Salahaddin University-Erbil College of Science Department of Mathematics 3rd Stage

Subject: Analytical Mechanics

Period: 60 Minutes

Date: 21 November 2021

First Examination

First Semester 2021-2022

- **Q.1**/ For rotation of the coordinate system through an angle θ : [9+9 Marks]
 - i) Show that the components of a vector \vec{v} in two dimensions are given by:

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

- ii) What are the properties of the above transformation (rotation) matrix?
- **Q.2**/ Show that: $\frac{d\hat{\theta}}{dt} = -\dot{\theta}\,\hat{\mathbf{r}}$ [7 Marks] Using physical representation of the unit vectors in polar coordinates.
- Q.3/ Choose the correct answer:

[10 Marks]

- a) Consider a particle moving in a straight line with $x = 6t^2 t^3$ (meters), the maximum velocity occurs at the time: (0 seconds, 2 seconds, 4 seconds, 6 seconds, None of them)
- b) Given the velocity of a particle in rectilinear motion varies with the displacement x according to the equation: $\dot{x} = v(x) = \frac{2}{x}$. What is the force acting on the particle as a function of x? $(-2m\,x^{-3}\,, -4m\,x^{-3}\,, -2m\,x^{-2}\,, -4m\,x^{-2}\,, None of them)$
- c) The acceleration of a particle sliding from rest down an inclined plane θ with coefficient of kinetic friction μ is positive when: $(\sin\theta > \mu\cos\theta \ , \ \sin\theta < \mu\cos\theta \ , \ \sin\theta = \mu\cos\theta \ , \ \sin\theta \leq \mu\cos\theta \ , \ \textit{None of them})$
- d) If a particle moves in a circular path (polar coordinates) with constant velocity, its radial acceleration is: $(Zero, r\ddot{\theta}, -r\dot{\theta}^2, 2\dot{r}\dot{\theta}, None of them)$
- e) If the Cartesian point $(x, y, z) = (1, \sqrt{3}, 2)$. The corresponding point in cylindrical coordinates is: $[(2, \frac{\pi}{3}, 2), (2, \frac{\pi}{6}, 2), (\sqrt{8}, \frac{\pi}{3}, 2), (\sqrt{8}, \frac{\pi}{6}, 2), None of them]$

Good Luck

Asst. Prof. Dr. Tahseen G. Abdullah

<u>a)</u>

- •Generally, let \hat{e}_1 and \hat{e}_2 are base vectors, i.e. $\vec{v} = v_1 \hat{e}_1 + v_2 \hat{e}_2$
- Base vectors are said to be orthonormal if

$$\begin{cases} \hat{e}_1 \cdot \hat{e}_1 = \hat{e}_2 \cdot \hat{e}_2 = 1 \\ \hat{e}_1 \cdot \hat{e}_2 = 0 \end{cases}$$

•Hence, \hat{i} and \hat{j} are example of orthonormal base vectors.

•Let both (\hat{e}_1, \hat{e}_2) and (\hat{e}'_1, \hat{e}'_2) are orthonormal base vectors, i.e.,

$$\vec{v} = v_1 \hat{e}_1 + v_2 \hat{e}_2 = v_1' \hat{e}_1' + v_2' \hat{e}_2'$$

$$v_1' = v_1 \hat{e}_1' \cdot \hat{e}_1 + v_2 \hat{e}_1' \cdot \hat{e}_2$$

$$v_2' = v_1 \hat{e}_2' \cdot \hat{e}_1 + v_2 \hat{e}_2' \cdot \hat{e}_2$$
Here

 $v'_{1} = v_{1}\hat{e}'_{1} \cdot \hat{e}_{1} + v_{2}\hat{e}'_{1} \cdot \hat{e}_{2}$ $v'_{2} = v_{1}\hat{e}'_{2} \cdot \hat{e}_{1} + v_{2}\hat{e}'_{2} \cdot \hat{e}_{2}$

How to express them in matrix form?

....H.W.

in matrix form:

Hence, an orthogonal matrix R acts as transformation to transforms a vector from one coordinates to another, i.e.,

b) Properties of transformation matrix

1- Magnitude of the vectors: *Invariant* under a rotation:

$$|T\vec{v}| = |\vec{v}| = v = \sqrt{v_1^2 + v_2^2} = \sqrt{v_1'^2 + v_2'^2} = \dots$$

2-
$$T$$
 for a reverse rotation $(-\Theta) = \widetilde{T}$ (Transpose of T):
$$T(-\theta) = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \widetilde{T}$$

3- TT = I, where *I* is the identity operator:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \cos \theta \sin \theta & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Ans. of Q.2:

Derivatives of Polar Unit Vectors:

 \square Since the $\hat{\theta}$ unit vector is perpendicular to the $\hat{\mathbf{r}}$ unit vector, we have the same geometry as before, except rotated 90 degrees. The change $\Delta\hat{\theta}$ is now in the $-\hat{\mathbf{r}}$ direction, and its length is again $\Delta \theta = \dot{\theta} \Delta t$, so finally we have:

Ans. of Q.3:

a) (0 seconds, 2 seconds, 4 seconds, 6 seconds, None of them)

b)
$$(-2m x^{-3}, -4m x^{-3}, -2m x^{-2}, -4m x^{-2}, None of them)$$

c)
$$(\sin \theta > \mu \cos \theta, \sin \theta < \mu \cos \theta, \sin \theta = \mu \cos \theta, \sin \theta \leq \mu \cos \theta, None of them)$$

d) (Zero,
$$r\ddot{\theta}$$
, $-r\dot{\theta}^2$, $2\dot{r}\dot{\theta}$, None of them)

e)
$$[(2,\frac{\pi}{3},2), (2,\frac{\pi}{6},2), (\sqrt{8},\frac{\pi}{3},2), (\sqrt{8},\frac{\pi}{6},2), None of them]$$