Ministry of Hígher Education \& Scientific Research
University of Salahaddin-Erbil College of Science Department of $\mathcal{P h y s i c s}$ $2^{\text {nd }}$ Year $\mathcal{P h y s i c s}$

Subject: Anafytical Mechanics

Chapter 5:

Dynamics of a System of Particles

Asst. Prof. Dr. Tahseen G. Abdullah

System of Particle

- Definition:

Consider a system consisting of N particles of masses $m_{1}, m_{2}, \ldots, m_{N}$. The total mass of the system is

$$
m=\sum m_{n}
$$

Each particle can be represented by its location \vec{r}_{n}, velocity \vec{v}_{n} and its acceleration \vec{a}_{n}.

- We can see that a system of particles behaves a lot like a particle itself
- It has a mass, position (center of mass), momentum, velocity, acceleration, and it responds to forces:

$$
\vec{p}=\sum \vec{p}_{n}
$$

- We can also define it's angular momentum, moment of the force and kinetic energy:

$$
\left.\begin{array}{rl}
\vec{L} & =\sum\left(\stackrel{\mathbf{r}}{n} \times \vec{p}_{n}\right) \\
\overrightarrow{\boldsymbol{\tau}} & =\sum^{N}\left(\stackrel{\rightharpoonup}{\mathbf{r}}_{n} \times \vec{F}_{n}\right)
\end{array}\right\} \quad \vec{\tau}=\sum \vec{\tau}_{i}=\frac{d \stackrel{\rightharpoonup}{L}}{d t}
$$

- Position of the Center of Mass:

The cm of the system can be defined by
$\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\ldots \ldots+m_{N} \vec{r}_{N}}{m_{1}+m_{2}+\ldots \ldots .+m_{N}}=\frac{\sum_{n=1} m_{n} \vec{r}_{n}}{m}$
In terms of components, Eq(1) can be written as

$$
x_{c m}=\frac{1}{m} \sum m_{n} x_{n}
$$

$$
y_{c m}=\frac{1}{m} \sum m_{n} y_{n}
$$

where $x_{n}, y_{n} \& z_{n}$ are the coordinates of the nth particle.

$$
z_{c m}=\frac{1}{m} \sum m_{n} z_{n}
$$

Taking the derivative of the cm

$$
\bar{v}_{m n}=\frac{1}{m} \sum^{m_{n} \bar{v}_{n}}
$$

......Velocity of the cm
Differentiating once again:
$\vec{a}_{c m}=\frac{1}{m} \sum m_{n} \bar{a}_{n} \quad$.....Acceleration of the cm
Or

$$
m \vec{a}_{c m}=\sum m_{n} \vec{a}_{n}=\stackrel{\rightharpoonup}{F}_{1}+\stackrel{\rightharpoonup}{F}_{2}+\cdots+\stackrel{\rightharpoonup}{F}_{N}
$$

By Newton's third law, the vector sum of all the internal forces is cancelled, and

$$
\sum \stackrel{\rightharpoonup}{F}_{e x t}=m \vec{a}_{c m}
$$

This Eq. is just the Newton's second law for the system of N particles treated as a single particle of mass m located at the center of mass $\left(\vec{r}_{e m}\right)$, experiencing $\vec{a}_{c m}$.
The mass center moves as if the entire mass and all of the external forces were concentrated at that point.

Example: System of two particles.

$$
\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \stackrel{\rightharpoonup}{r}_{2}}{m_{1}+m_{2}}
$$

or written as:

$$
\left\{\begin{array}{l}
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}}
\end{array}\right.
$$

The velocity and acceleration of the cm are:

$$
\stackrel{\rightharpoonup}{v}_{c m}=\frac{d \vec{r}_{c m}}{d t}=\frac{m_{1} \stackrel{\rightharpoonup}{v}_{1}+m_{2} \stackrel{\rightharpoonup}{v}_{2}}{m_{1}+m_{2}} \quad \vec{a}_{c m}=\frac{d \stackrel{\rightharpoonup}{v}_{c m}}{d t}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}
$$

Suppose there is an external force on each particle in above expt., then

$$
m_{1} \overrightarrow{a_{1}}+m_{2} \overrightarrow{a_{2}}=\sum \overrightarrow{F_{1}}+\sum \overrightarrow{F_{2}}=\overrightarrow{F_{1 e x t}}+\vec{F}_{12}+\overrightarrow{F_{2 e x t}}+\overrightarrow{F_{21}}
$$

$\because \overrightarrow{F_{12}}+\overrightarrow{F_{21}}=0$, and if write $\sum \overrightarrow{F_{1 e x t}}+\sum \overrightarrow{F_{2 e x t}}=\sum \overrightarrow{F_{e x t}}$
$\square m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}=\sum \vec{F}_{e x t}$

$$
\left(\vec{a}_{c m}=\frac{m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}}{m_{1}+m_{2}}\right)
$$

$$
\sum \vec{F}_{e x t}=\left(m_{1}+m_{2}\right) \vec{a}_{c m}
$$

Newton's second law for system of two particles

This looks very like a particle of mass $m_{1}+m_{2}$ located at the center of mass.

- Linear Momentum of the system:

For a system containing N particles, the total linear momentum is:

$$
\stackrel{\rightharpoonup}{P}=\sum_{n=1}^{N} \stackrel{\rightharpoonup}{P}_{n}=\sum_{n=1}^{N} m_{n} \stackrel{\rightharpoonup}{v}_{n}=m \sum_{n=1}^{N} \frac{m_{n} \stackrel{\rightharpoonup}{v}_{n}}{m}=m \stackrel{\rightharpoonup}{v}_{c m}
$$

That is, the total linear momentum of a system of particles is the total mass times the velocity of center of mass.
Differentiating w.r.t time, $\quad \frac{d \vec{P}}{d t}=m \frac{d \vec{\nu}_{c m}}{d t}=m \vec{a}_{c m}=\sum \vec{F}_{e x t}$ That is, the rate of change of total momentum is the net external force acting on the system.
If the net external force acting on a system is zero ($\frac{d \bar{P}}{d t}=\mathrm{O}$) and so the total linear momentum \vec{P} of the system remains constant.

- Linear Momentum of the system from the cm frame

If we view the system from the cm frame, the velocity $\vec{v}_{n}{ }^{\prime}$ of a particle in this frame is

$$
\begin{array}{ll}
\vec{v}_{n}^{\prime}=\left(\vec{v}_{n}-\vec{v}_{c m}\right) & \vec{v}_{1}^{\prime}=\left(\vec{v}_{1}-\vec{v}_{c m}\right) \\
\vec{v}_{2}^{\prime}=\left(\vec{v}_{2}-\vec{v}_{c m}\right)
\end{array} \ldots \vec{v}_{N}^{\prime}=\left(\vec{v}_{N}-\vec{v}_{c m}\right)
$$

$\vec{v}_{n} \Rightarrow$ Velocity of particle n relative to the origin
$\vec{v}_{n}^{\prime} \quad$ Velocity of particle n relative to the cm
Then in this cm frame, the total momentum is
$\bar{P}=\sum_{n=1}^{N} m_{n} \bar{v}_{n}^{\prime}=\sum_{n=1}^{N} m_{n} \bar{v}_{n}-\sum_{n=1}^{N} m_{n} \bar{v}_{\text {con }}$
$=m \stackrel{\rightharpoonup}{v}_{c m}-m \stackrel{\rightharpoonup}{v}_{c m}=0$

- Newton's $2^{\text {nd }}$ Law \& Internal Forces

- If forces are generated within the particle system (say from gravity, or springs connecting particles) they must obey Newton's Third Law (every action has an equal and opposite reaction)
- This means that internal forces will balance out and have no net effect on the total momentum of the system
- As those opposite forces act along the same line of action, the torques on the center of mass cancel out as well
- In the absence of interaction among the particles, the problem is rather simple.
- One can solve the motion of each particle of the system separately.
- In the presence of interaction, the motion of the system gets enormously complicated
- With gravitational interaction, the motion of a three-body system in unsolvable.

Internal forces: $\quad \vec{F}_{12}, \vec{F}_{32}$ etc.
External forces: The weights of the particles

$$
\vec{F}_{1}, \vec{F}_{2} \& \vec{F}_{3}
$$

Application of Newton's Laws. Effective Forces

- Newton's second law for each particle P_{i} in a system of N particles,

$$
\begin{aligned}
& \vec{F}_{i}+\sum_{j=1}^{N} \vec{F}_{i j}=m_{i} \vec{a}_{i} \\
& \vec{r}_{i} \times \vec{F}_{i}+\sum_{j=1}^{N}\left(\vec{r}_{i} \times \vec{F}_{i j}\right)=\vec{r}_{i} \times m_{i} \vec{a}_{i}
\end{aligned}
$$

$\vec{F}_{i}=$ external force $\quad \vec{F}_{i j}=$ internal forces $m_{i} \vec{a}_{i}=$ effective force

The system of external and internal forces on a particle is equivalent to the effective force of the particle.

- The system of external and internal forces acting on the entire system of particles is equivalent to the system of effective forces.
- Summing over all the elements,

- Since the internal forces occur in equal and opposite collinear pairs, the resultant force and couple due to the internal forces are zero,

$$
\begin{aligned}
& \sum \vec{F}_{i}=\sum m_{i} \vec{a}_{i} \\
& \sum\left(\vec{r}_{i} \times \vec{F}_{i}\right)=\sum\left(\vec{r}_{i} \times m_{i} \vec{a}_{i}\right)
\end{aligned}
$$

- The system of external forces and the system of effective forces are equipollent by not equivalent.
- Angular Momentum for a System
- To calculate the total angular momentum of a system of particle about a given point, we must add vectorially the angular momenta of all the individual particles about this point:

$$
\begin{aligned}
\stackrel{\rightharpoonup}{L} & =\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \vec{v}_{i}\right) \\
\frac{d \stackrel{\rightharpoonup}{L}}{d t} & =\sum_{i=1}^{N}\left(\dot{\vec{r}}_{i} \times m_{i} \vec{v}_{i}\right)+\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \dot{\vec{v}}_{i}\right)=\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \vec{a}_{i}\right) \\
& =\sum_{i=1}^{N} \vec{r}_{i} \times\left(\vec{F}_{i}+\sum_{j=1}^{N} \vec{F}_{i j}\right)=\sum_{i=1}^{N} \vec{r}_{i} \times \vec{F}_{i}+\sum_{i=1}^{N} \sum_{j=1}^{N} \vec{r}_{i} \times \vec{F}_{i j}
\end{aligned}
$$

- Moment resultant about fixed point O of the external forces is equal to the rate of change of angular momentum of the system of particles,

$$
\bar{\tau}=\sum \bar{\tau}_{i}=\frac{d \vec{L}}{d t}
$$

- For isolated system, the angular momentum remains constant in both magnitude and direction (Conservation of Angular Momentum).

Example: Show that the angular momentum for a system is:

$$
\vec{L}=\left(\vec{r}_{c m} \times m \vec{v}_{c m}\right)+\sum_{i=1}^{N}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}^{\prime}\right)
$$

The angular momentum of the system of particles is: We can express each position vector in the form:

$$
\vec{L}=\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \vec{v}_{i}\right)
$$

$\vec{r}_{i}=\vec{r}_{i}{ }^{\prime}+\vec{r}_{c m}$

Differentiating w.r.t time, $\quad \vec{v}_{i}=\vec{v}_{i}{ }^{\prime}+\vec{v}_{c m}$ $\vec{r}_{i} \& \vec{v}_{i}$ are position \& velocity of particle i relative to the origin
$\vec{r}_{i}^{\prime} \& \vec{v}_{i}^{\prime}$ are position \& velocity of particle i relative to the cm
$\vec{L}=\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \vec{v}_{i}\right)=\sum_{i=1}^{N}\left[\left(\vec{r}_{i}^{\prime}+\vec{r}_{c m}\right) \times m_{i}\left(\vec{v}_{i}^{\prime}+\vec{v}_{c m}\right)\right]$
$=\sum_{i=1}^{N}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}^{\prime}\right)+\sum_{i=1}^{N}\left(\vec{r}_{c m} \times m_{i} \vec{v}_{c m}\right)+\sum_{i=1}^{N}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{c m}\right)+\sum_{i=1}^{N}\left(\vec{r}_{c m} \times m_{i} \vec{v}_{i}^{\prime}\right)$
$=\sum_{i=1}^{N}\left(\vec{r}_{i}^{\prime} \times m_{i} \vec{v}_{i}^{\prime}\right)+\left(\vec{r}_{c m} \times m \bar{v}_{c m}\right)+\sum_{i=1}^{N}\left(m_{i} \vec{r}_{i}^{\prime}\right) \times \vec{v}_{c m}+\vec{r}_{c m} \times \sum_{i=1}^{N}\left(m_{i} \vec{v}_{i}^{\prime}\right)$

Angular momentum of the motion of cm (Orbital Part)

Angular momentum 听 the motion about the cm (Spin Part)

- Kinetic Energy for a System
- Kinetic energy of a system of particles,

$$
T=\sum_{i=1}^{N} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(\vec{v}_{i} \bullet \vec{v}_{i}\right)
$$

- Expressing the velocity in terms of the cm frame,

$$
\begin{aligned}
T & =\frac{1}{2} \sum_{i=1}^{N}\left[m_{i}\left(\vec{v}_{c m}+\vec{v}_{i}^{\prime}\right) \bullet\left(\vec{v}_{c m}+\vec{v}_{i}^{\prime}\right)\right] \\
& =\frac{1}{2}\left(\sum_{i=1}^{N} m_{i}\right) v_{c m}^{2}+\vec{v}_{c m} \cdot \sum_{i=1}^{N} m_{i} \vec{v}_{i}^{\prime}+\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{\prime 2}
\end{aligned}
$$

$$
=\frac{1}{2} m v_{c m}^{2}+\sum^{N} \frac{1}{2} m_{i} v_{i}^{\prime 2} \quad \text { Kinetic energy is equal to kinetic energy of mass }
$$

Kinetic energy of translation of the cm relative to the origin.

Kinetic energy of motion of the individual particles relative to the cm .

- Relative motion and reduced mass

The relative motion of two particles subject only to their mutual interaction is equivalent to the motion, relative to an inertial observer, of a particle of mass equal to to the reduced mass under a force equal to their interaction.

$$
\begin{array}{ll}
\text { Proof: } \left.\begin{array}{l}
\frac{d \overrightarrow{\mathbf{v}}_{1}}{d t}=\frac{\vec{F}_{12}}{m_{1}} \\
\frac{d \overrightarrow{\mathbf{v}}_{2}}{d t}=\frac{\overrightarrow{\boldsymbol{F}}_{21}}{m_{2}}
\end{array}\right\} \overrightarrow{\mathbf{F}}_{12}=-\overrightarrow{\mathbf{F}}_{21}, \frac{\mathrm{~d}}{\mathrm{dt}}\left(\overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}\right)=\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \overrightarrow{\mathbf{F}}_{12} \\
\text { with } \overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}=\overrightarrow{\mathbf{v}}_{12} \text { and } \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}, \mu \text { : reduced mass }
\end{array}
$$

Example: sun and eath isolated or earth and moon (isolated...)

- Motion of Two Interacting Bodies. Two Body Problem

Let us consider the motion of a system consisting of two bodies that interact with one another by a central force.
For isolated system:
$\vec{v}_{c m}=$ const. i.e. center of mass moves with constant velocity

$$
\stackrel{\rightharpoonup}{r}_{c m}=\frac{1}{m} \sum_{i=1}^{2} m_{i} \stackrel{\rightharpoonup}{r}_{i}=\frac{m_{1} \vec{r}_{1}+m_{2} \stackrel{\rightharpoonup}{r}_{2}}{m_{1}+m_{2}}
$$

For simplicity we take the cm at the origin:

$$
\begin{array}{lr}
\vec{r}_{c m}=0 & m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}=0 \\
m_{1} \vec{r}_{1}^{\prime}+m_{2} \vec{r}_{2}^{\prime}=0 & \vec{r}_{2}^{\prime}=-\frac{m_{1}}{m_{2}} \vec{r}_{1}^{\prime}
\end{array}
$$

The position vector of particle1 relative to particle 2 is:

$$
\begin{aligned}
& \vec{R}=\vec{r}_{1}^{\prime}-\vec{r}_{2}^{\prime}=\vec{r}_{1}^{\prime}\left(1+\frac{m_{1}}{m_{2}}\right)=\vec{r}_{1}^{\prime}\left(\frac{m_{1}+m_{2}}{m_{2}}\right) \\
& \vec{r}_{1}^{\prime}=\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \vec{R} \Rightarrow \ddot{\vec{r}}_{1}^{\prime}=\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \ddot{\vec{R}}
\end{aligned}
$$

$$
\vec{r}_{1}=\vec{r}_{1}^{\prime}
$$

The differential equation of motion of particle1 relative to the center of mass is given by Newton's $2^{\text {nd }}$ law:

$$
m_{1} \ddot{\vec{r}}_{1}^{\prime}=\vec{F}_{1}=f(R) \frac{\vec{R}}{R} \quad \frac{m_{1} m_{2}}{m_{1}+m_{2}} \ddot{\vec{R}}=f(R) \frac{\vec{R}}{R}
$$

or

$$
\mu \ddot{\vec{R}}=f(R) \frac{\stackrel{\rightharpoonup}{R}}{R}
$$

(Motion of Central Field)
where

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \Rightarrow \ldots \text { is the reduced mass }
$$

$f(R) \Rightarrow$ is the magnitude of the mutual force between the two bodies. For two bodies attracting one another by gravitation, we have:

$$
\begin{aligned}
& \text { gravitation, we have: } \\
& f(R)=-G \frac{m_{1} m_{2}}{R^{2}} \Rightarrow \mu \ddot{\vec{R}}=-G \frac{m_{1} m_{2}}{R^{2}}\left(\frac{\vec{R}}{R}\right)
\end{aligned}
$$

This is the same as the equation of a single particle in an (Inverse-Square-Central field)
P.7.1: A system consists of three particles, each of unit mass, with positions and velocities as follows:

$$
\begin{array}{ll}
\vec{r}_{1}=\hat{i}+\hat{j} & \vec{v}_{1}=2 \hat{i} \\
\vec{r}_{2}=\hat{j}+\hat{k} & \vec{v}_{2}=\hat{j} \\
\vec{r}_{3}=\hat{k} & \vec{v}_{3}=\hat{i}+\hat{j}+\hat{k}
\end{array}
$$

Find the position and velocity of the center of mass. Find also the linear momentum of the system.

$$
\text { Solution } \quad \vec{r}_{c m}=\frac{1}{m} \sum_{i} m_{i} \vec{F}_{i}
$$

$$
\vec{r}_{c m}=\frac{1}{3}\left(\vec{r}_{1}+\vec{r}_{2}+\vec{r}_{3}\right)=\frac{1}{3}(\hat{i}+\hat{j}+\hat{j}+\hat{k}+\hat{k})
$$

$$
\vec{r}_{c m}=\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})
$$

$$
\begin{gathered}
\vec{v}_{c m}=\frac{d}{d t} \vec{r}_{c m}=\frac{1}{3}\left(\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}\right)=\frac{1}{3}(2 \hat{i}+\hat{j}+\hat{i}+\hat{j}+\hat{k}) \\
\vec{v}_{c m}=\frac{1}{3}(3 \hat{i}+2 \hat{j}+\hat{k})
\end{gathered}
$$

$$
\stackrel{\rightharpoonup}{P}=\sum_{n=1}^{N} \stackrel{\rightharpoonup}{P}_{n}=\sum_{n=1}^{N} m_{n} \stackrel{\rightharpoonup}{v}_{n}=m \sum_{n=1}^{N} \frac{m_{n} \stackrel{\rightharpoonup}{v}_{n}}{m}=m \stackrel{\rightharpoonup}{v}_{c m}
$$

$$
\vec{p}=\sum_{i} m_{i} \vec{v}_{i}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}
$$

$$
\vec{p}=3 \hat{i}+2 \hat{j}+\hat{k}
$$

P.7.2: Find also from P.7.1: (a) Kinetic energy for a system (b) Kinetic energy of the center of mass relative to the origin and (c) Angular momentum of the system.
(a) $T=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}$

$$
T=\frac{1}{2}\left[2^{2}+1^{2}+\left(1^{2}+1^{2}+1^{2}\right)\right]=4
$$

(b)

$$
\vec{v}_{c m}=\frac{1}{3}(3 \hat{i}+2 \hat{j}+\hat{k})
$$

$$
\frac{1}{2} m v_{c m}^{2}=\frac{1}{2} \times 3 \times \frac{1}{9}\left(3^{2}+2^{2}+1^{2}\right)=2 \frac{1}{3}
$$

(c) $\vec{L}=\sum_{i=1}^{N}\left(\vec{r}_{i} \times m_{i} \vec{v}_{i}\right)$

$$
\begin{aligned}
& \vec{L}=[(\hat{i}+\hat{j}) \times 2 \hat{i}]+[(\hat{j}+\hat{k}) \times \hat{j}]+[\hat{k} \times(\hat{i}+\hat{j}+\hat{k})] \\
& \vec{L}=(-2 \hat{k})+(-\hat{i})+(\hat{j}-\hat{i})=-2 \hat{i}+\hat{j}-2 \hat{k}
\end{aligned}
$$

P.7.8: Show that the kinetic energy of a two particle system is equal to:

$$
T=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{2}
$$

Where $m=m_{1}+m_{2}, v$ is the related speed before collision and is μ the reduced mass. (H.W.)
P.7.11: Show that the angular momentum of a two particle system is equal to:

$$
\stackrel{\rightharpoonup}{L}=\left(\stackrel{\rightharpoonup}{r}_{c m} \times m \stackrel{\rightharpoonup}{v}_{c m}\right)+\stackrel{\rightharpoonup}{R} \times \mu \stackrel{\rightharpoonup}{v}
$$

Where $m=m_{1^{\prime}}+m_{2}$
\vec{R} is the relative position vector, μ is the reduced mass and \vec{v} is the relative velocity of the two particles.

- Solution of P. 7.8:

$T=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
Meanwhile:

$$
\begin{aligned}
\frac{1}{2} m v_{c m}^{2} & +\frac{1}{2} \mu v^{2}=\frac{1}{2} m\left(\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}}{m}\right)^{2}+\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\vec{v}_{1}-\vec{v}_{2}\right)^{2} \\
& =\frac{1}{2 m}\left[m_{1}^{2} v_{1}^{2}+m_{2}^{2} v_{2}^{2}+2 m_{1} m_{2} \vec{v}_{1} \cdot \vec{v}_{2}+m_{1} m_{2}\left(v_{1}^{2}+v_{2}^{2}-2 \vec{v}_{1} \cdot \vec{v}_{2}\right)\right] \\
& =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}
\end{aligned}
$$

Therefore, $T=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{2}$

- Solution of P. 7.11: $\vec{L}=\vec{r}_{c m} \times m \vec{v}_{c m}+\sum_{i} \overrightarrow{\bar{r}}_{i} \times m_{i} \overrightarrow{\bar{v}}_{i}$

$$
\sum_{i} \vec{r}_{i} \times m_{i} \vec{v}_{i}=\overrightarrow{\bar{r}}_{1} \times m_{1} \overrightarrow{\bar{v}}_{1}+\overrightarrow{\bar{r}}_{2} \times m_{2} \vec{v}_{2}
$$

From eqn. 7.3.2, $\vec{R}=\overrightarrow{r_{1}}\left(1+\frac{m_{1}}{m_{2}}\right)=\overrightarrow{\bar{F}_{1}}\left(\frac{m_{1}+m_{2}}{m_{2}}\right)=\frac{m_{1}}{\mu} \vec{F}_{r_{1}}$
Since from eqn. 7.3.1, $\vec{r}_{1}=-\frac{m_{2}}{m_{1}} \vec{r}_{2}$

$$
\begin{gathered}
\vec{R}=-\frac{m_{2}}{\mu} \overrightarrow{\vec{r}}_{2} \\
\sum_{i} \overrightarrow{\vec{r}}_{i} \times m_{i} \overrightarrow{\bar{v}}_{i}=\frac{\mu}{m_{1}} \vec{R} \times m_{1} \overrightarrow{\bar{v}_{1}}+\left(-\frac{\mu}{m_{2}}\right) \vec{R} \times m_{2} \overrightarrow{\bar{v}}_{2} \\
=\mu \vec{R} \times\left(\overrightarrow{\bar{v}}_{1}-\overrightarrow{\vec{v}_{2}}\right)=\vec{R} \times \mu \vec{v} \\
\vec{L}=\vec{r}_{c m} \times m \vec{v}_{c m}+\vec{R} \times \mu \vec{v}
\end{gathered}
$$

Collisions

- Collision in 1-D (Direct or Head-on Collision)
- Collision in 2-D (Oblique Collision)

Basic Facts

Students will:

- Identify different types of collisions;

Determine the changes in kinetic energy during perfectly inelastic collisions

- Compare conservation of momentum and conservation of kinetic energy in perfectly inelastic and elastic collisions.
- Find the final velocity of an object in perfectly inelastic and elastic collisions.

Definition of Impulse

$$
\begin{aligned}
& d \vec{p}=\vec{F}(t) d t \\
& \int_{\vec{p}_{i}}^{\vec{p}_{1}} d \vec{p}=\int_{J_{i}}^{t_{t}} \vec{F}(t) d t \\
& \vec{J}=\int_{t_{i}}^{t_{t}} \vec{F}(t) d t
\end{aligned}
$$

Impulse-Momentum Theorem :

The theorem states that the impulse acting on a system is equal to the change in momentum of the system

$$
\Delta \vec{p}=\vec{F}_{n e t} \Delta t=\vec{J}
$$

$$
\vec{J}=\Delta \vec{p}=m \vec{v}_{f}-m \vec{v}_{i}
$$

(a)

Calculating the Change of Momentum

$$
\begin{aligned}
& \Delta \vec{p}=\vec{p}_{\text {after }}-\vec{p}_{\text {before }} \\
& =m v_{\text {after }}-m v_{\text {before }} \\
& =m\left(v_{\text {after }}-v_{\text {before }}\right)
\end{aligned}
$$

For the teddy bear

$$
\Delta p=m[0-(-v)]=m v
$$

For the bouncing ball

$$
\Delta p=m[v-(-v)]=2 m v
$$

Conservation of Momentum

- In an isolated and closed system, the total momentum of the system remains constant in time.
- Isolated system: no external forces
- Closed system: no mass enters or leaves
- The linear momentum of each colliding body may change
- The total momentum of the system cannot change.
$\vec{p}_{\text {before }}=\vec{p}_{\text {after }} \rightarrow \vec{p}=\vec{p}^{\prime} \rightarrow \vec{p}_{i}=\vec{p}_{f}$ Direct (Head-on) collision

Ex. Satisfy Conservation of Momentum from impulse-momentum theorem

- Start from impulse-momentum theorem

$$
\vec{F}_{21} \Delta t=m_{1} \vec{v}_{1 f}-m_{1} \vec{v}_{1 i}
$$

$$
\vec{F}_{12} \Delta t=m_{2} \vec{v}_{2 f}-m_{2} \vec{v}_{2 i}
$$

- Since $\vec{F}_{21} \Delta t=-\vec{F}_{12} \Delta t$

Direct (Head-on) collision

- Then $m_{1} \vec{v}_{1 f}-m_{1} \vec{v}_{1 i}=-\left(m_{2} \vec{v}_{2 f}-m_{2} \vec{v}_{2 i}\right)$
- So

$$
\begin{gathered}
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f} \\
\vec{p}_{\text {before }}=\vec{p}_{\text {after }} \rightarrow \vec{p}_{i}=\vec{p}_{f}
\end{gathered}
$$

Types of Collisions

- Momentum is conserved in any collision
- Inelastic collisions: rubber ball and hard ball
- Kinetic energy is not conserved
- Perfectly inelastic collisions occur when the objects stick together
- Elastic collisions: billiard ball
- both momentum and kinetic energy are conserved
- Actual collisions
- Elastic and perfectly inelastic collisions are limiting cases
- Most collisions fall between elastic and perfectly inelastic collisions

Elastic Collisions

An Elastic collision is a collision in which the total momentum and the total kinetic energy remain constant.

Momentum

$$
\begin{gathered}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
\text { Kinetic Energy } \\
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
\frac{p_{1 i}^{2}}{2 m_{1}}+\frac{p_{2 i}^{2}}{2 m_{2}}=\frac{p_{1 f}^{2}}{2 m_{1}}+\frac{p_{2 f}^{2}}{2 m_{2}}
\end{gathered}
$$

$\xrightarrow[(\mathrm{a})]{+\infty} \underset{\text { (b) }}{\text { Before collision }}$

- A simpler equation can be used in place of the kinetic energy equation:

$$
\begin{aligned}
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2} & =\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
m_{1}\left(v_{1 i}^{2}-v_{1 f}^{2}\right) & =m_{2}\left(v_{2 f}^{2}-v_{2 i}^{2}\right)
\end{aligned}
$$

$$
m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)\left(v_{2 f}+v_{2 i}\right)
$$

$m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \rightarrow m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)$

$$
\left(v_{1 i}+v_{1 f}\right)=\left(v_{2 f}+v_{2 i}\right) \longrightarrow v_{1 f}-v_{2 f}=v_{2 i}-v_{1 i}
$$

Speed of separation $\rightarrow v_{1 f}-v_{2 f}$
Speed of approach $\rightarrow v_{2 i}-v_{1 i}$
:---
for elcastic collision
$\varepsilon=1$

Inelastic Collisions

Inelastic collision is a collision in which momentum is conserved but kinetic energy is not. Moreover, the objects do not stick together. Kinetic Energy is not constant in inelastic collisions. Some kinetic energy is converted to sound and/or heat, or causes deformation. To calculate the amount of kinetic energy that is lost,

$$
T_{i}=\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}
$$

$$
T_{f}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

$$
\Delta T=T_{f}-T_{i}
$$

Perfectly inelastic collision is a collision in which two objects stick together and move with a common velocity after colliding.

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}
$$

Direct (Head-on) collision
After collision

(b)

Summary of Collisions

- In general, for a system of two bodies undergo a collision, the total linear momentum and total kinetic energy are:

$$
\begin{aligned}
& \vec{p}_{\text {befor }}=\vec{p}_{\text {after }} \Rightarrow m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f} \\
& \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}+Q
\end{aligned}
$$

Q is the net energy loss or gain in kinetic energy that occurs as a result of collision
$Q=0 \quad$.....Elastic collision (there is no change in kinetic energy)
$Q=+$ iveEndoergic collision (there is an energy loss)
$Q=-$ iveExoergic collision (there is an energy gain)

Velocity of particles after collision

- Now, we can find the velocities of particle and particle relative to their velocities before collision. For a head-on collision we have:

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \quad \ldots \text { Conservation of Momentum }
$$

$$
\begin{aligned}
& \varepsilon=\frac{v_{1 f}-v_{2 f}}{v_{2 i}-v_{1 i}} \ldots \text { Coefficient of restitution } \rightarrow v_{1 f}-v_{2 f}=\varepsilon\left(v_{2 i}-v_{1 i}\right) \\
& v_{1 f}=\frac{\left(m_{1}-m_{2} \varepsilon\right) v_{1 i}+\left(m_{2}+m_{2} \varepsilon\right) v_{2 i}}{m_{1}+m_{2}} \\
& v_{2 f}=\frac{\left(m_{1}+m_{1} \varepsilon\right) v_{1 i}+\left(m_{2}-m_{1} \varepsilon\right) v_{2 i}}{m_{1}+m_{2}}
\end{aligned}
$$

From the above equations, we have the following cases:

- In an elastic collision, $\varepsilon=1$ and in the special case when $m_{1}=m_{2}$ we obtain:

$$
v_{1 f}=v_{2 i} \& \quad v_{2 f}=v_{1 i}
$$

Therefore, the two bodies just exchange their velocities as a result of collision

- In a perfectly inelastic collision, $\varepsilon=0$ and $v_{1 f}=v_{2 f}$

Thus the two objects stick together after the collision, so their final velocities are the same

- In the general case of a direct inelastic collision, $\varepsilon=(0-1)$ and the energy loss Q is related to ε by: where

$$
Q=\frac{1}{2} \mu v^{2}\left(1-\varepsilon^{2}\right)
$$

μ is the reduced mass
v is the related speed before collision

Comparison One-Dimensional \& Two-Dimensional Collisions

Direct (Head-on) Collision

Oblique Collision

Two-Dimensional (Oblique) Collisions

- For a general collision of two objects in two-dimensional space, the conservation of momentum principle implies that the total momentum of the system in each direction is conserved

$$
\vec{p}_{\text {befor }}=\vec{p}_{\text {after }} \Rightarrow m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

$$
\frac{m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x}}{x \text {-direction }}
$$

$$
m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
$$

Oblique Collision
y-direction

(b) After the collision

In Oblique Collisions:

- The momentum is conserved in the x direction and in the y direction. Apply conservation of momentum separately to each direction.
- If the collision is elastic, use conservation of kinetic energy as a second equation
- Remember, the simpler equation can only be used for one-dimensional situations.

$$
\left(v_{1 i}+v_{1 f}\right)=\left(v_{2 f}+v_{2 i}\right)
$$

Ex.: Oblique Collision (2-D Collision)

- Particle 1 is moving at velocity $\overrightarrow{\mathbf{v}}_{1 i}$ and particle 2 is at rest.
- In the x-direction, the initial momentum is $m_{1} v_{1 i}$
- In the y-direction, the initial momentum is 0
- After the collision, the momentum in the x-direction is: $\quad m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \phi$
- After the collision, the momentum in the y-direction is: $m_{1} v_{1 f} \sin \theta-m_{2} v_{2 f} \sin \phi$

$$
\begin{aligned}
& m_{1} v_{1 i}+0=m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \varphi \\
& 0+0=m_{1} v_{1 f} \sin \theta-m_{2} v_{2 f} \sin \varphi
\end{aligned}
$$

- If the collision is elastic, apply the kinetic energy equation

$$
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

(a) Before the collision

(b) After the collision

- If the collision is inelastic, the kinetic energy equation is

$$
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}+Q \longrightarrow \frac{p_{1 i}^{2}}{2 m_{1}}=\frac{p_{1 f}^{2}}{2 m_{1}}+\frac{p_{2 f}^{2}}{2 m_{2}}+Q
$$

- The momentum equation in vector notation can be written as:

$$
\begin{aligned}
& m_{1} \vec{v}_{1 i}+0=m_{1} \overline{1}_{1 f}+m_{2} \vec{v}_{2 f} \longrightarrow \vec{p}_{1 i}=\vec{p}_{1 f}+\vec{p}_{2 f} \\
& p_{1 i}^{2}=\left(\vec{p}_{1 f}+\vec{p}_{2 f}\right) \bullet\left(\vec{p}_{1 f}+\vec{p}_{2 f}\right)=p_{1 f}^{2}+p_{2 f}^{2}+2\left(\stackrel{\rightharpoonup}{p}_{1 f} \bullet \vec{p}_{2 f}\right)
\end{aligned}
$$

- In the case, when the masses of the incident and target particles are the same the kinetic energy equation becomes:

$$
p_{1 i}^{2}=p_{1 f}^{2}+p_{2 f}^{2}+2 m Q
$$

For elastic collision $Q=0$.

$$
Q=\frac{\left(\vec{p}_{1 f} \bullet \vec{p}_{2 f}\right)}{m}
$$

$$
\vec{p}_{1 f} \bullet \vec{p}_{2 f}=0 \Rightarrow \vec{p}_{1 f} \perp \vec{p}_{2 f}
$$

P.7.7: A small car of mass m and initial speed v_{0} collides head-on on an icy road with a truck of mass $4 m$ going toward the car with initial speed $v_{0} / 2$. If the coefficient of restitution in the collision is $\frac{1}{4}$, find the speed and direction of each vehicle just after colliding.

$$
v_{1 f}=\frac{\left(m_{1}-m_{2} \varepsilon\right) v_{1 i}+\left(m_{2}+m_{2} \varepsilon\right) v_{2 i}}{m_{1}+m_{2}}
$$

$$
v_{2 f}=\frac{\left(m_{1}+m_{1} \varepsilon\right) v_{1 i}+\left(m_{2}-m_{1} \varepsilon\right) v_{2 i}}{m_{1}+m_{2}}
$$

$$
v_{c}=\frac{\left(m-\frac{1}{4} 4 m\right) v_{\circ}+\left(4 m+\frac{1}{4} 4 m\right)\left(-\frac{v_{0}}{2}\right)}{m+4 m}=\frac{0+5 m\left(-\frac{v_{0}}{2}\right)}{5 m}=-\frac{v_{\circ}}{2}
$$

$$
\begin{aligned}
& v_{t}=\frac{\left(m+\frac{1}{4} m\right) v_{\circ}+\left(4 m-\frac{1}{4} m\right)\left(-\frac{v_{0}}{2}\right)}{m+4 m} \\
&=\frac{\frac{5}{4} m v_{\circ}+\frac{15}{4} m\left(-\frac{v_{0}}{2}\right)}{5 m}=-\frac{v_{\circ}}{8}
\end{aligned}
$$

Both car \& truck are traveling in the initial direction of the truck with speeds $v_{0} / 2$ \& $v_{0} / 8$, respectively.
P.7.9: If two bodies undergo a direct collision, show that the loss in kinetic energy is equal to: μ is the reduced mass

$$
Q=\frac{1}{2} \mu \nu^{2}\left(1-\varepsilon^{2}\right) \quad \text { where } \quad v \text { is the related speed before collision }
$$ \mathcal{E} Is the coefficient of restitution

$$
T=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{2}
$$

... Kinetic Energy of a two particle system before collision.
$T^{\prime}=\frac{1}{2} m v_{c m}^{2}+\frac{1}{2} \mu v^{\prime 2} \ldots$ Kinetic Energy of a two particle system after collision.
$Q=T-T^{\prime}$ and since $v_{c m}=v_{c m}^{\prime}$:

$$
\begin{aligned}
& Q=\frac{1}{2} \mu v^{2}-\frac{1}{2} \mu v^{\prime 2} \\
& Q=\frac{1}{2} \mu v^{2}\left(1-\varepsilon^{2}\right)
\end{aligned}
$$

End of the Lecture

