Salahaddin University-Erbil College of Science Department of Physics
$2^{\text {nd }}$ Stage/General First Semester 2021-2022

Subject: Analytical Mechanics
Period: 2 hours
Date: January 2021
Final Examination
First Trial
Q.1/ Find the transformation matrix for a rotation of the coordinate axes about z-axis through an angle φ followed by a rotation about y'-axis through an angle
[15 Marks]
Q.2/For harmonic oscillator system with: $F(x)=-\boldsymbol{k} \boldsymbol{x}$. What are?
(i) The potential energy, total energy and kinetic energy for a system.
(ii) Plot the graph of the energies of (i) as a functions of time t and position x.
(iii) Turning points of motion.
[15 Marks]
Q.3/ For vertical motion with linear drag:
(I) What is the physical differential equation of motion?
(II) Define the terminal speed and characteristic time.
(III) At what time the speed of particle v_{y} is at 95% of $v_{\text {ter }}$?
(IV) Plot v_{y} versus t for $v_{y o}>v_{\text {ter }}$?

Q.4/

(a) Show that: $\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta}$ [5+5+5 Marks] Using physical representation of the unit vectors in polar coordinates.
(b) Show that the tangential component of acceleration is given by $a_{\tau}=\frac{\bar{v} \cdot \vec{a}}{v}$
(c) Find the corresponding point of $(1,1,1)$ in Cylindrical Coordinates.

Ans. of Q.1:

1.10: Verify the transformation matrix for a rotation of the coordinate axes about z-axis through an angle ϕ followed by a rotation about y^{\prime}-axis through an angle θ.

Ans. of Q.2:

Energy Consideration in SHM

$$
x=x_{m} \cos (\omega t+\phi) \quad \dot{x}=-x_{m} \omega \sin (\omega t+\phi)
$$

1.The potential energy

$$
\begin{aligned}
& V=-\int F(x) d x=-\int-k x d x=\frac{1}{2} k x^{2} \\
& V=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{m}^{2} \cos ^{2}(\omega t+\phi)
\end{aligned}
$$

2. The kinetic energy

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{x}^{2}=\frac{1}{2} m \omega^{2} x_{m}{ }^{2} \sin ^{2}(\omega t+\phi) \\
& =\frac{1}{2} k x_{m}{ }^{2} \sin ^{2}(\omega t+\phi)
\end{aligned}
$$

3. The total energy is

$$
E=T+V=\frac{1}{2} k x_{m}^{2}=\frac{1}{2} k A^{2}=\text { const. }
$$

Ans. of Q.3:

Vertical Motion with Linear Drag

- Consider motion of an object thrown vertically downward and subject to gravity and linear air resistance.
- The equation of vertical motion for linear drag is determined by:

$$
m \dot{v}_{y}=m g-b v_{y}
$$

- Gravity accelerates the object down, the speed increases until the point when the retardation force becomes equal in magnitude to gravity. One then has terminal speed.

$$
0=m g-b v_{y} \quad \square \quad v_{t e r}=v_{y}(a=0)=\frac{m g}{b}
$$

Note: $\boldsymbol{v}_{\text {ter }}$ depends on mass m and linear drag coefficient b. i.e terminal speed is different for different objects.

$$
\begin{aligned}
& d V(x) \quad T_{0}=T(x)+V(x) \\
& T(x)=T_{0}-V(x)=\frac{1}{2} k\left(A-x^{2}\right) \\
& V(x)=\int_{0}^{x} k x d x=\frac{1}{2} k x^{2} \\
& E=T_{\circ}=\frac{1}{2} k A^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - We found } \quad v_{y}=v_{y 0} e^{-t / \tau}+v_{\text {ter }}\left(1-e^{-t / \tau}\right) \\
& \text { - At } t=0 \text {, one has } \quad v_{y}=v_{y 0} \\
& \text { - Whereas for } t \rightarrow \infty \quad v_{y}=v_{t e r} \\
& \text { - As the simplest case, consider } v_{0 y y}=0, \\
& \text { i.e. dropping an object from rest. } \\
& v_{y}=v_{\text {ter }}\left(1-e^{-t / \tau}\right) \\
& \text { - After an interval } t=1 \tau \\
& v_{y}=v_{\text {ter }}\left(1-e^{-1}\right)=0.63 v_{\text {ter }} \\
& \text { - By the time } t=3 \tau \text { the projectile } \\
& \text { velocity is at } 95 \% \text { of } v_{\text {vers. }} \\
& \text { - After an interval } t=10 \tau \\
& v_{y}=0.99995 v_{\text {ter }} \approx v_{\text {ter }}
\end{aligned}
$$

Plot of v_{y} versus t for different $v_{y o}$.

- Let's take a look at the solution for $r_{y 0}=0$ (dropping the projectile from rest). In this case, the equation is just
which is plotted below. $\quad v_{y}=v_{\text {ter }}\left(1-e^{-t / \tau}\right)$

- Note that it is not enough to simply derive an equation. To really understand the motion you need to sketch such plots, or look at limiting behavior (e.g. position and velocity as $t \rightarrow \infty$).
- One canwrite equation of vertical motion
$m \dot{\nu}_{y}=m g-b v_{y}$
- as: $\quad m \dot{\nu}_{y}=-b\left(v_{y}-v_{\text {term }}\right)$
- Or in terms of differentials $\quad m d v_{y}=-b\left(v_{y}-v_{t e m m}\right) d t$
- Separate variables then change variable:

$\frac{d v_{y}}{v_{y}-v_{u m m}}=-\frac{b d t}{m}$	$u=v_{y}-v_{u s m}$
$d u=d v_{y}$	

- So we have $\frac{d u}{u}=-\frac{b d t}{m}=-k d t \rightarrow \int \frac{d u}{u}=-k \int d t \rightarrow \ln u=-k t+C$
- Or... $u=A e^{-k t} \rightarrow \quad v_{y}-v_{z, r}=A e^{-t / \tau} \rightarrow \tau=1 / k=m / b$
- Now apply initial conditions: when $t=0, v_{y}=v_{y} \rightarrow A=v_{y 0}-v^{x}$

The velocity as a function of time is thus given by

$$
\begin{equation*}
v_{y}=v_{t e r}+\left(v_{y 0}-v_{t e r}\right) e^{-t / \tau} \tag{42}
\end{equation*}
$$

Ans. of Q.4:

 changes by:

Recall: arc length $=r \theta$ case, $\theta=\Delta \theta$ and $r=|\hat{r}|=1$
$\mid \Delta \hat{\mathbf{r}}=\Delta \theta$
$\Delta \hat{\mathbf{r}}=\Delta \theta \hat{\theta}$

- after taking the limit as Δt approaches zero,

p.16: Show that the tangential component of acceleration is given by:

$$
a_{\tau}=\frac{\stackrel{\rightharpoonup}{v} \cdot \stackrel{\rightharpoonup}{a}}{v}
$$

$$
a_{n}=\left(a^{2}-a_{\tau}^{2}\right)=\left(a^{2}-\frac{(\stackrel{\rightharpoonup}{v} \cdot \vec{a})^{2}}{v^{2}}\right)
$$

and the normal component is therefore:

$$
\begin{array}{ll}
\bar{v}=v \hat{\tau} \text { and } \bar{a}=a_{z} \hat{\tau}+a_{n} \hat{n} & \frac{d \bar{v}}{d t} \cdot \bar{v}+\bar{v} \cdot \frac{d \bar{v}}{d t}=2 v \dot{v} \\
\bar{v} \cdot \bar{a}=v a_{z}, \text { so } a_{z}=\frac{\bar{v} \cdot \bar{a}}{v} & 2 \bar{v} \cdot \bar{a}=2 \dot{v} \\
a^{2}=a_{z}^{2}+a_{n}^{2}, \text { so } a_{n}=\left(a^{2}-a_{z}^{2}\right)^{\frac{1}{2}} & \bar{v} \cdot \bar{a}=v \dot{v}
\end{array}
$$

Ex.: What is the corresponding point of $(1,1,1)$ in Cylindrical Coordinates.

Sol.:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}(1)=45 \\
& z=z=1
\end{aligned}
$$

Thus, the corresponding point in Cylindrical Coordinates is: $(\sqrt{2}, 45,1)$

Ex.: What is the corresponding point of $\left(\sqrt{2}, 45^{\circ}, 1\right)$ in Cartesian Coordinates. (H.W.)

