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General Motion of a Particle

n Space, Xyz coordinates:
e dp s d
dt dt

d dp |
F=—(my)=—= F,=—(m2)=

Rectilinear Equations
When the force is a function of time only:

dp 7
F(t)—a — Jp j (t)dt ...Impulse

0

A dr 6ol
- P, +_[F(t)dt mi(R) =m-—- —» Idr:_([v(t)dt

F=T + jv(t)dt =T(t) ...Equation of Motion

rO

(MV) —> iF, + JF, +kF, = %[m(fx + ]y + k2)]




Def. of Impulse:

When a force is applied to an object, the product of
the force (F) and the length of time (t) that the force

Is applied, Is called the /mpulse of the force.
Measured in Newton Seconds.

Depends on:

&1 h

=T he size of the force applied

e time for which the force acts

Q.: Which of the following integral represents the impulse?

(@)

[Fidt () [Fwdv () [Feodx  (d)all of them



Some Definitions & Equations in the General Motion

a) Angular Momentum:

GLCe e s D
rx(F:—p) — er:rx—p
dt dt
We have Fat i T e
q dp Vxmv=m(VxV)
—(Fxp)=rx— _0
dt dt
- FxE = E (f v F)) Angular momentum of the particle
' 'ﬁ—/ dtiia - about the origin
e dl
IS the moment of the force about the oo
origin of the coordinate system (Torgue) d’[ 4




b) The Work Principle:

(If:@)-‘ — If\7=%.\7:d(mv)\7
dt t dt
If\7:md—v.\7:lmi(\7.\7):i(lmv2 i
T i e

N

Where 7 is the kinetic energy of the particle
Fdr=dT or [F.dr=[dT=[dw

Work done on the particle by the force F as particle moves
along the path of motion is equal to the increment In
Kinetic energy.



c) Conservative & Non Conservative Forces :

j deTT
\

To solve the /ine integral we need the force and the path of motion
between (a,b). When the line integral does not depend on the path of
motion but only depends on the first and final positions the force is
conservative. When the force is a function of position only the force is
conservative. Mathematically, a conservative field is one in which the
expression ( F.dr ) is an exact differential.

A force for which W= - W, Is called a conservative forces. This is
same as saying that the net work done by a conservative force around
any closed path (return back to the initial configuration) is zero. A force
that Is not conservative iIs called a nonconservative force. We cannot
define potential energy associated with a nonconservative forces. °



Conditions for a Force to be Conservative

A force F acting on a particle 1s conservative if and only

if 1t satisfies two conditions:

/. Force depends only on the particle’s position r (and not on the
velocity v, or the time ¢ or any other variable); that is, F = F(r).

2. For any two points 2 and b, the work W(a — b) done by F 1s the
same for all paths between a and b.

Two Mathematical statements for a Conservative Force:
If F is a conservative force, we have: A

et a — b
I) W, .+W ,=0 = LbF dr+ [ F-dF =0
§If.df =0 | ...Statement 1 g 7
b 4= e
rr) [ For=-[Fdr=[Fdr 7
Pathl Path2 Path2 ?
b _ o o St £
ja F.dr = L F.dr | .. .Statement?2 5 T

Pathl Path2



Q.. Do spring force, gravitational force, and frictional

force et al. belong to conservative forces?

1. The spring force

(@) | R OER
0 -A '

(b) -IUTU000
O >

Relaxed length (©) T T 00—

—U000 6 = () 00000~
X IO >
W, =—%k(xf2—xi2) (e) b (NGR

The force is conservative because the total work done by the
spring force is zero In the process from (a) to (e) (round trip).




2. The force of gravity

The total work done by the gravity is zero during the round
trip, So the force is conservative.

3. The frictional force

The total work done by frictional force is not zero in a round
trip, So the force is nhonconservative.

Two Types of Energy:
Kinetic energy <> Velocity

Potential energy? < Conservative Force?

It is defined only for a certain class of forces called
conservative forces.
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Example : Three Line Integrals

Evaluate the line integral for the work done by the 2-d force:

F =1y+ j2x going from the origin Oto the point 2= (1, 1)
along each of the three paths:

a) OQthen QP 7 |Ay + IZX dr = |AdX + jdy
b) OPalong x = y F.dF = ydx + 2xdy

¢) OPalongacircle i I P
path a): W, =ja|:.dr=jo |:.o|r+jQ F.dr
1 1 1
:joydx+102xdy:0+210dy:2

o o

W, = [ F-dr=[F.dr

Path b):

1

=1.5

10

p 1 V&
= IO (ydx + 2xdy ) = IO 3xdx = 3>

0



Path c): This Is a tricky one. Path ¢ can be expressed as
F=(>x+Jy)=1(-cosé)+ Jsin@

SO df = (1dx + Jdy) = (1sin@d&@+ jcosAdO)

This Is a parametric equation, using & as a parameter along the

path, we obtain:

F=1y+ |2x=15in@+ J2(1—cos )
F.df =sin? d@+ 2((1—cos @) cos Hd@

W, :j'c F-dr :j'oﬁlz(sin2 0+ 2(1—cos ) cos H)dH

=2—-n14=121

The point here Is that the line integral depends on the path, In
general (but not for special kinds of forces, which we will
Introduce In a moment).

In this case the force IS honconservative.



Def. of Potential Energy:

If all of the forces on an object are conservative we can define a quantity
called potential energy, denoted W), a function only of position, with the
property that the total mechanical energy is constant.
Such as the systems of:
Ball-Earth system & Block-spring system on frictionless table.

To define the potential energy, we must first choose a reference point r,,
at which V is defined to be zero. (For gravity, we typically choose the
reference point to be ground level.) Then Wr), the potential energy, at

any arbitrary point r, is defined to be o
V(r)=-W(r, >r)=—| F(r)-dr’

In words, Ur) is minus the work done by F when the particle moves
from the reference point r, to the point r.

€.g. The potential energy of gravity is:

V =~ (F,)dy =[] (-mg)dy = mgy

mgy + % my* = E = const. .... Total Energy 12



Potential Energy Function

For conservative forces:

If,df = —dV (r) ...Is correct when the force is conservative

Edi=dT — E =T +V(r) = const.

TConservat/on Law of Energy

F'.dr = —dV(r)

e.g: A common example of a non conservative force is friction,
then the total force is: F + F'

The work increment is then given by: E =T +V(r) = const.
dT =F.dr+ F'.dr =—dV(r)+ F'.dr — d(T +V (1)) :ér d%

But increases or decreases as the particle moves depending on the sign of. In
the case of dissipative forces the direction of ' is opposite to that of dr,
hence F'.dr is negative and the £ diminishes as the particle moves.

But, for non conservative forces:




Now, for conservative forces:

F.dr = F,dx+ F,dy + F,dz =—dV (r) = —(a—vdx+6—vdy+a—vdz)
OX oy Oz
T oV
Then we can write: g —_“% o s O o O
OX y oy ¢ 07
o e S et s i ST
x oy oz ox oy @&

—

N 0 - D = —
_(I&JFJ@H(E)V_»F :_VV

Mathematically, the gradient of V or of a function is a vector that represents the
maximum spatial (position) derivative of the function in direction and magnitude.
The negative grad of P.E. function gives the direction and magnitude of the force
that acts on a particle.

The meaning of negative sign is that the particle is urged to move in the direction
of decreasing (P.E) rather than in opposite direction. 14



Conditions for the existence of the Potential Function

|E = _ﬁv —> Ingeneral: V(r)=V(XY,2Z)

oV oV
F :——:F X, ,Z g F :__:F X1 1Z & Fz:
PE 1 PoBy - OF - oy oV _ oV
(X o but:

oy  oyx | ox  oxoy OyoX  OXoy
A similar argument can be made with the pairs (F,,F,) and (F,F,) . Thus we
can write:

8FX aFy 1 A) Necessary conditions for the existence of the
oy OX potenElaI énfrgy function.
B) VxF=0

oF, oF, Sz

7 i F=-VV
OZ O e R S U

. 0y [E=T +V(1) = const

oF, OF, i

O% O "



- C
oXx oy 0z
F. F, F
~, OF 5F »  OF, 6F 8F
= I( y)— ( X)+k( ~)
oy oy
If VxE=0/—> The Force is Conservative.
If not it is Non-conservative.
Ex.: Show that forces of the separable type are

conservative.
Forces of the separable type are:

FX A |:X(X) )

F,=Fy) & F =F\(z)),

—

V x

—_—

F

=0

16
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Ex.: Is the force field E =ixy+ jxz+kyz conservative?

757 T

i A e A =i(z=%)— j(0)+k(z=x) =0
OX oy 0z
Xy Xz Yz

The final expression is not zero for all values of the
coordinates, hence the field is not conservative.

Ex.: For what values of the constants a, b and ¢ is the

-

force F =i(ax+by?)+ jcxy conservative?

] i k

0 0ol This shows that the force is

X 5 ozl Sie2h)y conservative, provided c=2b.
The value of a is immaterial.

(ax+by?) oxy O
17
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Ex.: Given the potential energy function:
V(r)=ox’+ Xy +1zZ+cC

in which «,,yandc are constants.
Find the force function.

Applying the del operator, we have:

o
X

oy Oz
=~ (20x+ By) - 1(X) —ky

Ex.: Suppose a particle of mass m is moving in the above
force field, and at time t=0 the particle passes
through the origin with speed v, . What will the
speed of the particle be if and when it passes
through the point r=i+2j+k ?. (HW.)

18



Projectile Motion & Air Resistance

When a projectile moves through the air (or other medium—such as gas or
liquid), It experiences a drag force, which depends on velocity and acts in the
direction opposite the motion (i.e. it always acts to slow the projectile).

While the effect of air resistance may be very small in some cases, 1t can be
rather important and complicated.

e.g. motion of a golf ball.

» Basic Facts and Characteristics
— Not a fundamental force...
— Friction force resulting from different atomic phenomena
— Depends on the velocity relative to the embedding fluid.
— Direction of the force opposite to the velocity (typically).

— Auir resistance 1s known under different names: Drag, Retardation
Force, and Resistive Force

19



Air Resistance - Drag Force

&= Consider retardation force strictly anti-
parallel to the velocity.

f=—fw
N
_V

N>

& Where \/ =

f(v) is the magnitude of the force.

& Measurements reveal f(v) is complicated -
especially near the speed of sound...

& At low speed, one can write as a good

approximation: fO)=bv+ s 7

lin quad

—bv & f Ve

where f quad =

lin
20



The physical reasons for these two different terms are as follows: The linear term
arises due to the viscous drag of the medium, and 1s proportional to the viscosity of
the medium and the linear size D of the projectile.

The quadratic term arises from the projectile’s having to accelerate the mass of air
with which 1t 1s continually colliding, and 1s proportional to the density of the
medium and the cross-sectional area I* of the projectile. That is

e The linear term drag 1s proportional to the viscosity, n
* The quadratic term 1s related to the density of the fluid, p.

 We have: f el A
e o Reynolds Number
ﬁin 77 2
where f, =bv & f .=
For a spherical projectile (e.g. canon ball, baseball, drop of rain):
b= D where D is the diameter of the sphere. B=1.6%x10"* Ns/m?

¢c=yD? B and y depend on the nature of the medium ¥ =0.25 Ns*/m*

Using values of these parameters the ratio of quadratic force to

the linear force 1s given by: o1



-

= 1: linear case

4
D
St _CV_ _ 7 v=(1.6x10"=)Dv -
p

e by i
lin 9 1 d 1
| ¢ 1 quadratic case

« Example: Baseball and Liguid Drops

* A baseball has a diameter of D = 7 cm, and travel at
speed of order v=5 m/s.

—_ 2,\
ﬂuad z600 f: _CV v

 Adrop of rain has D = 1 mm and v=0.6 m/s
e

r; ~ 1 Neither term can be neglected.
 Millikan QOil Drop Experiments, D=1.5 mm and v=5x10-
m/s. | 0
quad 51077 f =—bv

ﬁin
22



Physical Differential Equations of the Projectile Motion
I. Projectile Motion Without Air Resistance

For a projectile without air resistance, Newton’'s 2n Law
(equation of motion ) becomes:

ma =mr = > Forces
Thus the first-order differential equation is: X

ma =mg m(@i% + §y +kz) = m(kg) zl

This vector equation represents (in two dimensions) two
separate equations for the xand y components

mX=ma, =0 & my=ma, =0

mZ=mg — ma, =mg y =Vt =Y.t
Or: :
a, =0 VvV, =const. =V, X =Vt =Xl
Lo
a, = g = const. V, =V,, + gt Z=V_t+ “ gt

G / k\ E 1 ZIZ Note:
et L i a, =X=V &V, =X



IT. Projectile Motion with Linear Air Resistance

For a projectile with linear drag, the projectile experiences both
gravity and the drag force, the latter directed in the opposite
direction of its motion. Newton’s 2" Law (equation of motion )

e > Forces mrF = mg —bv
Thus the first-order differential equation for v is:
m@v, + v, +kv,) =m(jg) -b@v, + Jv, +kv,) 1 - 4 7.4
m@v, + iv,) = m(jg) by, + jv, :

This vector equation represents (in two dimensions) t
separate equations for the xand y components

g
o

mv. = —bv

X X
mv, =mg-bv, = v =? = y=?

Notice that the two equations do not depend on one another.

The second equation is the same as the equation of vertical
motion with linear drag (See Chapter 3).

24
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X X

dv b dv b
e L e X =——dt Ian=—£t+c

dt m V m

X

where ¢ is an arbitrary constant of integration. fi=-
Taking the inverse In of both sides, and writing ‘_-

b/m=k, we have:
X

T e s
dt

where the arbitrary constant of integration has morphed into v=v,, at £ 0.

The final solution for the positionis  x(t) = x_ (1_e_m)

where we have introduced the parameter X, =V, 7, the value of

Xas {t > oo
r=1/k=m/b [for linear drag]

25



The final solutions for 9 and x(9 are: v, (t)=v, e™"'" x(t)= xoo(l—e‘“’)

z=m/b [for linear drag]

Graphs of these functions are:

V. -

Xo

X

X_

o0

t

X

o0

=V

XOT

X

v —+

I
T

n
>

T

To get a trajectory including BOTH horizontal and vertical motion, we should
consider y position upward. Thus, our two equations are:

X(t) = vxor(l—e‘t”) y(t) = (vyO +V,, )1(1— e ") —v, t
We can combine these into a single equation by solving the first for ¢

X
t=—7zIn| 1—
and substituting into the second: VioT
V.. +V X
y =R oy i In(l——j
\IND \Jxoz.

This is rather too complicated to understand easily,
but here is a plot of the trajectory compared with one
without air resistance.

] ‘

Y
_ -~ _hoairadrag
el \\\J
\
\
\
me \f%m J
- >
\ X
\
air arag .

\
\

I
|

I

I \
I

[

I \
I
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ITI. Projectile Motion with Quadratic Air Resistance

For a projectile with quadratic drag, the projectile experiences
both gravity and the drag force, the latter directed in theopposite
direction of its motion. Newton’s 2"d Law (equatlon of motion )

becomes’ mr = mg —cv’z
mr =) Forces
mr = mg — cw. i
m(|v + jV + kv = m(kg) — cv(iv, + jV + kv ,) f =02 X
This vector equation represents three separate ‘/T yl

equations for the x, yand z components:

mv, =—-cv, & m\'/y = —CVV, where v = \/>'<2 +y°+12°

X

mv, =mg —cCvv, = \/vf +V, +V;

Notice that the three equations are not of the separable type.
From the first two equations we obtain:

k= —s e )5
vV, _one & Vy _Vyoe where y =c/m
...Problem 12 Chapter 4

27



Motion of Chargeed Particle
I) Motion of Charged Particle in Electric Field

In general, the differential equation of motion for charged particle is:

F :ma:my:q(ﬁﬂ“/xé)
dt , 2
In Electric Field: F =ma=0gE & B=0
For Static Uniform Electric Field:
E—kE E,=E,=0&E, =const.=E

Then:

m(i% + |y + k) = qEk
where ‘/////////////////

X=a,y=a,&’Z=a, *

28



&= Consider particle at rest, at origin, at t=0

y=0 — y=0 fEry y=0 ...The path
° bola

"_qE_ .:£ z:qE2 Is para

Z—F—COnSt. Z =4 om

When the electric field is due to the static charges:
VxE=0 F=gE=VxF =0
This means that the field 1s conservative and there exists a potential
function (P such that: E—_-VbD

The potential energy of a particle of charge ¢ in such a field is then q®
and the total energy: | e
= > mv* + qd = const.

Energy Equation for Motion of Charged Particle in a Uniform
Static Electric Field 29



IT) Motion of Charged Particle in Magnetic Field

&= The force on a charge moving in a magnetic field is:

F=ma=mv=q(VxB)

where ¢ is the charge and B is the magnetic field strength. The equation of
motion is a first-order differential equation in v.

&= In this type of problem, we are often free to choose our coordinate system so
that the magnetic field is along one axis, say the z-axis:

E = k\B ...Static magnetic field
and the velocity can in general have any direction { = f)( 4+ jy 4+ IZZ'
Hence,  yxB=1yB— |xB
Thus, the equation of motion becomes:

m(iX + Jy + k?) = iygB — jxgB

30



&= The three components of the equation of motion are:

MmX=qBy X=wy. X=awy+C,

my=-0BX *y=-wX"y=-wXx+cC,
mzZ =0 =0 / = const.

where @ = gB/m is cyclotron frequency

« the last equation simply says that the component of velocity along B, is
constant. Let’s now focus on the other two components, and ignore the motion

along B. We can then consider the velocity as a two-dimensional vector (V,,
V,) = transverse velocity.

*Solve 2" eq.,
« Sub into 18t eq

* Vice versa %



° r 1 ; dz : 2 dz 7
From 3" equation: E — 0= 7 =const. = L, = E —> L= Zot

- From other equations:
X=ay = o(—oX + Cz) — —@W°X + wa where C, = wa
o X+w°(x—a)=0
The solution is the same as the solution of SHO equation:
X =a+ Acos(at + @)
From this equation we obtain where D =—C, /@
X=—Awosih(act+a) & y=b—Asin(at + )

The form of the path of motion is: (X = a.) ; T (y = b) ° = A2

Thus the projection of the path of motion on the x) plane is a circle of radius A
centered at the point (@,0). The path is spiral (helical) and A is directly proportional

to the speed.



ITT) Motion of Charged Particle in Electromagnetic Field

In this case, the differential equation of motion for charged particle is:

If:ma:mz—\t/:q(EJr\‘/xE)

For Static Uniform Electric and Magnetic Fields:
E-JE& B=kB

Notes: @), B

A
E
A

e

Charged particles accelerated by electric field

Circular motion 1n plane normal to magnetic field

Q.1: Find the resulting motion of charged particle (H.W)



Constrained Motion of a Particle

Definitions:

Unconstrained motion: the patrticle is free of
mechanical guides.
Ex. Airplane, rocket

Constrained motion: the path of particle is
partially or totally determined by restraining
guides.

EX. A train moving along track, a particle sliding
on sphere.

34



For smooth constraint, the force of
constraint is normal to the direction of
motion.

The total force acting on the particle
moving under constraint:

i ~ ..Differential Equation :
ma =F + R for Constrained Motion Smooth Constraint

— — is the external force

R —p is the force of constraint (the reaction of the constraining
upon the particle)

av
[m— .
dt dt

Now, for Smooth Constraint: RIV=Rv=0 B

'I'Il
E
<

3
<
1

Tl
<
_.I_

AJ)
<



F.dr =dT
If the force is conservative, the potential energy function
exist and:

F.dr = -dV
1

TN = Emv2 +V (1) = E = const.

Smooth Constraint & the force is conservative



Example: A particle is placed on top of a smooth sphere
of radius (a). If the particle is slightly disturbed, at
what point will it leave the sphere?

The total force acting on the particle are:

dv e Ag
m— =mg + R
dt
The ra(Ziial components of the equation is:
V
m— =mgcoséd—R |
a ______ okl 2, :

From the energy equation: 1 my2 +\/ e = ConSt'.\Reference
AtpointA: E, = inga

At point B: E; = 3 mv® + mgz

R =mg - —mZg(a—z):m(Sz—Za)
a a a

7 —2a/3 At which point the particle will
leave the sphere

} E,=E.,=» v’ =2g(a—2)

Thus R vanishes when:



Differential and Energy equations for Motion on a Curve

= Curvilinear Motion.
= Movement along a curved line.
= Most jJumps are along a curved line.

In general the Energy Equation is:

dg-i7:
L= C
dt
We can write the equations of the curve in parametric form:
X=X(5), Y= (5) & 7=2(5) '

s is the distance measured along
the curve from the origin .

V(x.y,2)=V(x(5).y(s)2(s)=V(s) | /é?

%mv2 +V(X,y,z)=E=const. Vv




%ms’2 +V (s) = E = const.

...Energy equation for motion of the particle on the curve

Differentiating the energy equation with respect to ¢:

9 v(s)=E] = meg BB
dt "2 ds dt

F =ms§ = av (S) ....Differential equation for motion
.\S ds of the particle on the curve

0

is the component of the external force in the direction of s

39



Example: The Simple Pendulum

A simple pendulum consists of a mass m (of negligible size)
suspended by a string or rod of length L (and negligible mass).

The angle it makes with the vertical varies with time as a sine or

R V(s) = mg(L — Lcos 6)
! . aVvV(s
0 Fr=mS=~ (5)
N ds :
| E; 79
| mS = —mgLsin—(—)
L L L
{ i s=L¢ For small angles:
| \Reference Level g

§+9s=00rd+30=0
: L L
The solution:

s = Acos(w.t + @) or @ = Acos(owt+@) .«



The Isochronous Problem

The differential equation of motion F. = m§ = —-mgsin &

S
If this equation represents SHM

we must have:
Now, we can find x & y In terms

mS =—-ksor s=csiné@

oC}‘XH j\; chllows: V' osg = KX ;
= = cos @ (ccos @) = ccos” & > 2 dy
d@ ds do sin@ = ﬂ
AL
A\ . 0X
. y . S o —n; g_si_n—e___;;
| dx = jc cos“ 0do & j' dy = j csin@cosfdo /\ P mg cosé
0 0 0 0 —4A >
l Smooth Co\nstraint . X
mg

x:%(29+sin26’) & y=%(1—0032(9)

Parametric Equations of a Cycloid




Problems:

P.1: Find the force for each of the following potential
energy function: (3)V =cxyz +c
(b)V =ax® + py* +72° +c¢
(C) L f= Ce—(ax+,8y+;/z)

— £a A@V A@V A@V
(a) Gt

F=—c(ivz+ jxz +kxy }

(b) F=-VV=—i2ax- j]ﬁ}f — F_"-'r:f_-

(c) F= _VV =g\ THFE) (fclf + ,I b+ i’,:f ]'
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P.2: Determine which of the following forces are
conservative: B e jy i
(b) F =iy — jx+kz2

= o A /IR
(c) F=1y+ jx+kz
(a)
] ik
- - | & & .
VxF =|— — =0 conservative
&x dy &z
X vy z
(b)
ik
- - |éd ¢ @
VxF=|— — —|=k(-1-1)=0
ax oy &z
y -x z
(c) ’
i j Kk
_ _ “, =] =] -
VxF = ; ; - k(1-1)=C conservative
cx oy &z
y x z
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P.3: Find the value of the constant ¢ such that each of the
following forces is conservative:

(@) E =ixy + jex2 +kz°
(YE =i(z/y)+ je(xz/y?)+k(x/y)

(b)

1 j k o.p_l0 2 @
o & o o
ox oy oz y
v ox z _f_x e o1 1) ez
' O T 'y v v
2ex—x=0 « o
-——-—=0 c=-1
1 oy
f=— ez -
2 also —+—=0 implies that c=-1 asit must
vy
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@“d of the Lec:tu,.Q

Let Learning Contmue
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