
Q.1/ For rotation of the coordinate system through an angle θ :
[9+9 Marks]
i) Show that the components of a vector \vec{v} in two dimensions are given by:
$\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$
ii) What are the properties of the above transformation (rotation) matrix?
Q.2/ Show that: $\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{\mathbf{r}}$
[7 Marks]
Using physical representation of the unit vectors in polar coordinates.
Q.3/ Choose the correct answer:
[10 Marks]
a) Consider a particle moving in a straight line with $x=6 t^{2}-t^{3}$ (meters), the maximum velocity occurs at the time: (0 seconds, 2 seconds, 4 seconds, 6 seconds, None of them)
b) Given the velocity of a particle in rectilinear motion varies with the displacement x according to the equation: $\dot{x}=v(x)=\frac{2}{x}$. What is the force acting on the particle as a function of x ? $\left(-2 m x^{-3},-4 m x^{-3},-2 m x^{-2},-4 m x^{-2}\right.$, None of them)
c) The acceleration of a particle sliding from rest down an inclined plane θ with coefficient of kinetic friction μ is positive when:
$(\sin \theta>\mu \cos \theta, \sin \theta<\mu \cos \theta, \sin \theta=\mu \cos \theta, \sin \theta \leq \mu \cos \theta$, None of them)
d) If a particle moves in a circular path (polar coordinates) with constant velocity, its radial acceleration is: (Zero $, r \ddot{\theta},-r \dot{\theta}^{2}, 2 \dot{r} \dot{\theta}$, None of them)
e) If the Cartesian point $(x, y, z)=(1, \sqrt{3}, 2)$. The corresponding point in cylindrical coordinates is:

$$
\left[\left(2, \frac{\pi}{3}, 2\right),\left(2, \frac{\pi}{6}, 2\right),\left(\sqrt{8}, \frac{\pi}{3}, 2\right),\left(\sqrt{8}, \frac{\pi}{6}, 2\right), \text { None of them }\right]
$$

Ans. of Q.1:

a)

- Generally, let \hat{e}_{1} and \hat{e}_{2} are base vectors, i.e.
$\vec{v}=v_{1} \hat{e}_{1}+v_{2} \hat{e}_{2}$
-Base vectors are said to be orthonormal if

$$
\left\{\begin{array}{c}
\hat{e}_{1} \cdot \hat{e}_{1}=\hat{e}_{2} \cdot \hat{e}_{2}=1 \\
\hat{e}_{1} \cdot \hat{e}_{2}=0
\end{array}\right.
$$

-Hence, \hat{i} and \hat{j} are example of orthonormal base vectors.
-Let both ($\left.\hat{e}_{1}, \hat{e}_{2}\right)$ and ($\left.\hat{e}_{1}^{\prime}, \hat{e}_{2}^{\prime}\right)$ are orthonormal base vectors, i.e.,

$$
\begin{aligned}
& \vec{v}=v_{1} \hat{e}_{1}+v_{2} \hat{e}_{2}=v_{1}^{\prime} \hat{e}_{1}^{\prime}+v_{2}^{\prime} \hat{e}_{2}^{\prime} \\
& v_{1}^{\prime}=v_{1} \hat{e}_{1}^{\prime} \cdot \hat{e}_{1}+v_{2} \hat{e}_{1}^{\prime} \cdot \hat{e}_{2} \quad \text { How to express them } \\
& v_{2}^{\prime}=v_{1} \hat{e}_{2}^{\prime} \cdot \hat{e}_{1}+v_{2} \hat{e}_{2}^{\prime} \cdot \hat{e}_{2} \quad \text { in matrix form? }
\end{aligned}
$$

in matrix form:

$$
\left[\begin{array}{l}
A_{x^{\prime}} \\
A_{y^{\prime}}
\end{array}\right]=\left[\begin{array}{ll}
\hat{i} \hat{i}^{\prime} & \hat{j} \cdot \hat{i} \\
\hat{i} \cdot \hat{j}^{\prime} & \hat{j} \cdot \hat{j}^{\prime}
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right]
$$

Note $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ are orthogonal.
Hence, an orthogonal matrix R acts as $\left.\begin{array}{l}\text { transformation to transforms a vector } \\ \text { from one coordinates to another, i.e., }\end{array} \quad \begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime}\end{array}\right]=R\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$

b) Properties of transformation matrix

1- Magnitude of the vectors: Invariant under a rotation:

$$
|T \stackrel{\rightharpoonup}{v}|=|\stackrel{\rightharpoonup}{v}|=v=\sqrt{v_{1}^{2}+v_{2}^{2}}=\sqrt{v_{1}^{\prime 2}+v_{2}^{\prime 2}}=\ldots
$$

2- T for a reverse rotation $(-\theta)=\widetilde{T}$ (Transpose of T):

$$
T(-\theta)=\left[\begin{array}{ll}
\cos (-\theta) & \sin (-\theta) \\
-\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\tilde{T}
$$

3- $\tilde{T} T=I$, where l is the identity operator:

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{ll}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

Ans. of Q.2:

Derivatives of Polar Unit Vectors: $\frac{d \hat{\theta}}{d t}$
 - Since the $\hat{\theta}$ unit vector is perpendicular to the $\hat{\mathbf{r}}$ unit vector, we

have the same geometry as before, except rotated 90 degrees.
The change $\Delta \hat{\theta}$ is now in the $-\hat{\mathbf{r}}$ direction, and its length is again $\Delta \theta=\dot{\theta} \Delta t$, so finally we have:

$$
\begin{gathered}
|\Delta \hat{\theta}|=\Delta \theta \\
\Delta \hat{\theta}=\Delta \theta(-\hat{r}) \\
\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \hat{\theta}}{\Delta t}=\operatorname{Lim}_{\Delta t \rightarrow 0}\left[\left(\frac{\Delta \theta}{\Delta t}(-\hat{r})\right]\right. \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r}
\end{gathered}
$$

Ans. of Q.3:

a) (0 seconds, 2 seconds, 4 seconds, 6 seconds, None of them)
b) $\quad\left(-2 m x^{-3}, \underline{-4 m x^{-3}},-2 m x^{-2},-4 m x^{-2}\right.$, None of them)
c) $(\sin \theta>\mu \cos \theta, \sin \theta<\mu \cos \theta, \sin \theta=\mu \cos \theta, \sin \theta \leq \mu \cos \theta$, None of them)
d) (Zero, $r \ddot{\theta}, \underline{-r \dot{\theta}^{2}}, 2 \dot{r} \dot{\theta}$, None of them)
e) $\quad\left[\left(2, \frac{\pi}{3}, 2\right),\left(2, \frac{\pi}{6}, 2\right),\left(\sqrt{8}, \frac{\pi}{3}, 2\right),\left(\sqrt{8}, \frac{\pi}{6}, 2\right)\right.$, None of them $]$

