

Subject: Analytical Mechanics

Department of Mathematics $3^{\text {rd }}$ Stage
First Semester 2021-2022

Period: 2 hours
Date: June 2021
Final Examination
Second Trial
Q.1/ Express the vector $\vec{A}=4 \hat{\imath}-2 \hat{\jmath}$ in terms of the triad $\hat{\imath}^{\prime}, \hat{\jmath}^{\prime}$ for rotation of the coordinate system through an angle 60°. What are the properties of the obtained rotation (transformation) matrix?
[15 Marks]
Q.2/ [5+5+5 Marks]
(a) Define position vector and displacement of a particle.
(b) What is the corresponding point of $(1,1,1)$ in cylindrical coordinates?
(c) What are the tangent and normal components of acceleration in n - t coordinates?
Q.3/ For harmonic oscillator system with: $\boldsymbol{F}(\boldsymbol{x})=-\boldsymbol{k} \boldsymbol{x}$:
[15 Marks]
(i) What is the solution of the system?
(ii) Plot the graph of the position, velocity and acceleration as a function of time t.
(iii) What are the potential energy, total energy and kinetic energy for a system?
(iv) Plot the graph of the energies of (iii) as a function of time t.
Q.4/ [5+5+5 Marks]
(A) Given the velocity of a particle in rectilinear motion varies with the displacement x according to the equation: $x=v(x)=\frac{\alpha}{x}$ where α is a positive constant. Find the force acting on the particle as a function of x ?
(B) What is the Mean life time in damping harmonic oscillator?
(C) For variation of gravity with height: What is the magnitude of the free-fall acceleration at a point that is a distance R_{e} above the surface of the Earth, where R_{e} is the radius of the Earth?

Ans. of Q.1:

$$
\left[\begin{array}{l}
A_{1}^{\prime} \\
A_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\hat{i} \cdot \hat{i}^{\prime} & \hat{j} \cdot \hat{i}^{\prime} \\
\hat{i} \cdot \hat{j}^{\prime} & \hat{j} \cdot \hat{j}^{\prime}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right]
$$

$\left[\begin{array}{l}A_{1}^{\prime} \\ A_{2}^{\prime}\end{array}\right]=\left[\begin{array}{lc}\cos 60 & \cos \left(\frac{\pi}{2}-60\right) \\ \cos \left(\frac{\pi}{2}+60\right) & \cos 60\end{array}\right]\left[\begin{array}{l}4 \\ -2\end{array}\right]$
$\left[\begin{array}{l}A_{1}^{\prime} \\ A_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}\cos 60 & \sin 60 \\ -\sin 60 & \cos 60\end{array}\right]\left[\begin{array}{l}4 \\ -2\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{l}4 \\ -2\end{array}\right]=\left[\begin{array}{l}2-\sqrt{3} \\ -2 \sqrt{3}-1\end{array}\right]=\left[\begin{array}{l}0.268 \\ -4.464\end{array}\right]$

$$
\vec{A}=A_{1}^{\prime} \hat{i}^{\prime}+A_{2}^{\prime} \hat{j}^{\prime} \quad \vec{A}=(2-\sqrt{3}) \hat{i}^{\prime}+(-2 \sqrt{3}-1) \hat{j}^{\prime}
$$

Properties of transformation matrix

1- Magnitude of the vectors: Invariant under a rotation:

$$
\begin{aligned}
& |T \vec{A}|=|\vec{A}|=A=\sqrt{A_{1}^{2}+A_{2}^{2}}=\sqrt{A_{1}^{\prime 2}+A_{2}^{\prime 2}}=\ldots \\
& \begin{array}{rlr}
A^{2}= & (2-\sqrt{3})^{2}+(-2 \sqrt{3}-1)^{2} & A^{2}=(4)^{2}+(-2)^{2} \\
& =4+3-4 \sqrt{3}+12+1+4 \sqrt{3}=20 & \\
=16+4=20
\end{array}
\end{aligned}
$$

2- T for a reverse rotation $(-\Theta)=\tilde{T}$ (Transpose of T):

$$
T(-\theta)=\left[\begin{array}{ll}
\cos (-\theta) & \sin (-\theta) \\
-\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\tilde{T} \quad \tilde{T}=\left[\begin{array}{ll}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

3- $\tilde{T} T=I$, where l is the identity operator: $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{ll}\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\ \sin \theta \cos \theta-\cos \theta \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$

$$
\tilde{T} T=\left[\begin{array}{ll}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Ans. of Q.2:

(a)

Position Vectors: A position vector is always measured from the ORIGIN.
Displacement: A change in position is called a displacement. The displacement vector is typically written as $\Delta \vec{r}$

- A displacement vector is always measured from the tip of the initial position vector to the tip of the final position vector.
- A person starts at position 1 and ends at position 2, what is their displacement? $\Delta \overrightarrow{\mathrm{r}}=\vec{r}_{2}-\vec{r}_{1}$

(b)

Ex.: What is the corresponding point of $(1,1,1)$ in Cylindrical Coordinates.

Sol.:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}(1)=45 \\
& z=z=1
\end{aligned}
$$

Thus, the corresponding point in Cylindrical Coordinates is: $(\sqrt{2}, 45,1)$

Ex.: What is the corresponding point of $\left(\sqrt{2}, 45^{\circ}, 1\right)$ in Cartesian Coordinates.
(H.W.)
(c) What are the tangent and normal components of acceleration in $n-t$ coordinates?

Acceleration in the (n-t) Coordinate System

Acceleration is the time rate of change of velocity:

$$
\bar{a}=\frac{d \bar{v}}{d t}=\frac{d}{d t}(v \hat{t})=\hat{\nu} \hat{t}+v\left(\frac{d \hat{\tau}}{d t}\right)
$$

Here \dot{v} represents the change in the magnitude of velocity and $\frac{d \hat{t}}{d t}$ represents the rate of change in the direction of $\hat{\tau}$.
$|\Delta \hat{\tau}|=2 \sin (\Delta \theta / 2)$

There are two components to the acceleration vector
$\bar{a}=\dot{v} \hat{\imath}+\frac{v^{2}}{\rho} \hat{n}=a_{t} \hat{\imath}+a_{n} \hat{n}$

$$
\bar{a}=\bar{a}_{t}+\bar{a}_{n}
$$

- The tangential component is tangent to the curve and in the direction of increasing or decreasing velocity.

$$
a_{t}=v \quad \text { or } \quad a_{t} d s=v d v
$$

- The normal or centripetal component is always directed toward the center of curvature of the curve. $\quad a_{n}=v^{2} / \rho$
- The magnitude of the acceleration vector is

$$
\mathrm{a}=\left[\left(\mathrm{a}_{\mathrm{t}}\right)^{2}+\left(\mathrm{a}_{\mathrm{n}}\right)^{2}\right]^{1 / 2}
$$

Ans. of Q.3:

$$
\begin{aligned}
& 2^{\text {nd }} \text { way Let the trial solution of } \mathrm{Eq}(1) \text { is } x=e^{q t} \\
& \text { Then: } \dot{x}=q e^{q t} \quad \& \ddot{x}=q^{2} e^{q t}
\end{aligned} \ddot{x+\frac{k}{m} x=0}
$$

Substituting into Eq.(1), we obtain:

$$
\begin{aligned}
& \left(q^{2}+\frac{k}{m}\right) e^{q t}=0 \rightarrow e^{q t} \neq 0 \Rightarrow \therefore\left(q^{2}+\frac{k}{m}\right)=0 \quad \therefore q= \pm \sqrt{-\frac{k}{m}}= \pm i \omega \\
& \text { Thus, there are two solutions of Eq(1): } \quad e^{+i \omega t} \& e^{-i \omega t}
\end{aligned}
$$

The general solution is a linear combination of them:

$$
\begin{gathered}
x=A_{1} e^{i \omega x}+A_{2} e^{-i \omega x} \\
\text { Or } x=A \cos (\omega t+\phi) \rightarrow x=x_{m} \cos (\omega t+\phi) \\
\text { where } \quad \omega=\sqrt{\frac{k}{m}} \text { is the angular frequency of the motion }
\end{gathered}
$$

Energy Consideration in SHM

$$
x=x_{m} \cos (\omega t+\phi) \quad \dot{x}=-x_{m} \omega \sin (\omega t+\phi)
$$

1.The potential energy

$$
\begin{aligned}
& V=-\int F(x) d x=-\int-k x d x=\frac{1}{2} k x^{2} \\
& V=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{m}^{2} \cos ^{2}(\omega t+\phi)
\end{aligned}
$$

2. The kinetic energy
$T=\frac{1}{2} m \dot{x}^{2}=\frac{1}{2} m \omega^{2} x_{m}{ }^{2} \sin ^{2}(\omega t+\phi)$ $=\frac{1}{2} k x_{m}{ }^{2} \sin ^{2}(\omega t+\phi)$
3. The total energy is
 $E=T+V=\frac{1}{2} k x_{m}^{2}=\frac{1}{2} k A^{2}=$ const.

Ans. of Q.4:

(A)
P.A1: Given the velocity of a particle in rectilinear motion varies with the displacement x according to the equation:

$$
\dot{x}=v(x)=\frac{\alpha}{x}
$$

where a is a positive constant. Find the force acting on the particle as a function of x.

$$
\begin{aligned}
F=m \ddot{x} & =m \dot{x} \frac{d \dot{x}}{d x} \\
& =m \frac{\alpha}{x}\left(-\alpha x^{-2}\right)=-\frac{m \alpha^{2}}{x^{3}}
\end{aligned}
$$

P.4: Solve the above Problem for: $\quad \dot{x}=v(x)=\frac{\alpha}{x^{3}}$
H.W
H.W
(B)

Ex. What is the Mean life time in DHO?

When we add a small damping force, the amplitude gradually decreases to zero but the frequency changes by a negligible amount. In this case:

$$
x(t)=A e^{-\beta} \cos (\omega t+\phi)=A e^{-t / \tau} \cos (\omega t+\phi)
$$

where τ is called the "damping time constant" or the "mean life time" of the oscillator:

$$
\tau=\frac{1}{\beta}=\frac{2 m}{c}
$$

τ is the time necessary for the amplitude to drop to $1 / e$ of its initial value.

Consider an object of mass m at a height h above the Earth's surface.

$$
F=-G \frac{m M_{E}}{r^{2}}=-G \frac{m M_{E}}{\left(R_{E}+h\right)^{2}}
$$

Acceleration g due to the gravity is:

$$
F=-G \frac{m M_{E}}{\left(R_{E}+h\right)^{2}}=-m g
$$

g will vary with altitude (height):

$$
g=G \frac{M_{E}}{\left(R_{E}+h\right)^{2}}
$$

