracting a Sub-Matrix 

A portion of a matrix can be extracted and stored in a smaller matrix by specifying 

the names of both the rows and columns to extract 

sub_matrix = matrix(r1:r2 , c1:c2) 

sub_matrix = matrix(rows, columns) 

Where r1and r2 specify the beginning and ending rows, and c1and r2 specify the 

beginning and ending columns to extract 

Colon Operator 

The colon operator helps to specify ranges 

a : b   Goes from a to b in increments of 1. If a > b, results in null vector 
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a : n : b  Goes from a to b in increments of n. If n < 0 then a > b 

A( : , b)  The thb  column of A 

A( a , : ) The tha  row of A 

A( : , : )  All of the rows and columns of A (i.e., the A matrix) 

A( a : b) Elements a to b (in increments of 1) of A. NOTE: Elements   are counted 

down the columns and then across the rows! 

A( : , a : b) All rows and columns a to b (in increments of 1) 

A(:) All elements of A in a single column vector 

Matrices 

• Accessing single elements of a matrix: 

A(a , b) →  Element in row a and column b 

• Accessing multiple elements of a matrix: 

A(1,4) + A(2,4) + A(3,4) + A(4,4) 

sum(A(1:4,4)) or sum(A(:,end)) 

– In locations, the keyword end refers to the last row or column 

• Deleting rows and columns: 

A( : , 2) = [ ] →  Deletes the second column of A 

• Concatenating matrices A and B: 

C = [A ; B] for vertical concatenation 

C = [A , B] for horizontal concatenation 

1.5.3: Matrix Functions in Matlab 

A = ones(m , n)                Creates an m×n matrix of 1’s 

A = zeros(n,m)                  Creates an m×n matrix of 0’s 

A = eye(n)                          Creates an n×n identity matrix 

A = NaN(m,n)                   Creates an m×n matrix of NaN’s 

A = inf(m,n)                      Creates an m×n matrix of inf’s 

A = diag(x)                        Creates a diagonal matrix A of x  

x = diag(A)                        Extracts diagonal elements from A 

[m,n] = size(A)                  Returns the dimensions of A 

n = length(A)                    Returns the largest dimension of A 

n = numel(A)                  Returns number of elements of A 
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x= sum(A)                        Vector with sum of columns 

x = prod(A)                      Vector with product of columns 

B = A'                               Transposed matrix 

d = det(A)                         Determinant 

[x,y] = eig(A)                    Eigenvalues and eigenvectors 

B = inv(A)                        Inverse of square matrix 

B = pinv(A)                      Moore-Penrose pseudoinverse 

B = chol(A)                      Cholesky decomposition 

[Q,R] = qr(A)                  QR decomposition 

[U,D,V] = svd(A)           Singular value decomposition 

1.5.4: Logic in Matrices 

B = any(A)       Determine if any elements in each column of A are                 

nonzero 

B = all(A)            Determine if all elements in each column of A are    nonzero 

B = find(A)          Find indices of all non-zero elements of A Can also use logic! 

B = find(A>4 &A<5)       Elements > 4 and< 5 

B = all(A~=9)                   Elements not equal to 9 

B = any(A==3 |A==5)    Elements equal to 3 or 5 

1.6: Pre-Defined Variables 

MATLAB has several pre-defined / reserved variables, (Beware): These variables 

can be overwritten with custom values! 

ans                     Default variable name for results 

pi                       Value of π 

eps                     Smallest incremental number (2.2204e-16) 

Inf/ inf                Infinity 

NaN/ nan           Not a number (e.g., 0/0) 

realmin             Smallest usable positive real number (2.2251e-308) 

realmax             Largest usable positive real number (1.7977e+308) 

i / j                      Square root of (-1) 
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1.7: Plotting in Matlab 

• Matlab has extensive plotting capabilities 

• Basic function is plot to plot one vector vs. another vector (vectors must have same 

length) 

plot(x, y) 

• Can also simply plot one vector vs. its index 

plot(x) 

• Repeat three arguments to plot multiple vectors, different pairs of x and y data can 

have different sizes! 

plot(x1, y1, x2, y2, x3, y3) 

Example 1.1: 

>> x1 = 0:1:2*pi;  

>> y1 = sin(x1);  

>> x2 = 0:0.01:2*pi;  

>> y2 = sin(x2);  

>> plot(x1,y1,x2,y2) 

 
• The line style, marker symbol, and color of the plot are specified by the Line Spec. 

• Line Spec is specified for each line after the y data and is optional. 

• To see all options in Matlab: doc Line Spec 

• Common formatting: 
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Lines Markers Colors 

'-' solid '+' plus 'r' red 

'- -' dashed 'o' circle 'g' green 

':' dotted '*' star 'b' blue 

'.-' dash-dot '.' point 'k' black 

 's' square 'y' yellow 

 'd' diamond 'c' cyan 

 'x' cross 'm' magenta 

Example 1.2: 

>> x1 = 0:1:2*pi; y1 = sin(x1);  

>> x2 = 0:0.01:2*pi; y2 = sin(x2);  

>> plot(x1,y1,'bo',x2,y2,'g--') 

 

• Other commands allow you to modify the plot 

–Annotation: title, x label, y label, z label 

–Grid: grid on, grid off, grid minor 

–Axes: axis([xmin xmax ymin ymax]), axis keyword(doc axis for full keyword list) 

–Legend: legend('Line 1','Line 2','Location','Position') 

• Another way to plot multiple lines is with the hold command 

hold on 

plot(x1,y1) 

plot(x2,y2) 

hold off 
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• Unless a new figure is created using figure(), any plotting function will overwrite 

the current plot  

Example 1.3: 

x1 = 0:1:2*pi; y1 = sin(x1);  

x2 = 0:0.01:2*pi; y2 = sin(x2);  

plot(x1,y1,'bo',x2,y2,'g--') 

legend('7 Data Points','629 Data Points','Location','NorthEast') 

title('Some Sine Curves!') 

xlabel('x') 

ylabel('sin(x)') 

grid on 

axis tight 

 

• 3-D Plots: Three-dimensional plots typically display a surface defined by a function 

in two variables, z = f(x, y). 

To evaluate z, first create a set of (x,y) points over the domain of the function using 

meshgrid. 

Example 1.4: 

>> [X,Y] = meshgrid(-2: .2: 2); 

>> Z = X .* exp(-X.^2 - Y.^2); 

>> surf(X,Y,Z) 
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Both the surf function and its companion mesh display surfaces in three dimensions. 

surf displays both the connecting lines and the faces of the surface in color. Mesh 

produces wireframe surfaces that color only the lines connecting the defining points. 

• Subplots: You can display multiple plots in different subregions of the same 

window using the subplot function. 

The first two inputs to subplot indicate the number of plots in each row and column. 

The third input specifies which plot is active. As the following example shows: 

Example 1.5: create four plots in a 2-by-2 grid within a figure window. 

t = 0:pi/10:2*pi; 

[X,Y,Z] = cylinder(4*cos(t)); 

subplot(2,2,1); mesh(X); title('X'); 

subplot(2,2,2); mesh(Y); title('Y'); 

subplot(2,2,3); mesh(Z); title('Z'); 

subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z'); 

 

• Other plotting functions in Matlab 

– Log scales: semilogx, semilogy, loglog 
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– Two y-axes scales: plotyy 

– 3D line plots: plot3 

– Surface and mesh plots: surf, surfc, mesh, meshc, waterfall, ribbon, trisurf, 

trimesh 

– Histograms: hist, histc, area, pareto 

– Bar plots: bar, bar3, barh, bar3h 

– Pie charts: pie, pie3, rose 

– Discrete data: stem, stem3, stairs, scatter, scatter3, spy, plotmatrix 

– Polar plots: polar, rose, compass 

– Contour plots: contour, contourf, contourc, contour3, contourslice 

– Vector fields: feather, quiver, quiver3, compass, streamslice, streamline  

1.8: Logical Subscripting 

The logical vectors created from logical and relational operations can be used to 

reference subarrays. Suppose X is an ordinary matrix and L is a matrix of the same 

size that is the result of some logical operation. Then X(L) specifies the elements of 

X where the elements of L are nonzero. 

This kind of subscripting can be done in one step by specifying the logical operation 

as the subscripting expression. Suppose you have the following set of data: 

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8]; 

The NaN is a marker for a missing observation, such as a failure to respond to an 

item on a questionnaire. To remove the missing data with logical indexing, use 

isfinite(x), which is true for all finite numerical values and false for NaN and Inf: 

x = x(isfinite(x)) 

x = 

      2.1  1.7  1.6  1.5  1.9  1.8  1.5  5.1  1.8  1.4  2.2  1.6  1.8 

Now there is one observation, 5.1, which seems to be very different from the others. 

It is an outlier. The following statement removes outliers, in this case those elements 

more than three standard deviations from the mean: 

x = x(abs(x-mean(x)) <= 3*std(x)) 

x = 

 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8 
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1.9: Multidimensional Arrays 

Multidimensional arrays in the MATLAB environment are arrays with more than 

two subscripts. One way of creating a multidimensional array is by calling zeros, 

ones, rand, or randn with more than two arguments. For example, 

R = randn(3,4,2) 

 

Creates a 3-by-4-by-2 array, with a total of (3*4*2 = 24) normally distributed 

random elements.  

A three-dimensional array might represent three-dimensional physical data; say the 

temperature in a room, sampled on a rectangular grid. Or it might represent a 

sequence of matrices, ( )kA , or samples of a time-dependent matrix, A(t). In these 

latter cases, the ( )thji,  element of the thk  matrix, or the ktht  matrix, is denoted by A(i, 

j, k). 

MATLAB and Dürer's versions of the magic square of order 4 differ by an 

interchange of two columns. Many different magic squares can be generated by 

interchanging columns. The statement 

p = perms(1:4); 

Generates the 4! = 24 permutations of 1:4. The thk  permutation is the row vector 

p(k,:). Then stores the sequence of (24) magic squares in a three-dimensional array, 

M. The size of M is 

size(M) 

ans = 

4 4  24 
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Note: The order of the matrices shown in this illustration might differ from your 

results. The perms function always returns all permutations of the input vector, but 

the order of the permutations might be different for different MATLAB versions. 

The statement 

 sum(M,d) 

Computes sums by varying the thd  subscript. So 

 sum(M,1) 

Is a 1-by-4-by-24 array containing 24 copies of the row vector: 

 34  34  34  34 

And 

 sum(M,2) 

Is a 4-by-1-by-24 array containing 24 copies of the column vector 

 34 

 34 

 34 

 34 

Finally, 

S = sum(M,3) 

Adds the (24) matrices in the sequence. The result has size 4-by-4-by-1, so it looks 

like a 4-by-4 array: 

S = 

 204  204  204  204 

 204  204  204  204 

 204  204  204  204 

 204  204  204  204 

1.10: Programming in Matlab 

• Elements of Matlabas a programming language: 

– Expressions 

– Flow Control Blocks 

• Conditional 

• Iterations (Loops) 

– Scripts 

– Functions 

– Objects and classes (not covered here) 

• Be mindful of existing variables and function names! 
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– Creating a variable or function that is already used by Matlab will cause troubles 

and errors! 

– Example: Saving a variable as sin = 10 will prevent you from using the sine 

function! Use something more descriptive such as sin_x= 10  

1.10.1: Relational Operators 

• Matlab has six relational Operators 

– Less Than                         < 

– Less Than or Equal          <= 

– Greater Than                     > 

– Greater Than or Equal      >= 

– Equal to                            == 

– Not Equal to                     ~= 

• Relational operators can be used to compare scalars to scalars, scalars to 

matrices/vectors, or matrices/vectors to matrices/vectors of the same size 

• Relational operators to precedence after addition / subtraction  

1.10.2: Logical Operators 

• Matlab supports four logical operators 

– Not                          ~ 

– And                         & or && 

– Or                            |    or  || 

– Exclusive Or (xor)  xor() 

• Not has the highest precedence and is evaluated after parentheses and exponents 

• And, or, xor have lowest precedence and are evaluated last  

1.10.3: Conditional Structures 

• If / Then Structure 

     if expression 

        commands 

     end 

 

• Example 

   if (x > 4)  &&  (y < 10) 

       z = x + y; 

   end 

• If / Else Structure 

        if expression 

           commands 

        else 

           commands 

        end 

 

•Example 

   if (x > 4) && (y < 10) 

       z = x + y; 

   else 

       z = x * y; 

   end 
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• If / Elseif/ Else Structure 

   if expression 

              commands 

   elseif expression 

             commands 

   else 

             commands 

   end 

• Example 

    if  (x > 4) && (y < 10) 

         z = x + y; 

    elseif (x < 3) 

              z = 10 * x; 

    elseif (y > 12) 

              z = 5 / y; 

    else 

              z = x * y; 

    end 

• Conditional Structures can be nested inside each other 

if (x > 3) 

if (y > 5) 

    z = x + y; 

elseif (y < 5) 

    z = x -y; 

end 

elseif (y < 10) 

          z = x * y; 

else 

          z = x / y; 

        end 

• Matlab will auto-indent for you, but indentation is not required  

• Switch / Case / Otherwise function used if known cases of a variable will exist 

– Used in place of If / Elseif/ Else structure 

• Syntax  

switch switch_expression 

case case_expression 

 statements 

case case_expression 

 statements 

otherwise 

 statements 

end 
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if–elseif-else switch –case -otherwise 
if x == 1 

      z = 5; 

elseif x == 2 

      z = 4; 

elseif x == 3 

      z = 3; 

elseif (x == 4) || (x == 5) 

      z = 2; 

else 

      z = 1; 

end 

switch x 

       case 1 

              z = 5; 

       case 2 

              z = 4; 

       case 3 

              z = 3; 

       case{4 , 5} 

              z = 2; 

       otherwise 

              z = 1; 

end  

1.11: Matlab Iteration Structures 

• Definite looping structures (for) 

 for variable = expression 

     commands 

 end   

 

 

• Can also nest loops! 

– Can mix for / while loops 

 

• Example 

  for i = 1:1:25 

       A(i) = i^2; 

  end   

 

• Nested For Loop Example 

for i = 1:1:25 

     for j = 1:1:4 

          A(i,j) = i*j; 

     end 

end 

• Indefinite looping structures (while) 

    while expression 

           commands 

    end 

• Example 

x = 0; y = 0; 

while x < 10 

        y = y + x; 

        x = x + 1; 

end 

 

• You need to make sure the variable in 

the while loop expression is changed 

during the loop! 

 

– May lead to an infinite loop! 

 

 

•Example for infinite Loop 

x = 0; 

while x < 10 

       y = x; 

end 
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1.12: M-Files 

• Text files containing Matlab programs 

– Can be called from the command line or from other M-Files 

• Contain “.m” file extension 

• Two main types of M-Files 

– Scripts 

– Functions 

• Comment character is % 

– % will comment out rest of line  

1.12.1: M-Files –Scripts 

• Scripts are simply M-Files with a set of commands to run 

– Do not require input values or have output values 

– Execute commands similarly to how they would be done if typed into the command 

window 

– Ctrl + N 

– Select New →Script from Menu 

• To run M-File: 

–>> F5 or Run   

Example 1.6:  

figure() % New Figure 

x1 = 0:1:2*pi; y1 = sin(x1); % First Data Set 

x2 = 0:0.01:2*pi; y2 = sin(x2); % Second Data Set 

plot(x1,y1,'sk',x2,y2,'r--') % Make Plot 

title('Some Sine Curves!') % Add Title, Labels, Legend, 

etc. 

xlabel('x') 

ylabel('sin(x)') 

legend('7 Data Points','629 Data 

Points','Location','NorthEast') 
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1.12.2: M-Files –Functions 

• Functions typically require input or output values 

• “What happens in the function, stays in the function” 

– Only variables visible after function executes are those variables defined as 

output 

•Usually one file for each function defined 

•Structure: 

 function [outputs] = funcName (inputs) 

 commands; 

 end 

• Function Definition Line Components 

1. Function keyword → Identifies M-File as a function 

2. Output Variables →Separated by commas, contained in square brackets 

• Output variables must match the name of variables inside the function! 

3. Function Name →must match the name of the .m file! 

4. Input Variables →Separated by commas, contained in parentheses 

• Input variables must match the name of variables inside the function! 

• When calling a function, you can use any name for the variable as input or output 

– The names do not have to match the names of the .m file  

Example 1.7: Explain function to calculate the area and perimeter of a rectangle 

function [area, perimeter] = dF(base, height) 

% "df" Demo func. to calculate the area and perimeter of a rectangle 

% Function can handle scalar and vector inputs 

% Isaac Tetzloff -Aug 2013 

area = base .* height; % Calculate the area 
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perimeter = 2 * (base + height); % Calculate the perimeter  

end 

>> [a, p] = dF(10, 15); % Returns both values as a & p 

>> area = dF(10, 5);% Returns area and saves as area 

>> perim= dF(5, 15);% Returns area and saves as perim! 

>> [perim, area] = dF(5, 15);% Saves area as perim, and vice versa! 

>> x = [1 2 3]; y = [5 4 3]; 

>> [x, y] = dF(x, y);% Returns both and overwrites input! 

• In modified function below, only variables output are area and perimeter 

– Matlab and other functions will not have access to depth, mult, add, or volume! 

– REMEMBER: What happens in the function stays in the function!  

function [area, perimeter] = dF(base, height) 

depth = 10;                       % Assume 3D prism has depth of 10 

mult= base .* height;         % Multiply base by height 

add = base + height;          % Add base and height 

area = mult;                       % Calculate the area 

perimeter = 2 * add;          % Calculate the perimeter 

volume = mult* depth;      % Calculate the volume 

end 

1.13: Debugging in Matlab 

• Matlab errors are very descriptive and provide specifics about error 

– If a function or script causes an error, Matlab will give the line of code and file 

with the error  

 

• The Matlab Editor provides on-the-fly debugging help!  
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• The Matlab Editor provides on-the-fly debugging help!  

 

1.14: Advanced Features to Explore 

Symbolic Math 

• Allows for symbolic manipulation of equations, including solving, simplifying, 

differentiating, etc. 

Inline Functions 

• Creates a workspace variable that is a simple equation 

 

>> f =  x^2 + 2*x + 1 

>> y = f(3) →y = 16 

Optimization 

• Solve constrained problems with fmincon, unconstrained with fminunc, bounded 

problems with fminbnd, etc. 

Many Others! 
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• Matlab is extremely powerful and has a lot of advanced features, too many to go 

through here!  

• Within Matlab: 

–Type help function to provide information about the function in the command 

window 

– Type doc function to open the documentation about the function 

– Type doc to pull up the documentation within Matlab to explore 
 

• Online 

– Documentation: http://www.mathworks.com/help/matlab/ 

– Tutorials:   

http://www.mathworks.com/academia/student_center/tutorials/ 

– Matlab Primer / Getting Started with Matlab(pdf):  

http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf  

1.15: Descriptive statistics with the Statistics Toolbox of MATLAB 

Some of the functions to compute the most frequent statistics are the following: 

mean(x)                % Mean value of the elements in x. 

median(x)             % Median value of the elements in x. 

std(x),var(x)           % Standard deviation and variance of x normalized by n − 1. 

std(x,1),var(x,1)    % Standard deviation and variance of x normalized        by n. 

range(x)                % Range of x. 

iqr(x)                    % Interquartile range of x. 

mad(x)                 % Mean absolute deviation of x. 

max(x),min(x)      % Maximum and minimum element of x. 

skewness(x), kurtosis(x)       % Skewness and kurtosis of x. 

moment(x, order)           % Central moment of x specified by order. 

prctile(x,p)        % pth percentile of x (if p=50, returns the median of x) 

Observe that if x is a matrix, then the result of these functions is a row vector 

containing the statistic for each column of x. 

Other two interesting functions are cov and corrcoef. For vectors, the command cov 

returns the variance: 

>> x=rand(100,1); cov(x) 

For matrices, where each row is an observation, and each column a variable, returns 

the covariance matrix: 

>> x=rand(100,5); cov(x) 

For two vectors, z and w, of equal length, cov(z , t) returns a matrix with the 

variances of z and w in the diagonal and the covariance of z and w in the two off-

diagonal entries. 
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>> z=rand(100,1); t=rand(100,1); cov(z , t) 

Observe that cov(z , t) = cov([z t]). For two matrices, 

cov(X,Y)=cov(X(:),Y(:)). Finally, cov(x) or cov(x,y) normalizes   by (n − 1) and 

cov(x,1) or cov(x,y,1) normalizes by n, where n is the number of observations. 

The corrcoef(X) command calculates a matrix of correlation coefficients for an array 

X, in which each row is an observation and each column is a variable. Observe that 

corrcoef(X,Y), where X and Y are column vectors, is the same as corrcoef([X Y]). 

>> corrcoef(x) 

The Statistics Toolbox and some built-in functions of MATLAB allows to plot a 

number of useful graphics in descriptive statistics. 

hist(x)             % Histogram. 

boxplot(x)       % Boxplots of a data matrix (one per column). 

cdfplot(x)        % Plot of empirical cumulative distribution function. 

normplot(x)     % Normal probability plot (one per column). 

qqplot(x,y)      % Quantile-Quantile plot. 

You can change the way any toolbox function works by copying and renaming the 

M-file, then modifying your copy. You can also extend the toolbox by adding your 

own M-files. 

For example, imagine we are interested in plotting a variant of the histogram where 

the counts are replaced by the normalized counts, that is, the relative histogram. By 

normalized count, we mean the count in a class divided by the total number of 

observation times the class width. For this normalization, the area (or integral) under 

the histogram is equal to one. Now, we can look for the file hist.m and modify it. 

This file is usually in the following path (or something similar): 

c:\MATLAB6p5\toolbox\matlab\datafun 

Open it and let’s try to change it. Observe that the hist command produces a 

histogram bar plot if there are no output arguments, that is, we look for the sentences: 

if nargout == 0 

bar(x,nn,’hist’); 

... 

The sentence bar(x,nn,’hist’) draws the values of the vector nn (frequency) as a group 

of vertical bars whose midpoints are the values of x, see help bar. For example, we 

can change the previous sentences by the following ones to obtain a white 

normalized histogram: 

if nargout == 0 

bar(x,nn/(length(y)*(x(2)-x(1))),’hist’,’w’); 

... 

You can also change the help section including for example a sentence like this: 

% HIST(...) without output arguments produces a normalized histogram bar  
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% plot of the results. 

And now, save the changed file as histn.m, for example. If you want histn to be a 

global function, you can save it in the same folder hist.m was. Otherwise, you can 

save it in a different folder and then histn will only work if you are in this directory 

or if you add it to the MATLAB’s search path, (see path). 

1.16: Simulation of linear models 

The reporting of a simulation experiment should receive the same care and 

consideration that would be accorded the reporting of other scientific experiments. 

Hoaglin and Andrews (1975) outline the items that should be included in a report of 

a simulation study. In addition to a careful general description of the experiment, the 

report should include mention of the random number generator used, any variance-

reducing methods employed, and a justification of the simulation sample size. The 

Journal of the American Statistical Association includes these reporting standards in 

its style guide for authors. 

Closely related to the choice of the sample size is the standard deviation of the 

estimates that result from the study. The sample standard deviations actually 

achieved should be included as part of the report. Standard deviations are often 

reported in parentheses beside the estimates with which they are associated. A formal 

analysis, of course, would use the sample variance of each estimate to assess the 

significance of the differences observed between points in the design space; that is, a 

formal analysis of the simulation experiment would be a standard analysis of 

variance. 

1.16.1: Simulation of simple linear model 

Consider the simple linear regression model: 

Exy ii ++= 10   

Where a response or “dependent variable”, y, is modeled as a linear function of a 

single regressor or “independent variable”, x, plus a random variable, E, called the 

“error”. Because E is a random variable, y is also a random variable. The statistical 

problem is to make inferences about the unknown, constant parameters 0  and 1  

and about distributional parameters of the random variable, E. 

We also generally assume that the realizations of the random error are independent 

and are unrelated to the value of x. 

A bivariate scatter plot is a simple plot of x versus y between two variables. A 

bivariate scatter plot is a convenient first step to visualize the relationship between 

the two variables. 

Assume that we have two variables that are linearly related, except some Gaussian 

noise term with mean 0 and standard deviation 1: 

y = 3 + 10x + noise  
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Assuming that the variable x is a linearly spaced row vector of length 50, between 0 

and 1, generate the y vector: 

n=50; % number of observations 

x=linspace(0,1,n); % linearly spaced vector a length n 

beta0=3; 

beta1=10; 

E=randn(1,n); 

y= beta0+beta1*x +E; 

plot(x,y,'.') 

xlabel('x') 

ylabel('y') 
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Each time the command is used, a different number will be generated. The “random” 

numbers generated by Matlab (and others) are actually pseudorandom numbers as 

they are computed using a deterministic algorithm. The algorithm, however, is very 

complicated, and the output does not appear to follow a predictable pattern. For this 

reason the output can be treated as random for most practical purposes. The same 

sequence of numbers will not be generated unless the same starting point is used. 

This starting point is called the “seed”. Each time you start Matlab, the random 

number generator is initialized to the same seed value. The current seed value can be 

seen using: 

randn('seed',1)  % specify a seed (optional) 

By setting a seed value, we ensure that the same results will be produced each time 

the script is executed. The seed can be set to a value (say, 1234) as follows: 

randn('seed',1234) 



 28 

The purpose here is to make sure that the program starts from the same seed. The 

value of the seed is not important. 

In a bivariate scatter plot (x,y), the point with coordinates (mean(x), mean(y)) , is 

known as the point of averages. 

mx=mean(x);  

my=mean(y);  

hold on;  

plot(mx,my, 'ro', 'markerfacecolor','r')  

legend('data', 'point of averages') 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

x

y

 

 

data

point of averages

 
Covariance:  

Covariance between vectors x and y can be computed in “unbiased” and “biased” 

versions as: 

c= mean((x-mx).*(y-my))    % covariance (biased)  

n=length(x);  

cs= c*n/(n-1)                        % sample covariance(unbiased) 

Ans: 

c = 0.85307   cs =0.87048 

Correlation coefficient:  

The correlation coefficient between two variables is a measure of the linear 

relationship between them. The correlation coefficient between two vectors can be 

found using the average of the product of the         z-scores of x and y. The “biased” 

version is: 

zx=zscore(x,1);  

zy=zscore(y,1) ; 

r=mean(zx.*zy) 
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Ans: 

r = 

       0.94845 

Correlation coefficient can also be computed from the covariance, as follows: 

sx=std(x,1);  

sy=std(y,1);  

r=c/(sx*sy) 

Ans: 

r = 

       0.94845 

The “unbiased” version (sample correlation coefficient) is computed the same way, 

except that the flag “1” is replaced by “0”. 

Add a title that shows the correlation coefficient to the previous plot. For this, we 

need to convert the numerical value to a string, using the num2str command: 

title(['Correlation coefficient=',num2str(r)]) 
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data

point of averages

 

The correlation coefficient is sensitive to outliers. To see this, change the first 

element of y to 40 and recomputed the correlation coefficient: 

y(1)=40; 

zx=zscore(x,1)  
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zy=zscore(y,1)  

r=mean(zx.*zy) 

Ans: 

r = 

      0.31003 

Notice that a single outlier has significantly reduced the correlation coefficient. 

1.16.2: Ordinary Least Squares Regression 

Regression is a way to understand the mathematical relationship between variables. 

This relationship can then be used to  

- Describe the linear dependence of one variable on another.  

- Predict values of one variable from values of another.  

- Correct for the linear dependence of one variable on another, in order to clarify 

other features of its variability.  

Unlike the correlation coefficient, which measures the strength of a linear 

relationship, regression focuses on the mathematical form of the relationship. 

In simple linear regression, the mathematical problem is as follows: Given a set of k 

points ( ix , iy ), i =1,2,…,k, which are related through the equation iii nxbby ++= 10 , 

where 0b  and 1b  are constant (unknown) coefficients and in  is a realization of zero-

mean Gaussian noise with variance 2 . That is, ( )20,N~ in . As the noise term in  is a 

realization of a random variable, so is iy . Because of the random noise, the 

coefficients 0b  and 1b cannot be determined with certainty. Our goal is to find the best 

fit line ii xbby 10
ˆˆˆ += minimizing the sum of squared errors: 

( )
=

−=
k

i

ii yyS
1

2
ˆ  

The 1b̂  and 0b̂  values minimizing S are found by setting 0
1

=




b

S
, 0

0

=




b

S
. The result is: 

xofVariance

yandxbetweenianceCo
b

varˆ
1 =  

 ( ) ( )xofmeanbyofmeanb 10
ˆˆ −=  

These 1b̂  and 0b̂  values are the Ordinary Least Square (OLS) estimates of 1b  and 0b , 

respectively. The equation of the regression line (also known as the “best fit line”) is 

then ii xbby 10
ˆˆˆ +=  

bh1=c/sx^2;              % covariance divided by variance of x  

bh0=my-bh1*mx; 

yhat=bh0+bh1*x;     % regression line 
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Ans: 

bh1 = 

       9.8354 

bh0 = 

       2.9617 

Plot the regression line in red, and update the legend and the title: 

plot(x,yhat,'r')  

legend('data', 'point of averages','regression line')  

title(['Regression line: yhat=',num2str(bh1),'*x+',num2str(bh0)]) 
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Regression line: yhat=9.8354*x+2.9617

 

 

data

point of averages

regression line

 
Note that the regression line passes through the point of averages. The equation of 

the regression line shown in the title should be close to the original equation from 

which the data was generated: 

 y = 3 + 10x + noise  

Because of the noise, the predictions will not exactly coincide with the observations. 

The residuals ie  are defined as the deviations of each observation from its estimate: 

iii yye ˆ−=  

e=y-yhat; %residuals 

figure; 

plot(x,e,'.') 
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Ideally, the residuals should be more or less symmetrically distributed around zero 

(have mean 0): 

M = mean(e) % average residual 

Ans: 

M = 

   -2.1583e-15 

In addition, the amount of scatter should not show a systematic increase or decrease 

with increasing values of x. In other words, the scatter plot should be homoscedastic, 

not heteroscedastic. The variance of the noise can be estimated from the residuals 

(MSE) as follows: 

2n
ˆMSE

n

1

2

2

−
==


=i

ie

  

MSE = sum(e.^2)/(n-2)      % OLS estimator of noise variance 

Ans: 

MSE = 

         0.97588 

The n-2 in the denominator is known as the “degrees of freedom”, and is computed 

by subtracting the number of parameters estimated ( 0b  and 1b ) from the number of 

observations. 

The estimated noise variance for this particular problem should be close to 1, which 

is the variance of the noise used in generating the data. 
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The coefficient of determination ( 2R ) is a measure of how well the regression line 

represents the data. It is defined as: 

( )






=

=

= =

−

−=
n

1
n

1

2

n

1

2

2

n

1
,1

i

i

i

i

i

i

yywhere

yy

e

R  

In simple linear regression, 2R  is equal to the square of the correlation coefficient 

( 2r ) between x and y. If r = 0.9, then 2R = 2r = 0.81 which means that 81% of the total 

variation in y can be explained by the linear relationship between x and y. The other 

19% of the total variation in y remains unexplained. 

R2=1-sum(e.^2)/sum((y-my).^2)  % coefficient of determination 

r2=r^2                                          % correlation coefficient squared 

Ans: 

R2 = 

      0.89956 

r2 = 

      0.89956 

Save the code as chapter1simsimple.m. This file will be used in future chapters. 

 

1.16.3: Simple linear regression in matrix form 

Consider the simple linear regression equation ii xbby 10
ˆˆˆ += . 

Note that same equation can be written as   







=

1

0

ˆ

ˆ
.1ˆ

b

b
xy ii . 

This means that if the two coefficients are combined into a single column vector 









=

1

0

ˆ

ˆ
b̂

b

b
,  and the independent variable is augmented by adding a “1” to the 

front  ii xx 1=


, the thi  predicted value can be computed as b̂ˆ
ii xy


= . For the entire 

set of observations, we can write b̂XŶ = where Ŷ is a column of predicted values, X 

is the design matrix, where the first column consists of ones, the second column is 

the values of the independent variables, and 







=

1

0

ˆ

ˆ
b̂

b

b
.  

The OLS (ordinary least squares) estimate of the regression coefficients is given by  

( ) YXXXb̂
1

=
− . Recall the simple linear regression data generated from 

 y = 3 + 10x + noise  

n=50; 

x=linspace(0,1,n);                         % linearly spaced vector a length n 

y= 10*x + 3 + randn(1,n); 

mx=mean(x), my=mean(y), sx=std(x,1); 



 34 

c= mean((x-mx).*(y-my))            %covariance 

bh1=c/sx^2 

bh0=my-bh1*mx 

yhat=bh0+bh1*x;                          %regression line 

figure; 

plot(x,y,'.') 

hold on 

plot(x,yhat,'r') 

xlabel('x'), ylabel('y') 

title(['Regression yhat=',num2str(bh1),'*x+',num2str(bh0)]) 
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Regression yhat=9.2336*x+3.6672

 

The same estimates of the regression coefficients can be obtained using the matrix 

form: 

x=x(:);                                     % make x a column 

y=y(:);                                     % make y a column 

XX=[ones(n,1),x];                   % create the design matrix 

bh=(XX'*XX)^-1*XX'*y        % OLS estimate of b 

Ans. 

bh = 

       3.6672 

       9.2336 

The b̂  vector should contain the previously computed 0b  and 1b values. The new 

regression line should also coincide with the previous line. 
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yhat=XX*bh; 

hold on 

plot(x,yhat,'g+','linewidth',2) 
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Regression yhat=9.2336*x+3.6672

 

The residuals and the estimated noise variance are computed as 

e=y-yhat;                        % residuals 

dof= n-rank(XX);           % degrees of freedom 

MSE=sum(e.^2)/dof       % estimated noise variance 

Ans. 

MSE= 

       1.5741 

Save the code as SIMSIMPLEMATRIX.m. This file will be used in future chapters. 

1.16.4: Multiple Linear Regression 

In multiple linear regression, the regression equation is 

ikkiii xxxy  ˆˆˆˆˆ
22110 ++++=   

And each observation is equal to the predicted value and a residual term ie :  

iii eyy += ˆ  

The matrix-based analysis presented in the previous section is equally applicable to 

multiple independent variables. For each additional independent variable, another 

column is added to the design matrix, X. With k independent variables, the design 

matrix contains k+1 columns, the first column containing 1’s. One difficulty with 

multiple independent variables is that the entire analysis cannot be summarized in a 

single figure, and the residuals need to be plotted with respect to each independent 

variable separately. 
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By using matrices, the multiple linear regression model, += XβY  

Where ( )nI,0N~ 2  and Y is an n×1 vector of observations, X is an n×k matrix 

of regressors, β is a n×1 vector of parameters and ε is an n×1 vector of random 

disturbances. The least squares estimator of β is given by, 

( ) YXXXβ̂
1

=
−  

Whose variance is,                          ( ) ( ) 12 XXβ̂Var
−

=  

The predicted values are given by, 

β̂XŶ =  

The residuals are, 

ŶYe −=  

And the residual variance is, 

1n
ˆMSE

n

1

2

2

−−
==


=

k

e
i

i

  

We can now define the following function to solve the regression problem: 

The coefficient of determination ( 2R ) is computed the same way as in the simple 

linear case: 

( )






=

=

= =

−

−=
n

1
n

1
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n

1

2

2

n

1
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i

i

i

i

yywhere

yy

e

R  

The 2R  value in multiple linear regression is often called the “coefficient of multiple 

determination.” 

randn('seed',1234) % specify a seed (optional) 

n = 50; k = 4; 

X = [ones(n,1) randn(n,k)]; 

b = [5;1;2;3;4]; 

y = X*b + randn(n,1);[beta,Var_beta,resid,sR2] = regress(y,X) 

MSE = sum(resid.^2)/(n - k - 1),Var_Cov_beta=inv(X'*X)*MSE 

R2=1-sum(resid.^2)/sum((y-mean(y)).^2) 

subplot(2,1,1),plot(resid,'o'),title('residuals versus row number') 

subplot(2,1,2),plot(resid,ypred,'o'),title('residuals versus predicted') 

Ans. 

beta R2 MSE 

5.1611 0.96567 0.87179 

0.78908   

2.1569   

2.9181   

4.0902   
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Var_Cov_beta = 

0.018533    -0.002176   -0.0023977    0.0011898    0.0028394 

-0.002176     0.022436    0.0048211    0.0030259   -0.0016523 

-0.0023977    0.0048211     0.020029    0.0066967     0.001665 

0.0011898    0.0030259    0.0066967     0.016782   -0.0006353 

0.0028394   -0.0016523     0.001665   -0.0006353     0.024338 
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Save the code as SIMMULTIPLEMATRIX.m. This file will be used in future 

chapters. 

1.16.5: Multiple linear regression with the Statistics Toolbox of MATLAB 

The Statistics Toolbox provides the regress function to address the multiple linear 

regression problems. regress uses QR decomposition of X followed by the backslash 

operator to compute β̂ . The QR decomposition is not necessary for computing β̂ , but 

the matrix R is useful for computing confidence intervals. 

b = regress(y,X) returns the least squares estimator β̂ . 

[b, bint, r, rint, stats] = regress(y, X) returns an estimate of β  

Interval for β in the k×2 array bint. The residuals are returned in r and a 95% 

confidence interval for each residual is returned in the n × 2 array rint. The vector 

stats contain the 2R  statistic along with the F and p values for the regression. 

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1 - alpha)% confidence intervals 

for bint and rint. For example, alpha = 0.2 gives 80% confidence intervals. Let’s see 

an example. Suppose the true model is, ( )nI.010,0N~,
1

10
XY +








=  

Where I is the identity matrix. Suppose we have the following data: 

randn('seed',1234);n=10; X = [ones(n,1) (1:n)'] 

y = X * [5;2] + normrnd(0,0.1,n,1) 

[b,bint] = regress(y,X,0.05) 
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X y 

1 1 6.92063102736475 

1 2 8.95834974723594 

1 3 10.9217439183399 

1 4 13.2145703970460 

1 5 14.9213956160792 

1 6 17.0448135509485 

1 7 19.0098435509121 

1 8 20.9326093816663 

1 9 23.0200396628726 

1 10 24.9311656046701 

b = 

       4.9845 

       2.0005 

bint = 

       4.8304       5.1386 

       1.9757       2.0254 

Compare b to [10 1]’. Note that bint includes the true model values. 

Another example comes from Chatterjee and Hadi (1986) in a paper on regression 

diagnostics. The data set (originally from Moore (1975)) has five predictor variables 

and one response. 

load moore 

X = [ones(size(moore,1),1) moore(:,1:5)]; 

Matrix X has a column of ones, and then one column of values for each of the five 

predictor variables. The column of ones is necessary for estimating the y-intercept of 

the linear model. 

y = moore(:,6); 

[beta, beta_interval, resid, resid_interval, STATS] = regress(y,X) 

Where regress Multiple linear regression using least squares. 

beta = regress(Y,X) returns the vector beta of regression coefficients in the linear 

model Y = X* beta.  X is an n-by-p design matrix, with rows corresponding to 

observations and columns to predictor variables.  Y is an n-by-1 vector of response 

observations. 

[beta, beta_interval] = regress(Y,X) returns a matrix beta_interval of 95% confidence 

intervals for beta.  

[beta, beta_interval, resid] = regress(Y,X) returns a vector resid of residuals. 

[beta, beta_interval, resid, resid_interval] = regress(Y,X) returns a matrix 

resid_interval of intervals that can be used to diagnose outliers. If RINT(i,:) does not 

contain zero, then the i-th residual is larger than would be expected, at the 5% 

significance level.  This is evidence that the I-th observation is an outlier. 
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[beta, beta_interval, resid, resid_interval, STATS] = regress(Y,X) returns a vector 

STATS containing, in the following order, the R-square statistic, the F statistic and p 

value for the full model, and an estimate of the error variance. 

Ans.  

beta beta_interval 

-2.1561 -4.11538 -0.19691 

-9.0116e-06 -0.00112 0.001103 

0.0013159 -0.00139 0.004026 

0.0001278 -3.71e-05 0.000293 

0.0078989 -0.02213 0.037926 

41650.0001  -1.65e-05 0.0003 

   

resid resid_interval 

0.562317 0.225802 0.898832 

-0.14555 -0.54763 0.256525 

0.088524 -0.32617 0.50322 

-0.04788 -0.55146 0.455704 

-0.2307 -0.70433 0.242926 

0.170682 -0.28023 0.621592 

-0.34134 -0.83769 0.155007 

-0.07079 -0.62602 0.484439 

-0.01029 -0.47488 0.454305 

-0.10945 -0.63998 0.421089 

0.171722 -0.3311 0.674541 

0.050437 -0.49066 0.591533 

-0.03991 -0.59383 0.514003 

0.022723 -0.49909 0.544541 

-0.39447 -0.87015 0.081217 

0.081334 -0.41688 0.579544 

0.072986 -0.08787 0.233845 

0.011354 -0.4987 0.521405 

-0.22227 -0.66763 0.223093 

0.380568 -0.00711 0.768246 

STATS = 

2R  F p-value error variance 

0.810665 11.98861 0.000118 0.068538 

The y-intercept is 0b , which corresponds to the column index of the column of ones. 

The elements of the vector stats are the regression 2R  statistic, the F statistic (for the 

hypothesis test that all the regression coefficients are zero), the p-value associated 

with this F statistic, and error variance  
2R  is 0.8107 indicating the model accounts for over 80% of the variability in the 

observations. 

The F statistic of about 12 and its p-value of 0.0001 indicate that it is highly unlikely 

that all of the regression coefficients are zero. 



 40 

2 4 6 8 10 12 14 16 18 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Residual Case Order Plot

R
e
s
id

u
a
ls

Case Number

 
The plot shows the residuals plotted in case order (by row). The 95% confidence 

intervals about these residuals are plotted as error bars. The first observation is an 

outlier since its error bar does not cross the zero-reference line. [The program name:  

CONFIDENC] 

1.17: Simulation of Stochastic processes 

In this section, we will simulate and represent graphically various simple stochastic 

processes. 

1.17.1: Simulation of Bernoulli process 

A Bernoulli process is a discrete-time stochastic process consisting of finite or 

infinite sequence of independent random variables ,,, 321 xxx  such that, 





−=−

=
=

ppropwith

ppropwith
xi

1,1

,1
 

Random variables associated with the Bernoulli process include: 

- The number of successes in the first n trials; this has a binomial distribution; 

- The number of trials needed to get r successes; this has a negative binomial 

distribution. 

- The number of trials needed to get one success; this has a geometric distribution, 

which is a special case of the negative binomial distribution. 

We can simulate a realization of size 100 of a Bernoulli process with p = 0.5 as 

follows. 

u=rand(10,1); 

X=1-2*floor(u*2) 

Where (floor) Round towards minus infinity, 
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floor(X) rounds the elements of X to the nearest integers towards minus infinity. 

We can simulate another realization of a Bernoulli process with p = 0.25 and observe 

the differences.[The program name BERNOULLI.m] 

u=rand(30,1); 

Y(u<0.25)=1;Y(u>0.25)=-1; 

plot(1:30,Y,'ro',1:30,Y,'k*') 
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1.17.2: Simulation of Random walk 

By using the cumsum command, we can simulate random walks from the Bernoulli 

processes simulated previously. [The program name RANDOMWALK.m]. 

u=rand(30,1); 

Y(u<0.25)=1;Y(u>0.25)=-1; 

plot(1:30,cumsum(Y),'r') 
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1.17.3: Simulation of Poisson process 

Firstly, observe that continuous time processes are only possible to simulate by 

discretization of the unit time. 

A Poisson process, tx , with rate λ verifies the following property: 

tx = Number of occurrences in [0, t) ∼ Po(λt). 

If we want simulate a realization with 10 occurrences from a Poisson process of rate 

λ = 2, we can first simulate 10 exponential times of mean 1/λ = 0.5 between 

occurrences. [The program name POISSONPROCES.m]. 

x=exprnd(0.5,1,10); 

Then, we can obtain the occurrence times as follows. 

x=cumsum(x); 

subplot(2,1,1),plot(x,zeros(length(x)),'.') 

Suppose we want to know the value of the process tx  at the following instant times: 

Then, we can compute: 

for i=1:length(t);X(i)=sum(x<t(i));end 

subplot(2,1,2),plot(t,X) 
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1.17.4: Simulation of Autoregressive process 

Suppose we want to simulate T = 100 values from an autoregressive model AR(1), 

ttt exx +=  

where te  are i.i.d. N (0, 1) and assume three values for α ∈ {0.8, 0.5,−0.8}. One 

possibility is to assume x1 = e1 and then obtain recursively the remaining values. 

[The program name AR1.m]. 

e=randn(100,1); 

x=zeros(100,1); 
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x(1)=e(1); 

alpha=0.8; 

for i=2:100, x(i)=alpha*x(i-1)+e(i); end 

We can calculate the sample coefficient of the autocorrelation function. For example, 

the first coefficient is the sample correlation coefficient of 1−tx  and tx : 

corrcoef(x(1:99),x(2:100)); 

plot(x(1:99),x(2:100),'.') 
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Observe that after 10 lags, there is almost no relation between of 1−tx  and tx : 

plot(x(1:90),x(11:100),'.') 
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1.17.5: Simulation of Moving average process 

Suppose now that we want to simulate T = 100 values from a moving average model 

MA(1), 

ttt eex += −1  

Where te  are i.i.d. N (0, 1) and assume three values for   ∈ {0.8, 0.5,−0.8}. [The 

program name MA1.m]. 

This process is easier to initialize because we just have to simulate 0e . 

e=randn(101,1); 
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theta=0.8; 

x=theta*e(1:100,1)+e(2:101,1); 

Compute the first two coefficients of the autocorrelation function and observe the 

following plots: 

plot(x(1:99),x(2:100),'.') 

plot(x(1:98),x(3:100),'.'); 
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1.18: Nonlinear Regression 

When the relationship between the independent variable(s) and the dependent 

variable cannot be approximated as a line (or a hyperplane), approaches beyond 

linear regression are needed. There are many different methods for dealing with 

nonlinear relationships, but we will focus on two approaches: (a) Using a nonlinear 

transformation which makes the data approximately linear; (b) Polynomial fitting. 

1.18.1: Nonlinear Transformations 

Sometimes a non-linear relationship can be transformed into a linear one by a 

mathematical transformation. Examples include the exponential growth equation: 

( ) ( ) ( )ubxyuey bx logAloglogA ++==  

And the constant-elasticity equation 

( ) ( ) ( ) ( )uxbyuxy b loglog.AloglogA ++==  

Linear regression can now be performed using the transformed variables. 

Example 1.8: The table below shows data to test the relationship between porosity 

and sandstone strength. 

x=porosity y=unconfined 

strength (psi) 

Source: Hale, P. A. & Shakoor, A., 2003, A 

laboratory investigation of the Effects of 

Cyclic Heating and Cooling, Wetting and 

Drying, and Freezing and Thawing on the 

Compressive Strength of Selected 

Sandstones: Environmental and Engineering 

geoscience, vol IX, p. 117-130. 

 

12.32 2636 

13.94 3162 

6.94 7580 

4.0 16899 

2.94 23739 

0.86 14224 
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Plot the data and the regression line, and compute the coefficient of determination. 

[The program name example118.m]. 

x=[12.32,13.94,6.94,4,2.94,0.86]; 

y=[ 2636, 3162, 7580, 16899, 23739, 14224]; 

x=x(:); y=y(:); 

n=length(x); 

XX=[ones(n,1),x]; 

b=(XX'*XX)^-1*XX'*y 

yhat=XX*b; 

e=y-yhat; 

my=mean(y); 

R2=1-sum(e.^2)/sum((y-my).^2) 

figure; 

plot(x,y,'.') 

hold on , plot(x,yhat,'r') 

title(['Coeff of determination, R^2' ,num2str(R2)]) 

xlabel('porosity'), ylabel('unconfined strength (psi)') 

MSE=sum(e.^2)/(n-2) 

Ans.   

b =                                R2 =                          MSE =  

        20560                          0.72089                           2.4403e+07                

      -1344.4 
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The coefficient of determination is 72.02 =R , indicating that the regression equation 

can explain 72% of the variation in unconfined strength. And MSE equals 

2.4403e+07  

Repeat the same analysis, using a nonlinear transformation: [The program name 

example118.m]. 

y=log(y)                
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b =                    R2 =                           MSE =  

       10.142                 0.87261                        0.13228 

      -0.1612 
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The coefficient of determination has increased to 87.02 =R  and MSE has decreased 

to 0.13228 

There are a few points to keep in mind when using this method. First, we are 

assuming that the errors in the transformed equation follow a zero-mean Gaussian 

distribution, which may not be a reasonable assumption. Second, once we get the 

estimates from the transformed equation, going back to the original equation can be 

tricky. Some parameter estimates are biased, and the confidence intervals are no 

longer symmetrical around the predicted values. We need to get the confidence 

interval from the transformed equation and then transform the bounds back. 

1.18.2: Polynomial fitting 

The commands polyfit and polyval can be used whenever the data can be 

approximated by a polynomial. 

1- polyfit Fit polynomial to data. 

P = polyfit(X,Y,N) finds the coefficients of a polynomial P(X) of     degree N that fits 

the data Y best in a least-squares sense. P is a     row vector of length N+1 containing 

the polynomial coefficients in     descending powers, 

P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1). 

[P,S] = polyfit(X,Y,N) returns the polynomial coefficients P and a structure S for use 

with POLYVAL to obtain error estimates for     predictions.  S contains fields for the 

triangular factor (R) from a QR     decomposition of the Vandermonde matrix of X, 

the degrees of freedom (df), and the norm of the residuals (normr).  If the data Y are 

random, an estimate of the covariance matrix of P is (Rinv*Rinv')*normr^2/df, 

where Rinv is the inverse of R. 
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[P,S,MU] = polyfit(X,Y,N) finds the coefficients of a polynomial in 

XHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). This 

centering and scaling transformation improves the numerical properties of both the 

polynomial and the fitting algorithm. 

Warning messages result if N is >= length(X), if X has repeated, or nearly repeated, 

points, or if X might need centering and scaling. 

Class support for inputs X,Y: float: double, single 

2- polyval Evaluate polynomial. 

Y = polyval(P,X) returns the value of a polynomial P evaluated at X. P is a vector of 

length N+1 whose elements are the coefficients of the polynomial in descending 

powers. 

         Y = P(1)*X^N + P(2)*X^(N-1) + ... + P(N)*X + P(N+1) 

If X is a matrix or vector, the polynomial is evaluated at all points in X.  See 

POLYVALM for evaluation in a matrix sense. 

[Y,DELTA] = polyval(P,X,S) uses the optional output structure S created by 

POLYFIT to generate prediction error estimates DELTA.  DELTA is an estimate of 

the standard deviation of the error in predicting a future observation at X by P(X). 

If the coefficients in P are least squares estimates computed by     POLYFIT, and the 

errors in the data input to POLYFIT are independent, normal, with constant variance, 

then Y +/- DELTA will contain at least 50% of future observations at X. 

Y = polyval(P,X,[],MU) or [Y,DELTA] = polyval(P,X,S,MU) uses XHAT = (X-

MU(1))/MU(2) in place of X. The centering and scaling parameters MU are optional 

output computed by POLYFIT. 

Consider the following nonlinear system:  

randn('seed', 1); 

x=(1:50)'; 

y = sin(x/50)./ x + 0.002 * randn(50,1) 

Fit a polynomial of order 5:     

order=5;  

poly = polyfit(x, y, order); 

Evaluate the polynomial at the data points: 

yhat= polyval(poly,x) 

An approximate 95% prediction interval for y (including the noise) can be 

constructed as follows: [The program name NONLINEAR.m]. 

randn('seed', 1); 

x=(1:50)'; y = sin(x/50)./ x + 0.002 * randn(50,1); n=length(x); order=5; poly = 

polyfit(x, y, order); yhat= polyval(poly,x) 

[poly model] = polyfit(x, y, order); % fit a polynomial 
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[yhat s] = polyval(poly, x, model); % evaluate the polynomial 

alpha=0.05; % for 95% confidence 

p=1-alpha/2; % probability to be used in CDF 

df=50-(5+1); % degrees of freedom 

t=tinv(p,df); % t-value, may need tinv558 

PI_lower=yhat-t*s; PI_upper=yhat+t*s; 

figure; 

plot(x,y,'.') 

hold on 

plot(x,yhat, 'r') 

plot(x, PI_lower, 'r:') 

plot(x, PI_upper, 'r:') 

legend('data','regression','95% PI') 

xlabel('x'), ylabel('y') 

my=mean(y); e=y-yhat; 

MSE=sum(e.^2)/(n-2); R1=1-sum(e.^2)/sum((y-my).^2) 

Ans. 

MSE = 0.30322, R2 = 3.616e-06 
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PROBLEMS 

1.1: Define MATLAB  

1.2: What is interest MATLAB? 

1.3: where the name came from MATLAB? 

1.4: What MATLAB language characterized for other programming languages? 

1.5: What magic matrix and how do we get them? 

1.6: In analyzing linear equations if you know that: 

















=

436

258

149

A 

Find the following:  

1- The inverse of the matrix. 

2- Cholesky factorization. 

3- Upper and lower trigonometric matrix.  

4- Pseudoinverse matrix. 

1.7: In the analysis of the Eigenvalues if you know that: 

















=

121

875

143

B  

A- Eigen values and Eigen vector.  

B- Singular value decomposition. 
1.8: Analysis functions of matrices if you know that: 



















=

2398

5134

1526

4215

C  

Find the following:    

1- Matrix exponential 

2- Matrix logarithm 

3- Matrix square root 

1.9: Explain the command Kronecker with a practical example? 

1.10: Solving linear systems following: 

BXA =*  

If you know that A represents Pascal matrix (Dim.3) and 

 TB 413= 
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1.11: Estimate and draw the negative exponential model using (OLS) method for the 

following data: 

            t = [0 .3 .8 1.1 1.6 2.3]' and y = [.82 .72 .63 .60 .55 .50]' 

 Where ( ) tccty −+= e21  

1.12: Estimate the Simple Linear Model using method (OLS) for the following data: 

y 2 3 5 7 8 10 12 15 

x 8 10 14 16 17 20 22 26 

Where ii xccy 21 +=  

Find the following: 

1- Average of D.V. 

2- Variance of I.V.                                                                                     

3- Standard Deviation of the D.V.                            

4- Simple Linear Correlation Coefficient. 

5- Mean Square Error. 

6- The Coefficient of Determination. 

7- Standard Error. 
8- Covariance between the I.V. and D.V.  

.11 3: Draw the scatter plot of the following data: 

 

]2924201612861[

]171513119753[

]76543210[

=

=

=

y

x

z

 

1.14: Select outlier values for the following data: 

           

]2924201612861[

]171513119753[

]765203210[

=

=

=

y

x

z

 

1.15: Estimate the Multiple Linear Model using method (OLS) for the following 

data: 

        Where iii zcxccy 321 ++=               

The required account the following: 

1 - Average of D.V.  2 - Variance of x.  3 - Mean Square Error.                         

4- Standard Error.    5 - Covariance between the variables.                                       

1.16: Write a computer program to implement for generating a F-distribution with (8) 

& (11) degrees of freedom respectively, for n = 30 

1.17: Write a computer program to implement for generating a Exp(6) random 

deviate, n = 20 
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1.18: Compute possible some cases Normal output matrix of random matrix 

generated from Uniform distribution  ( )23 multiplied by 10 for just the integer 

values. 

1.19: Write a computer program to implement for generating a t-distribution with 

(20) degree of freedom, for n = 25 by using Direct Method. 

1.20: Write a computer program to implement for generating a multivariate normal 

distribution for (k=4) variables, n=30 and: 



















=

20

106

432

1111

 

For means equal to [2 15 6 12], find mean, variance and correlation matrix. 

1.21: Write a computer program to implement for generating: 

      - Poisson(5)  random deviate,  n = 20 

      - Exp(2) random deviate, n = 10 
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