
Q.1/ Express the vector $\overrightarrow{\boldsymbol{A}}=\mathbf{2 \hat { \boldsymbol { \imath } }}-\mathbf{4} \hat{\boldsymbol{\jmath}}+\mathbf{6} \widehat{\boldsymbol{k}}$ in terms of the triad $\hat{\boldsymbol{\imath}}^{\prime}, \hat{\boldsymbol{\jmath}}^{\prime}, \widehat{\boldsymbol{k}}^{\prime}$ for rotation of the coordinate system about the x-axis through an angle 60°. Show that the magnitude of the vector \vec{A} is unchanged after the rotation.
Q.2/ [7+8 Marks]
(a) For a particle moving in a circular path of radius $2 m$ with a velocity function $v=2 t^{2} \mathrm{~m} / \mathrm{s}$. What is the magnitude of its total acceleration at $t=1 \mathrm{~s}$?
(b) What are the position vector, velocity and acceleration in polar coordinates?.
Q.3/ For harmonic oscillator system with: $F(x)=-k x$:
[15 Marks]
(i) What is the solution of the system?
(ii) What are the potential energy, total energy and kinetic energy for a system?
(iii) Plot the graph of the energies of (ii) as a functions of time t and position x.
Q.4/
[9+6 Marks]
(A) A block is projected with initial velocity v_{0} on a smooth horizontal plane, but that there is air resistance proportional to $v: F(v)=-c v$, where c is constant. Find: $v(t)$, $x(t)$ and $v(x)$.
(B) Choose the correct answer:
(i) What is the magnitude of the free-fall acceleration at a point that is a distance $2 R_{e}$ above the surface of the Earth, where R_{e} is the radius of the Earth:

$$
\text { (} 9.8 \mathrm{~m} / \mathrm{s}^{2}, 4.9 \mathrm{~m} / \mathrm{s} 2,2.45 \mathrm{~m} / \mathrm{s}^{2}, 1.09 \mathrm{~m} / \mathrm{s}^{2} \text {, None of them) }
$$

(ii) For an object falling from rest with linear drag. At what time the speed of the article is at 99.3% of terminal speed? $\quad(t=3 \tau, t=4 \tau, t=5 \tau, t=10 \tau$, None of them $)$
(iii) What is the natural frequency for damping harmonic oscillator when the damping constant $\left(\beta=\omega_{0} / 2\right) ? \quad\left(\omega_{0}, \frac{\omega_{\circ}}{2}, \omega_{\circ} \sqrt{\frac{3}{4}}, \omega_{\circ} \sqrt{\frac{15}{16}}\right.$, None of them $)$

$$
\begin{aligned}
& {\left[\begin{array}{l}
A_{x^{\prime}} \\
A_{y^{\prime}} \\
A_{z^{\prime}}
\end{array}\right]=\left[\begin{array}{lll}
\hat{i} \cdot \hat{i}^{\prime} & \hat{j} \cdot \hat{i}^{\prime} & \hat{k} \cdot \hat{i}^{\prime} \\
\hat{i} \cdot \hat{j}^{\prime} & \hat{j} \cdot \hat{j}^{\prime} & \hat{k} \cdot \hat{j}^{\prime} \\
\hat{i} \cdot \hat{k}^{\prime} & \hat{j} \cdot \hat{k}^{\prime} & \hat{k} \cdot \hat{k}^{\prime}
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]} \\
& {\left[\begin{array}{l}
A_{x^{\prime}} \\
A_{y^{\prime}} \\
A_{z^{\prime}}
\end{array}\right]=\left[\begin{array}{lll}
\cos 0 & \cos \frac{\pi}{2} & \cos \frac{\pi}{2} \\
\cos \frac{\pi}{2} & \cos 60 & \cos \left(\frac{\pi}{2}-60\right) \\
\cos \frac{\pi}{2} & \cos \left(\frac{\pi}{2}+60\right) & \cos 60
\end{array}\right]\left[\begin{array}{l}
2 \\
-4 \\
6
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{l}
A_{x^{\prime}} \\
A_{y^{\prime}} \\
A_{z^{\prime}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (60) & \sin (60) \\
0 & -\sin (60) & \cos (60)
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
-6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
-4 \\
6
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A_{x^{\prime}} \\
A_{y^{\prime}} \\
A_{z^{\prime}}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2+3 \sqrt{3} \\
2 \sqrt{3}+3
\end{array}\right] \longrightarrow \begin{aligned}
& A_{x^{\prime}}=2 \\
& A_{y^{\prime}}=-2+3 \sqrt{3}=3.196 \\
& A_{z^{\prime}}=2 \sqrt{3}+3=6.464
\end{aligned}
$$

$$
A^{2}=(2)^{2}+(4)^{2}+(6)^{2}=4+16+36=56
$$

$$
\begin{aligned}
A^{\prime 2} & =(2)^{2}+(-2+3 \sqrt{3})^{2}+(2 \sqrt{3}+3)^{2} \\
\bar{A}^{\prime}=(2) \hat{i}^{\prime}+(-2+3 \sqrt{3}) \hat{j}^{\prime}+(2 \sqrt{3}+3) \hat{k}^{\prime} \quad & =4+4+27-12 \sqrt{3}+12+9+12 \sqrt{3} \\
& =56=A^{2}
\end{aligned}
$$

Ans. of Q.2:

(a) magnitude of total acceleration

$$
\vec{a}=\dot{v} \hat{\tau}+\frac{v^{2}}{R} \hat{n} \quad v=2 t^{2} \Rightarrow \dot{v}=4 t \Rightarrow a t t=1 s \quad v=2 m / s \& \dot{v}=4 m / s^{2}
$$

$$
a=\sqrt{\dot{v}^{2}+\frac{v^{4}}{R^{2}}}=\sqrt{4^{2}+\frac{2^{4}}{2^{2}}}=\sqrt{16+4}=\sqrt{20}=4.47 \mathrm{~m} / \mathrm{s}^{2}
$$

(b)

Velocity in Polar Coordinates

$$
\begin{aligned}
& \text { The instantaneous velocity is defined as: } \\
& \qquad \overrightarrow{\mathbf{v}}=\frac{d \vec{r}}{d t}=\frac{d}{d t}(r \hat{\mathbf{r}})=\dot{r} \dot{\mathbf{r}}+r\left(\frac{d \hat{\mathbf{r}}}{d t}=\dot{\theta} \hat{\theta}\right.
\end{aligned}
$$

Thus, the velocity vector has two components:

$$
\overline{\mathbf{v}}=\overline{\mathbf{v}}_{r}+\overline{\mathbf{v}}_{\theta}=\mathbf{v}_{r} \hat{r}+\mathbf{v}_{\theta} \hat{\theta}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}
$$

where
$\mathbf{v}_{r}=\dot{r} \quad$...Radial component of velocity
$\mathbf{v}_{\theta}=r \dot{\theta} \ldots$ Transverse component of velocity

The speed of the particle at any given instant is the sum of the squares of both components or:

Acceleration in Polar Coordinates

The instantaneous acceleration is defined as:
$\bar{a}=\frac{d \overline{\mathbf{v}}}{d t}=\frac{d}{d t}(i \hat{r}+r \dot{\theta} \hat{\theta})=\ddot{r} \hat{r}+\dot{r} \frac{d \hat{r}}{d t}+\frac{d(r \dot{\theta})}{d t} \hat{\theta}+r \dot{\theta}\left(\frac{d \theta}{d t}\right)$
After manipulation, the acceleration can bee)

$$
\bar{a}=\vec{a}_{r}+\bar{a}_{\theta}=a_{r} \hat{r}+a_{\theta} \hat{\theta}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta}
$$

where $a_{r}=\ddot{r}-r \dot{\theta}^{2}$...Radial acceleration
$a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \quad$...Transverse acceleration

- $r=$ constant (i.e. stone on a string): $\bar{a}=-r \dot{\theta}^{2} \hat{r}+r \ddot{\theta} \hat{\theta}=-r \omega^{2} \hat{r}+r \alpha \hat{\theta}$ Here, $a_{y}=-r \omega^{2}=-v^{2} / r$ is the centripetal acceleration and $a_{\theta}=r \alpha$ is any angular acceleration.
- When r is not constant, all terms are necessary.
= In general, the magnitude of total acceleration is: $a=\sqrt{a_{r}^{2}+a_{\theta}^{2}}=\sqrt{\left(\ddot{r}-r \dot{\theta}^{2}\right)^{2}+(r \ddot{\theta}+2 \dot{r} \dot{\theta})^{2}} \quad{ }^{2 \theta}$

Ans. of Q.3:

Energy Consideration in SHM

$$
x=x_{m} \cos (\omega t+\phi) \quad \dot{x}=-x_{m} \omega \sin (\omega t+\phi)
$$

1.The potential energy

$$
\begin{aligned}
& V=-\int F(x) d x=-\int-k x d x=\frac{1}{2} k x^{2} \\
& V=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{m}^{2} \cos ^{2}(\omega t+\phi)
\end{aligned}
$$

2.The kinetic energy

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{x}^{2}=\frac{1}{2} m \omega^{2} x_{m}{ }^{2} \sin ^{2}(\omega t+\phi) \\
& =\frac{1}{2} k x_{m}{ }^{2} \sin ^{2}(\omega t+\phi)
\end{aligned}
$$

3. The total energy is

$$
E=T+V=\frac{1}{2} k x_{m}^{2}=\frac{1}{2} k A^{2}=\text { const. }
$$

46

$$
\begin{array}{rlrl}
F(x) & =-\frac{d V(x)}{d x}=-k x & \begin{array}{l}
T_{0}=T(x)+V(x) \\
T(x)=T_{0}-V(x)=\frac{1}{2} k(A
\end{array} \\
V(x) & =\int_{0}^{x} k x d x=\frac{1}{2} k x^{2} & 0.5 \underbrace{0.6}_{0} \\
E & =T_{0}=\frac{1}{2} k A^{2} & 0.2
\end{array}
$$

Ans. of Q.4:

(a)

Ex.9: A block is projected with initial velocity V_{o} on a smooth horizontal plane, but that there is air resistance proportional to $v: F(v)=-c v$, where c is constant. Find: $v(t), x(t)$ and $v(x) . \quad F(v)=-c v=m a \longrightarrow a=-k v \quad(k=c / m)$ Determine the velocity in terms of t.

$$
\begin{aligned}
& a=\frac{d v}{d t}=-k v \Rightarrow \frac{d v}{v}=-k d t \\
& \Rightarrow \int_{v_{0}}^{v} \frac{d v}{v}=-k \int_{0}^{\mathrm{v}} d t \\
& \ln \left(\frac{v}{v_{0}}\right)=-k t \Rightarrow v=v_{0} e^{-k t}
\end{aligned}
$$

Determine the x in terms of t.
$v=\frac{d x}{d t}=v_{0} e^{-k t} \Rightarrow d x=v_{0} e^{-k t} d t$
$\Rightarrow \int_{0}^{x} d x=\int_{0}^{t} v_{0} e^{-k t} d t$

$x=-\frac{v_{0}}{k}\left[e^{-k t}\right]_{0}^{t}=\frac{v_{0}}{k}\left[1-e^{-k t}\right]$

Determine the v in terms of x.
$a=\frac{d v}{d x} \frac{d x}{d t}=-k v \Rightarrow v \frac{d v}{d x}=-k v$
$\Rightarrow \int_{v_{0}}^{v} d v=-k \int_{0}^{\mathrm{x}} d x$
$v=v_{0}-k x$
\qquad $v=v(x)=d x / d t$

$v=v_{0}-k x$
\rightarrow
(B) Choose the correct answer:
(i) What is the magnitude of the free-fall acceleration at a point that is a distance $2 R_{e}$ above the surface of the Earth, where R_{e} is the radius of the Earth:

$$
\left(9.8 \mathrm{~m} / \mathrm{s}^{2}, 4.9 \mathrm{~m} / \mathrm{s} 2,2.45 \mathrm{~m} / \mathrm{s}^{2}, 1.09 \mathrm{~m} / \mathrm{s}^{2}\right. \text {, None of them) }
$$

(ii) For an object falling from rest with linear drag. At what time the speed of the article is at 99.3% of terminal speed? $\quad(t=3 \tau, t=4 \tau, t=5 \tau, t=10 \tau$, None of them)
(iii) What is the natural frequency for damping harmonic oscillator when the damping constant $\left(\beta=\omega_{0} / 2\right) ? \quad\left(\omega_{0}, \frac{\omega_{0}}{2}, \omega_{\circ} \sqrt{\frac{3}{4}}, \omega_{0} \sqrt{\frac{15}{16}}\right.$, None of them $)$

