

Subject: Mechanical Analysis
Period: 60 Minutes
Date: 28 April 2022
First Examination
Second Semester 2021-2022
Q.1/ Is the force field $\vec{F}=-(2 a x+b y) \hat{\imath}-(b x+2 c y) \hat{\jmath}$ conservative? If it is conservative find the corresponding potential energy function.
[12 Marks]
Q.2/ Write the differential equation of the following:
[12 Marks]
i) Differential equation for constrained motion of a particle.
ii) Differential equation for projectile motion with quadratic air resistance.
iii) Differential equation for motion of the charged particle in electromagnetic field.
iv) Differential equation for motion of the particle on the curve.
Q.3/ Consider a particle sliding under gravity in a smooth cycloidal trough, represented by the parametric equation:

$$
x=A(2 \theta+\sin 2 \theta) \quad \text { where } A \text { is constant and } \theta \text { is the parameter. }
$$

Show that the particle undergoes simple harmonic motion.
[12 Marks]

Ans. of Q.1:

$$
\begin{aligned}
\vec{F} & =-(2 a x+b y) \hat{i}-(b x+2 c y) \hat{j} \\
& \stackrel{\rightharpoonup}{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-(2 a x+b y) & -(b x+2 c y) & 0
\end{array}\right|=\hat{i}(0+0)+\hat{j}(0-0)+\hat{k}(-b+b)=0
\end{aligned}
$$

The force is conservative and there is a potential energy function such that: $\vec{F}=-\vec{\nabla} V$

$$
\begin{aligned}
& F_{x}=-\frac{\partial V}{\partial x} \Rightarrow V(y, z)=-\int F_{x} d x=\int(2 a x+b y) d x=a x^{2}+b x y+c 1 \\
& F_{y}=-\frac{\partial V}{\partial y} \Rightarrow V(x, z)=-\int F_{y} d y=\int(b x+2 c y) d y=b x y+c y^{2}+c 2 \\
& F_{z}=-\frac{\partial V}{\partial z} \Rightarrow V(x, y)=-\int F_{z} d z=0+c 3
\end{aligned}
$$

Thus, the potential energy is the combination of the potentials:

$$
V(x, y, z)=a x^{2}+b x y+c y^{2}+c
$$

Ans. of Q.2:

i) Differential equation for constrained motion of a particle.

$$
m \stackrel{\rightharpoonup}{a}=\vec{F}+\vec{R}
$$

ii) Differential equation for projectile motion with quadratic air resistance.

$$
m \ddot{\overrightarrow{\mathbf{r}}}=m \stackrel{\overrightarrow{\mathbf{g}}}{ }-c v^{2} \hat{\tau} \quad m \ddot{\overrightarrow{\mathbf{r}}}=m \stackrel{\rightharpoonup}{\mathbf{g}}-c v \stackrel{\rightharpoonup}{v}
$$

iii) Differential equation for motion of the charged particle in electromagnetic field.

$$
\vec{F}=m \vec{a}=m \frac{d \stackrel{\rightharpoonup}{\mathbf{v}}}{d t}=q(\overrightarrow{\mathbf{E}}+\stackrel{\rightharpoonup}{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
$$

iv) Differential equation for motion of the particle on the curve.

$$
F_{s}=m \ddot{s}=-\frac{d V(s)}{d s}
$$

Ans. of Q.3:

The Isochronous Problem

The differential equation of motion $F_{s}=m \ddot{s}=-m g \sin \theta$
If this equation represents SHM
we must have:
$m \ddot{s}=-k s$ or $s=c \sin \theta$
Now, we can find $x \& y$ in terms of θ, as follows:
$\frac{d x}{d \theta}=\frac{d x}{d s} \frac{d s}{d \theta}=\cos \theta(c \cos \theta)=c \cos ^{2} \theta$
$\frac{d y}{d \theta}=\frac{d y}{d s} \frac{d s}{d \theta}=\sin \theta(c \cos \theta)$
$\int_{0}^{d} d x=\int_{0}^{0} \cos ^{2} \theta d \theta \& \int_{0}^{0} d y=\int_{0}^{0} c \sin \theta \cos \theta d \theta$

$x=A(2 \theta+\sin 2 \theta)$
$\frac{d x}{d \theta}=\frac{d x}{d s} \frac{d s}{d \theta} \quad \longrightarrow \quad 2 A+2 A \cos 2 \theta=\cos \theta \frac{d s}{d \theta}$
$2 A(1+\cos 2 \theta)=\cos \theta \frac{d s}{d \theta} \longrightarrow 4 \operatorname{Acos}^{2} \theta=\cos \theta \frac{d s}{d \theta}$
$\frac{d s}{d \theta}=4 A \cos \theta \quad \longrightarrow \int_{0}^{s} d s=\int_{0}^{\theta} 4 A \cos \theta d \theta$
$s=4 A \sin \theta=c \sin \theta \quad$ where $c=4 A$

