

Date: June 2021
Final Examination
Second Trial
Q.1/ Choose the correct answer of the following:
[15 Marks]
a) The magnitude of the free-fall acceleration at a point that is a distance $2 R_{e}$ above the surface of the Earth, where R_{e} is the radius of the Earth, is about:
$\left(9.8 \mathrm{~m} / \mathrm{s}^{2}, 4.9 \mathrm{~m} / \mathrm{s}^{2}, 2.45 \mathrm{~m} / \mathrm{s}^{2}, 1.09 \mathrm{~m} / \mathrm{s}^{2}\right.$, None of them)
b) A particle is placed on top of a smooth sphere of radius (3 m). As the particle slides down the side of the sphere, at what point (height) will it leave?
c) For an elastic head-on collision between two bodies with ($\mathrm{v}_{1 \mathrm{i}}=5 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2 \mathrm{i}}=9 \mathrm{~m} / \mathrm{s}$ and $\left.\mathrm{v}_{1 \mathrm{f}}=7 \mathrm{~m} / \mathrm{s}\right)$. What is the value of $\mathrm{v}_{2 \mathrm{f}}$? $\quad(3 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}, 7 \mathrm{~m} / \mathrm{s}, 9 \mathrm{~m} / \mathrm{s}$, None of them)
d) The force for of the potential energy function $V=c x y z+c$ is:
$(\vec{F}=-c(\hat{\imath} y z+\hat{\jmath} x y+\widehat{k} x z), \quad \vec{F}=-c(\hat{\imath} x z+\hat{\jmath} y z+\widehat{k} x y), \quad \vec{F}=-c(\hat{\imath} x y+\hat{\jmath} x z+\widehat{k} y z)$,$\vec{F}=-c(\hat{\imath} y z+\hat{\jmath} x z+\widehat{k} x y)$, None of them)
e) For what values of the constants a, b and c is the force $\left.\overrightarrow{\boldsymbol{F}}=\hat{\boldsymbol{\imath}}\left(\boldsymbol{a x}+\boldsymbol{b} \boldsymbol{y}^{2}\right)+\hat{\boldsymbol{j}} \boldsymbol{c} \boldsymbol{x y}\right)$ conservative? ($a=1 b=2 c=3, a=3 b=2 c=1, a=1 b=3 c=2, a=3 b=1 c=2$, None of them)
Q.2/ What are the physical meanings of the following equations?
[15 Marks]
(I) $\mu \ddot{\vec{R}}=f(R) \frac{\vec{R}}{R}$
(II) $F_{s}=m \ddot{s}=-\frac{d V(s)}{d s}$ (III) $\quad \sum \vec{F}_{e x t}=m \vec{a}_{c m}$
(IV) $\vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})$
(V) $m \vec{a}=\vec{F}+\vec{R}$
Q.3/ If two bodies undergo a direct collision, write the kinetic energy of a two particle system and show that the loss in kinetic energy is equal to $Q=\frac{1}{2} \mu \boldsymbol{\nu}\left(\mathbf{1}-\boldsymbol{\epsilon}^{2}\right)$, where μ is the reduced mass, v is the related speed and ϵ is the coefficient of restitution.
[15 Marks]

Q.4/

Find the acceleration of a ball shown in the figure rolling down a perfectly rough fixed inclined plane by using Lagrange's equations.
[15 Marks]

Ans. of Q.1:

Q.1/ Choose the correct answer of the following:
a) The magnitude of the free-fall acceleration at a point that is a distance $2 \mathrm{R}_{\mathrm{e}}$ above the surface of the Earth, where R_{e} is the radius of the Earth, is about:
($9.8 \mathrm{~m} / \mathrm{s}^{2}, 4.9 \mathrm{~m} / \mathrm{s}^{2}, 2.45 \mathrm{~m} / \mathrm{s}^{2}, 1.09 \mathrm{~m} / \mathrm{s}^{2}$, None of them)
b) A particle is placed on top of a smooth sphere of radius (3 m). As the particle slides down the side of the sphere, at what point (height) will it leave?
($2 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}, 6 \mathrm{~m}$, None of them)
c) For an elastic head-on collision between two bodies with ($\mathrm{v}_{1 \mathrm{i}}=5 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2 \mathrm{i}}=9 \mathrm{~m} / \mathrm{s}$ and $\left.\mathrm{v}_{1 \mathrm{f}}=7 \mathrm{~m} / \mathrm{s}\right)$. What is the value of $\mathrm{v}_{2 \text { f }}$? $(3 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}, 7 \mathrm{~m} / \mathrm{s}, 9 \mathrm{~m} / \mathrm{s}$, None of them)
d) The force for of the potential energy function $V=c x y z+c$ is:
$(\vec{F}=-c(\hat{\imath} y z+\hat{\jmath} x y+\widehat{k} x z), \quad \vec{F}=-c(\hat{\imath} x z+\hat{\jmath} y z+\widehat{k} x y), \quad \vec{F}=-c(\hat{\imath} x y+\hat{\jmath} x z+\widehat{k} y z)$, $\overrightarrow{\boldsymbol{F}}=-\boldsymbol{c}(\hat{\boldsymbol{\imath}} y z+\hat{\jmath} x z+\widehat{\boldsymbol{k}} x y)$, None of them)
e) For what values of the constants a, b and c is the force $\left.\overrightarrow{\boldsymbol{F}}=\hat{\boldsymbol{\imath}}\left(\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y}^{2}\right)+\hat{\boldsymbol{j}} c x \boldsymbol{y}\right)$ conservative? ($a=1 b=2 c=3, a=3 b=2 c=1, a=1 b=3 c=2, a=3 b=1 c=2$, None of them)

Ans. of Q.2:

(I) Newton's Motion of two interacting bodies (Two body problem). Motion of particle1 relative to particle2 (motion of central Field).
(II) Differential Equation for motion of a particle on the curve.
(III) Newton's second law for the system of N particles treated as a single particle of mass m located at the center of mass.
(IV) Motion of Charged Particle in Electro-Magnetic Field.
(V) Differential Equation for Constrained Motion.

Ans. of Q.3:

$$
\begin{aligned}
& \begin{array}{l}
\text { P.7.9: If two bodies undergo a direct collision, show that the loss in } \\
\text { kinetic energy is equal to: } \quad \mu \text { is the reduced mass } \\
Q=\frac{1}{2} \mu v^{2}\left(1-\varepsilon^{2}\right) \quad \text { where } \quad v \text { is the related speed before collision } \\
\varepsilon \text { is the coefficient of restitution }
\end{array} \\
& \begin{array}{l}
T=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{2} \begin{array}{l}
\text { Kinetic Energy of a two particle system } \\
\text { before collision. }
\end{array} \\
T^{\prime}=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{\prime 2} \begin{array}{l}
\text { Kinetic Energy of a two particle system } \\
\text { after collision. }
\end{array} \\
Q=T-T^{\prime} \text { and since } v_{c m}=v_{c m}^{\prime} \text { : } \\
Q=\frac{1}{2} \mu v^{2}-\frac{1}{2} \mu v^{\prime 2} \\
Q=\frac{1}{2} \mu v^{2}\left(1-\varepsilon^{2}\right)
\end{array}
\end{aligned}
$$

Ans. of Q.4:

- $n=1$ the system has one degree of freedom
- The generalized coordinate is: $q_{I}=x$
- The kinetic energy for a system is:

$$
\text { Reference Level } V(0)=0
$$

$$
T=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} I w^{2}=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2}\left(\frac{2}{3} m b^{2}\right) \frac{\dot{x}^{2}}{b^{2}}=\frac{5}{6} m \dot{x}^{2}
$$

- The potential energy for a system is:

$$
V=-m g x \sin \theta
$$

- The Lagrangian function is:

$$
\mathcal{L}=T-V=\frac{5}{6} m \dot{x}^{2}+m g x \sin \theta
$$

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}=\frac{\partial \mathcal{L}}{\partial x} \Rightarrow \frac{d}{d t}\left[\frac{5}{3} m \dot{x}\right]=m g \sin \theta
$$

$$
\ddot{x}=\frac{3}{5} g \sin \theta
$$

