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General Motion of a Particle 
In Space, xyz coordinates: 
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Rectilinear Equations 

When the force is a function of time only: 
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Depends on: 

The time for which the force acts 

The size of the force applied 

 

Def. of Impulse: 

When a force is applied to an object, the product of 

the force (F) and the length of time (t) that the force 

is applied, is called the impulse of the force. 

Measured in Newton Seconds. 

Q.: Which of the following integral represents the impulse? 

themofallddxxFcdvvFbdttFa )()()()()()()( 
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Some Definitions & Equations in the General Motion 

a) Angular Momentum: 
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Angular momentum of the particle 

about the origin 
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b) The Work Principle: 
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Work done on the particle by the force     as particle moves 

along the path of motion is equal to the increment in 

kinetic energy. 

F

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To solve the line integral we need the force and the path of motion 

between (a,b). When the line integral does not depend on the path of 

motion but only depends on the first and final positions the force is 

conservative. When the force is a function of position only the force is 

conservative. Mathematically, a conservative field is one in which the 

expression (             ) is an exact differential. rdF


.

c) Conservative & Non Conservative Forces : 

a 

b 

1r


2r


A force for which Wab= - Wba is called a conservative forces. This is 

same as saying that the net work done by a conservative force around 

any closed path (return back to the initial configuration) is zero. A force 

that is not conservative is called a nonconservative force. We cannot 

define potential energy associated with a nonconservative forces. 
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 A force F acting on a particle is conservative if and only 

if it satisfies two conditions: 
1. Force depends only on the particle’s position r (and not on the 

velocity v, or the time t, or any other variable); that is, F = F(r). 

2. For any two points a and b, the work W(a  b) done by F is the 

same for all paths between a and b. 

Conditions for a Force to be Conservative 

Two Mathematical statements for a Conservative Force: 

If      is a conservative force, we have: 

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1. The spring force 
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Relaxed length 

The force is conservative because the total work done by the 

spring force is zero in the process from (a) to (e) (round trip). 

0 

0 

Q.: Do spring force,  gravitational force, and frictional 
force et al. belong to conservative forces? 
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The total work done by the gravity is zero during the round 

trip, So the force is conservative. 

2. The force of gravity 

3. The frictional force 

The total work done by frictional force is not zero in a round 
trip, So the force is nonconservative. 

Potential energy?      Conservative Force?   
It is defined only for a certain class of forces called 
conservative forces.  

Kinetic energy Velocity 

Two Types of Energy: 
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 Evaluate the line integral for the work done by the 2-d force: 

                            going from the origin O to the point P = (1, 1) 

along each of the three paths: 

a) OQ then QP 

b) OP along x = y 

c) OP along a circle 

 Path a): 

 

 

 

 Path b): 

 

Example : Three Line Integrals 
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 Path c): This is a tricky one.  Path c can be expressed as 

 

 so 

 This is a parametric equation, using θ as a parameter along the 

path, we obtain: 

 

 

 

 

 

 The point here is that the line integral depends on the path, in 

general (but not for special kinds of forces, which we will 

introduce in a moment). 

 In this case the force is nonconservative. 
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 If all of the forces on an object are conservative we can define a quantity 
called potential energy, denoted V(r), a function only of position, with the 

property that the total mechanical energy is constant. 
    Such as the systems of:  

   Ball-Earth system & Block-spring system on frictionless table. 

 To define the potential energy, we must first choose a reference point ro, 
at which V is defined to be zero.  (For gravity, we typically choose the 
reference point to be ground level.)  Then V(r), the potential energy, at 
any arbitrary point r, is defined to be 

 

 In words, V(r) is minus the work done by F when the particle moves 
from the reference point ro to the point r. 

Def. of Potential Energy: 
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e.g.  The potential energy of gravity is: 
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For conservative forces: 

Potential Energy Function 
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Conservation Law of Energy 

But, for non conservative forces: 
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e.g: A common example of a non conservative force is friction, 
then the total force is: FF 
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But increases or decreases as the particle moves depending on the sign of. In 
the case of dissipative forces the direction of      is opposite to that of     , 
hence                 is negative and the E  diminishes as the particle moves.  
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Now, for conservative forces: 
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 Mathematically, the gradient of V or of a function is a vector that represents the 
maximum spatial (position) derivative of the function in direction and magnitude. 

 The negative grad of P.E. function gives the direction and magnitude of the force 
that acts on a particle. 

 The meaning of negative sign is that the particle is urged to move in the direction 
of decreasing (P.E) rather than in opposite direction. 
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In general: 

Conditions for the existence of the Potential Function 
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A similar argument can be made with the pairs (Fx,Fz) and (Fy,Fz) . Thus we 
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  A) Necessary conditions for the existence of the 
potential energy function. 

 B) 

 

 C) ……………………… 

 D) ……………………… 

 E) ………………………. 
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Ex.: Show that forces of the separable type are  
conservative. 
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Ex.:  Is the force field                      conservative? 

Ex.: For what values of the constants a, b and c is the 
force                          conservative? cxyjbyaxiF ˆ)(ˆ 2 
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The final expression is not zero for all values of the 
coordinates, hence the field is not conservative. 
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 This shows that the force is 
conservative, provided c=2b.  
The value of a is immaterial. 
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Ex.: Given the potential energy function: 
                      
    
in which              are constants.          
                                 Find the force function. 
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Applying the del operator, we have: 
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cand ,,

Ex.: Suppose a particle of mass m is moving in the above 
force field, and at time t=0 the particle passes 
through the origin with speed v0 . What will the 
speed of the particle be if and when it passes 
through the point               ?.  (H.W.)  kjir ˆˆ2ˆ 


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Projectile Motion & Air Resistance 
When a projectile moves through the air (or other medium—such as gas or 

liquid), it experiences a drag force, which depends on velocity and acts in the 

direction opposite the motion (i.e. it always acts to slow the projectile). 

While the effect of air resistance may be very small in some cases, it can be 

rather important and complicated. 

  e.g. motion of a golf ball. 

• Basic Facts and Characteristics 

– Not a fundamental force… 

– Friction force resulting from different atomic phenomena 

– Depends on the velocity relative to the embedding fluid. 

– Direction of the force opposite to the velocity (typically). 

– Air resistance is known under different names: Drag, Retardation 

Force, and Resistive Force 
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Air Resistance - Drag Force 

 Consider retardation force strictly anti-

parallel to the velocity.  

 

 

 Where  

 

 f(v) is the magnitude of the force. 

 

 Measurements reveal f(v) is complicated - 

especially near the speed of sound… 

 At low speed, one can write as a good 

approximation: 

w  m
r
g

f   f (v)v̂

v̂

f   f (v)v̂

f (v)  bv  cv2  flin  fquad

gmw



v

v
v


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The physical reasons for these two different terms are as follows: The linear term 

arises due to the viscous drag of the medium, and is proportional to the viscosity of 

the medium and the linear size D of the projectile. 

The quadratic term arises from the projectile’s having to accelerate the mass of air 

with which it is continually colliding, and is proportional to the density of the 

medium and the cross-sectional area D2 of the projectile. That is 

• The linear term drag is proportional to the viscosity,  

• The quadratic term is related to the density of the fluid, . 

• We have: 

 

 

fquad

flin
: R 

Dv


Reynolds Number 

For a spherical projectile  (e.g. canon ball, baseball, drop of rain):    

b  D

c  D2

where D is the diameter of the sphere. 

 and  depend on the nature of the medium 42

24

/mNs 25.0

Ns/m 106.1



 





2& cvfbvfwhere quadlin 

Using values of these parameters the ratio of  quadratic force to 
the linear force is given by: 
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• Example: Baseball and Liquid Drops 

 
• A baseball has a diameter of D = 7 cm, and travel at 

speed of order v=5 m/s. 

 

 

• A drop of rain has D = 1 mm and v=0.6 m/s 

 

 

• Millikan Oil Drop Experiments, D=1.5 mm and v=5x10-5 

m/s. 
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f  cv2v̂

Neither term can be neglected. 
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= 1:   linear case     
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


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
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 For a projectile without air resistance, Newton’s 2nd Law 
(equation of motion ) becomes: 

 

 

 Thus the first-order differential equation is: 

 

 

 This vector equation represents (in two dimensions) two 
separate equations for the x and y components 

 

 

 

 Or: 

I. Projectile Motion Without Air Resistance 
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Physical Differential Equations of the Projectile Motion 
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 For a projectile with linear drag, the projectile experiences both 
gravity and the drag force, the latter directed in the opposite 
direction of its motion. Newton’s 2nd Law (equation of motion ) 
becomes 

 

 Thus the first-order differential equation for v is: 

 

 

 

 This vector equation represents (in two dimensions) two 
separate equations for the x and y components 

 

 

 

 

 Notice that the two equations do not depend on one another. 

 The second equation is the same as the equation of vertical 
motion with linear drag (See Chapter 3). 

II. Projectile Motion with Linear Air Resistance 
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where c is an arbitrary constant of integration.  

Taking the inverse ln of both sides, and writing 
b/m=k, we have:                            

v 
flin=bv 

xx bvvm 

dt
m

b

v

dv
v

m

b

dt

dv

x

x
x

x            ct
m

b
vx ln

dt

dx
evAev kt

x

kt

x  

o

where the arbitrary constant of integration has morphed into v = vxo at t= 0. 

 The final solution for the position is   

 

  where we have introduced the parameter                 , the value of 
x as               

drag]linear [for      //1 bmk 

 /1)( textx 

 

oxvx 

t
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 The final solutions for v(t) and x(t) are: 

 

 Graphs of these functions are: 

/
o)( t

xx evtv 

drag]linear [for      /bm

 /1)( textx 

 

oxvx 

0xv
xv

t



t



x
x

 To get a trajectory including BOTH horizontal and vertical motion, we should 
consider y position upward. Thus, our two equations are: 

 

 We can combine these into a single equation by solving the first for t  

 

 and substituting into the second: 

 

 

 This is rather too complicated to understand easily,  

 but here is a plot of the trajectory compared with one  

 without air resistance.  
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
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
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
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
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1ln
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vv
y
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x 
R     vxo       Rvac 

no air drag 

air drag 
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 For a projectile with quadratic drag, the projectile experiences 
both gravity and the drag force, the latter directed in theopposite 
direction of its motion. Newton’s 2nd Law (equation of motion ) 
becomes 

 

 or 

 

 This vector equation represents three separate  

     equations for the x , y and z components: 

 

 

 

 

 Notice that the three equations are not of the separable type. 

 From the first two equations we obtain: 

 

III. Projectile Motion with Quadratic Air Resistance 

 Forcesmr
 ̂2cvmm  gr



zz

yyxx

cvvmgvm

cvvvmcvvvm







 &

x 

y 

v 

mg 

fquad=cv2 

vcvmm
  gr

s

yoy

s

xox evvevv    &

222

222

zyx vvv

zyxvwhere



 

mcwhere /

)ˆˆˆ()ˆ()ˆˆˆ( zyxzyx vkvjvicvgkmvkvjvim  

…Problem 12 Chapter 4 
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I) Motion of Charged Particle in Electric Field 
In general, the differential equation of motion for charged particle is: 

E 

y 

z 
)( BvE

v 


 q
dt

d
mamF

For Static Uniform Electric Field: 

Ek̂E


x 

0& B


EconstEEE zyx  .&0

kqEzkyjxim ˆ)ˆˆˆ(  

Motion of Charged Particle 

In Electric Field: E


qamF 

Then: 

where 

zyx azayax   &,
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 Consider particle at rest, at origin, at t=0 

t
m

qE
z

y

x













0

0

.

0

0

const
m

qE
z

y

x













2

2

0

0

t
m

qE
z

y

x







…The path 

is parabola 

When the electric field is due to the static charges: 

0 E


This means that the field is conservative and there exists a potential 

function       such that:  


E
The potential energy of a particle of charge q in such a field is then        

and the total energy: 

q

.
2

1 2 constqmvE 

0 FEqF


Energy Equation for Motion of Charged Particle in a Uniform 
Static Electric Field 
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 The force on a charge moving in a magnetic field is: 

 
 

 where q is the charge and B is the magnetic field strength.  The equation of 

motion is a first-order differential equation in v. 

 

 In this type of problem, we are often free to choose our coordinate system so 

that the magnetic field is along one axis, say the z-axis: 

 

  

     and the velocity can in general have any direction                   .   

     Hence, 

 

 Thus, the equation of motion becomes: 

 

)( BvvF





 qmam

Bk̂B


zkyjxi 
 ˆˆˆ v

BxjByi 
 ˆˆ Bv

II) Motion of Charged Particle in Magnetic Field 

…Static magnetic field 

qBxjqByizkyjxim  ˆˆ)ˆˆˆ( 
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 The three components of the equation of motion are: 

 

0





zm

xqBym

yqBxm







0





z

xy

yx











where  = qB/m  is cyclotron frequency 

• the last equation simply says that the component of velocity along B, is 

constant. Let’s now focus on the other two components, and ignore the motion 

along B.  We can then consider the velocity as a two-dimensional vector (vx, 

vy) = transverse velocity.  

.

2

1

constz

cxy

cyx

















•Solve 2nd  eq., 

• Sub into 1st  eq 

•Vice versa 
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• From 3rd equation: tzz
dt

dz
zconstz

dt

zd
oo



 .0

• From other equations: 

axcxyx 22

2 )(    where ac 2

or 0)(2  axx 

The solution is the same as the solution of SHO equation: 

)cos(   tAax

)sin(&)sin(   tAbytAx

From this equation we obtain where /1cb 

The form of the path of motion is: 
222 )()( Abyax 

Thus the projection of the path of motion on the xy plane is a circle of radius A 

centered at the point (a,b). The path is spiral (helical) and A is directly proportional 

to the speed.  



In this case, the differential equation of motion for charged particle is: 

)( BvE
v 


 q

dt

d
mamF

For Static Uniform Electric and Magnetic Fields: 

EĵE


Bk̂& B


III) Motion of Charged Particle in Electromagnetic Field 

Q.1: Find the resulting motion of charged particle (H.W)  

• Charged particles accelerated by electric field 

• Circular motion in plane normal to magnetic field 

Notes: 



34 

Unconstrained motion: the particle is free of   

mechanical guides. 

Ex. Airplane, rocket 

 

Constrained motion: the path of particle is 

partially or totally determined by restraining 

guides. 

Ex. A train moving along track, a particle sliding 

on sphere. 

Constrained Motion of a Particle 

Definitions: 
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…Differential Equation 
for Constrained Motion Smooth Constraint RFam




R


v


F


For smooth constraint, the force of 

constraint is normal to the direction of 

motion. 

The total force acting on the particle 

moving under constraint: 

F


is the external force 

R


is the force of constraint (the reaction of the constraining 

upon the particle) 

vRF
dt

vd
m


].[  vRvFv

dt

vd
m




... 

Now, for Smooth Constraint: 0.  vRvR

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Smooth Constraint & the force is conservative 

If the force is conservative, the potential energy function 

exist and: 

dt

dT
mv

dt

d
vv

dt

dm
vF  )

2

1
().(

2
. 2

dTrdF 


.

dVrdF 


.

.)(
2

1 2 constErVmvVT 

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Example: A particle is placed on top of a smooth sphere 
of radius (a). If the particle is slightly disturbed, at 
what point will it leave the sphere?   

Thus R vanishes when: 

.)(
2

1 2 constErVmv 


A 

B 

gm


R



sinmgcosmg

a

z a

The total force acting on the particle are: 

Rgm
dt

vd
m






The radial components of the equation is: 

Rmg
a

v
m  cos

2

From the energy equation: 

At point A: mgaEA 

At point B: mgzmvEB  2

2

1 BA EE  )(22 zagv 

)23()(2 az
a

mg
zag

a

m

a

z
mgR 

3/2az  At which point the particle will 

leave the sphere 

Reference 
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Differential and Energy equations for Motion on a Curve 

In general the Energy Equation is: 

.),,(
2

1 2 constEzyxVmv 

We can write the equations of the curve in parametric form: 

x=x(s), y=y(s) & z=z(s) 

s  is the distance measured along 

the curve from the origin  

V(x,y,z)=V(x(s),y(s),z(s))=V(s)    

s
dt

ds
v 

 Curvilinear Motion. 

 Movement along a curved line. 

 Most jumps are along a curved line. 



39 

Differentiating the energy equation with respect to t : 

])(
2

1
[ 2 EsVsm

dt

d


….Differential equation for motion     

of the particle on the curve 

0
)(


dt

ds

ds

sdV
ssm 

ds

sdV
smFs

)(
 

is the component of the external force in the direction of s 

.)(
2

1 2 constEsVsm 

...Energy equation for motion of the particle on the curve 
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For small angles: 

)cos()( LLmgsV 

Example: The Simple Pendulum   

A simple pendulum consists of a mass m (of negligible size) 

suspended by a string or rod of length L (and negligible mass). 

The angle it makes with the vertical varies with time as a sine or 

cosine. 

ds

sdV
smFs

)(
 

Reference Level 

)
1

(sin
LL

s
mgLsm 

Ls 

00  
L

g
ors

L

g
s 

)cos()cos(   tAortAs 

The solution: 
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The differential equation of motion: 



The Isochronous Problem 

sinmgsmFs  
If this equation represents SHM 

we must have: 
sincsorkssm 

x

y



dyds

dx

ds

dx
cos

ds

dy
sin

Now, we can find x & y in terms 

of     , as follows:  




2cos)cos(cos cc
d

ds

ds

dx

d

dx


)2cos1(
4

&)2sin2(
4

 
c

y
c

x

Parametric Equations of a Cycloid 
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


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0

cossin&cos dcdydcdx

yx

R

Smooth Constraint 
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P.1: Find the force for each of the following potential 
energy function:                       

)ˆˆˆ()(.
z

V
k

y

V
j

x

V
iVFaSol









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222
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ccxyzVa





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

Problems: 
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P.2: Determine which of the following forces are 
conservative:                       

3

2

ˆˆˆ)(

ˆˆˆ)(

ˆˆˆ)(

zkxjyiFc

zkxjyiFb

zkyjxiFa


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






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P.3: Find the value of the constant c such that each of the 
following forces is conservative:                       

)/(ˆ)/(ˆ)/(ˆ)(

ˆˆˆ)(

2

32

yxkyxzcjyziFb

zkcxjxyiFa







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