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System of Particle

- Definition:
Consider a system consisting of N particles of masses
m,m.,...,m,. The total mass of the system is y
g1 52 N y m_Zmn

Each particle can be represented by its location I, , velocity
V., and its acceleration @,




 We can see that a system of particles behaves a lot like a
particle itself

It has a mass, position (center of mass), momentum,
velocity, acceleration, and it responds to forces:

p=) P,
« We can also define it's angular momentum, moment of the
force and kinetic energy:

L =2 (F, % P,) dL
=, xF,) T




- Position of the Center of Mass:

The cm of the system can be defined by |

In terms of components, Eq(1) can be written as

1 |

Xem = —Zmnxn |
where x,, y, & z, are the coordinates

% _Zm Y. of the nth particle. |




Taking the derivative of the

V= %Zmnvn ...... Velocity of the cm
Differentiating once again:

Ar %Zmnan ...... Acceleration of the cm

Or ma,, =) ma, =F +F,+-+F

By Newton’s third law, the vector sum of all the internal forces is cancelled, |

and . N
Z |:ext — macm

This Eqg. Is just the Newton's second law for the system of N particles

experiencing a.

The mass center moves as if the entire mass and all of the external forces
were concentrated at that point. |




Example: System of two particles.

y
o el 4
fem = m
m, + m, 1
cm
or written as: r
m, X, + m,X O
/ v A o) cm m,
2
m, + m, -
A X
m1y1 & mz y2 O O m,
\ Yem = crm
m, +m, s
°@®
The velocity and acceleration of the are: m
. dr,, myV, +m,v, < dv_, % m,a, + m,a,

cm
dt m, + m, dt m, +m,




Suppose there is an external force on each particle in
above expt., then

m, a,+ m, a —ZF +ZF —Flext+F +F2€Xt+|:

_)

F:2+ F,, =0, and if write Z lext +Z I:;xt = ZF:H

# e N = . m,a; +m,a
m— m1a1+m2a2_ZFext [acm= = Zj

m; +m,

Newton’s second law for
Z |:ext =(m, +m,)a,, system of two particles

This looks very like a particle of massM, +M, located at the

center of mass.

|
|



Linear Momentum of the system:

For a system Contalnlng N partlcles the total linear momentum

" ZP Zm _mzmv —mv__
=il

m

That Is, the total linear momentum of a system of particles is
the total mass times the velocity of center of mass.

dP av,_. - =
Differentiating w.r.t time, ar =m d’i =ma., = Z g

That I1s, the rate of change of total momentum is the net
external force acting on the system.

It the net external force acting on a system is zero (~q- dt O)

and so the total linear momentum P of the system remains
constant.




Linear Momentum of the system from the cm frame

If we view the system from the cm frame, the velocity \7n "of a

particle in twis ffdme I . 5515

anz(vn _vcm i ._(\7 iy SAYY :(VN _vcm)
( 2 50"\l cm fme
V., Velocity of particle 7 relative to the origin . v,
\7n ' \elocity of particle n2relative to the cm / v 3
Then in this frame, the total momentum is R\
” N N N
P'=>muv,'=>mv,->mv,

N= N= N=
=Mmv_. —MvV_ =




- Newton's 29 Law & Internal Forces

» If forces are generated within the particle system (say from gravity, or
springs connecting particles) they must obey Newton's Third Law
(every action has an equal and opposite reaction)

 This means that internal forces will balance out and have no net effect
on the total momentum of the system

« As those opposite forces act along the same line of action, the torques
on the center of mass cancel out as well

* In the absence of interaction among the particles, the problem is rather
simple.

« One can solve the motion of each particle of the system separately.

« In the presence of interaction, the motion of the system gets
enormously complicated

 With gravitational interaction, the motion of a three-body system in
unsolvable.

10




1 O— Flj 3% 4_,)2‘/@2
P F,
Fy=myg F,=myg
r:31 s,
3
Fs=msg
Internal forces:  F_, F,, etc.

External forces : The weights of the particles
F,F, &F,.
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Application of Newton's Laws. Effective Forces

0

n

-
X
T
+
=
—_
o 1
X
T
S~
Il
1

« Newton’s second law for each particle
P; In a system of AV particles,

N
F +> F, =m3,
j=1

- xm.a.

F. =external force Ifij =internal forces
m;

a, = effective force
.

The system of external and internal forces on
7 a particle is equivalentto the effective force
of the particle.

X

 The system of external and internal forces
acting on the entire system of particles is

eqguivalentto the system of effective forces.
12




Yy

« Summing over all the elements,

N N N n
Mmq 1; + = ma’
o Mmoag N N N N |
4 z(rx .>+zz( F )= xma,)|
i=1 El e =l

X

« Since the internal forces occur in equal and
opposite collinear pairs, the resultant force |
and couple due to the internal forces are|
Zero, - A

2 Fi =2 mig;
S (FxF )= (F xm;a;)

» The system of external forces and the
system of effective forces are |
equipollent by not equivalent R |

S ————— - EE——



- Angular Momentum for a System

|

|

 To calculate the total angular momentum of a system of particle about
a given point, we must add vectorially the angular momenta of all the

Individual particles about this point:
N

E:Z(ﬁ ><mi\7i)

=

d_l: > N (Fu Xmivi)+_ZN:(Fi Xmi\_.ii): ZN:(Fu Xmiéi)

t ]

;1 =1 1=1 //Q Oq@' t
=20 x(F +ZFU) erF+ZerF b
=1 i=1 j=1

e Moment resultant about flxed pomt O of the external forces is equal to |
the rate of change of angular momentum of the system of particles, > ]

T—ZT :E |

» For isolated system, the angular momentum remains constant in both
magnitude and direction Lo 14 |




Example: Show that the anqular momentum for a system is: |
L=(r, xmv_) +Z 'xm.V/)

|

|

N
The angular momentum of the system of particlesis: | — Z(r X M. V. )
We can express each position vector in the form: i1 ' |

. =T.'+I,, Differentiatingw.r.ttime, V. =V.'+V__
are position & velocity of particle /relative to the origin l
: are position & velocity of particle 7relative to the cm
N Az T my

N —
L = (rcm 2 mvcm )+ Z(ﬁ’X m-V-,) — & =0

= , |
Angular momentum of the motion Angular - momentum  of the
of cm (Orbital Part) motion about the cm (Spin Part) |




- Kinetic Energy for a System tom,

Py Vv
(P . 1
 Kinetic energy of a system of particles, Vi cm
N ) N vcm
T:Z%m|v| :%Zml(vl.vl) >
=1 I=1
» Expressing the velocity in terms of the cm frame, 4 V; = Ve +\7i'

Kinetic energy of translation
the cm relative to the origin.

Kinetic energy is equal to kinetic energy of mass

T — 2" | center plus kinetic energy relative to the cm.
\ Kinetic energy of motion of the

of individual particles relative to the cm .

SeeP.7.8 & 7.11 5




- Relative motion and reduced mass

The relative motion of two particles subject only to their mutual
interaction is equivalent to the motion, relative to an inertial
observer, of a particle of mass equal to to the reduced mass
under a force equal to their interaction.

dvi Fi2|
AES™m, | P .- 1 N
Proof: & L ER NI V) Ve =( + F12
dv2 P21 dt( ) my  my
dt > m- )
e — 1 1 1
with vi = v2 =vi2 and = = — + —, u: reduced mass
V) ml mz

Example: sun and eath isolated or earth and moon (isolated...)
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* Motion of Two Interacting Bodies. Two Body Problem

|
|
Let us consider the motion of a system consisting of two bodies
that interact with one another by a central force. |
For isolated system: |

\7cm — const. i.e. center of mass moves with constant velocity |
il S TS My + MLE
Fem :_Zmiri i
For simplicity we take the cm at the origin:
P, =0 m,f, +m,r, =0 |
< ) \ m, _ W 7
m,F/+m,F/ =0 [ =2t ‘
m2 ﬁ le |
The position vector of particlel relative to particle2 is: B ’
= m, + m L =h

A0
I

_ m e
I—,.;LI_ I—;ZI = rll(1+ _1) — rll( lm 2)

2 2
m & . m - _ 7
= ( )R =l . )R O/é 2 |
1 1 m 18
R, . m +m,” |




center of mass is given by Newton’s 2" |aw:

—
—_—

|
The differential equation of motion of particlel relative to the
l

g 2 R mm, = R
mF'=F = f(R)= L 2 R=f(R)—
R m, + m, R |
or | R | | . . *
LR = f(R)— ...motion of particlel relative to particle2. l
R (Motion of Central Field) |
where |
2 1A, — ...is the reduced mass |
m, +m, |

f(R) — is the magnitude of the mutual force between the two
bodies. For two bodies attracting one another by |
gravitation, we have: [

m, m = m,m, R |

f(R)=-G—=32 R=-G (5) '
( ) R2 ’Ll R2 R

This is the same as the equation of a single

particle in an (Inverse-Square-Central field)




P.7.1: A system consists of three particles, each of unit mass, with
positions and velocities as follows:

r=14 V592l
L=J+k V,=]
r, =k V, =1+ |+k

Find the position and velocity of the center of mass. Find also the
linear momentum of the system.

- 1 _ :
. =E§mﬂf -,
o= 1 T T o= 1 . > = 3 - E ]
ml=?[f1+33+33}=q( +H,i'+j-|—ﬁf+ﬁ'f} , o B
s 1 [ n ~ . i R,F";f”
r;,,,,=g[_r+lj+:-ﬁ'a} e L




: —— |
45 =l[i‘1+'ﬁ1 +F3)=1(Ef+j+f+j+£) I

dr ™ 3 3 ’
v =%(3§+2j+£)
\'

5n I ZN:mnVn :mZN: mnvn _mvcm ,'
n=1 n=1 n=1 m |




- — ——
P.7.2: Find also from P.7.1: (a) Kinetic energy for a system (b) Kinetic
energy of the center of mass relative to the origin and (c) Angular
momentum of the system.

@ T= Z mv T=%[23+11+(13+13+13]]=4'
(b) V= ;[3;+;.J+Fr)
lmvj =l:x:3 1[% +22 +1° }: 1
2 2 O 3
Xmivi) ‘




1
P.7.8: Show that the kinetic energy of a two particle system is equal
to:
n /i 2 Ta 2
I = 2 chm . 2 v |
l

Where M=M,+M, V is the related speed before collision and is
1l the reduced mass . (HW)

P.7.11: Show that the angular momentum of a two particle system is
equal to: _ |

L = (F,, xmV,, )+ Rx *

Where M=m,+mMm, |
R is the relative position vector, M is the reduced mass

and V is the relative velocity of the two particles. (HW.) [

23 |




mm . o
211r1r11+1'j|'12(1',1 vz]

:ﬁ[nﬁzﬂz +m§v§ + 2mym,V, -V, + i, (vlz _H’i — 29 -ﬁl)] "

1 1
=Sy +—my;

1 1
Therefore. T = Ei’mff_ + E ﬂvz




FXmMY, =F xmy, +F X n,V,

From eqn. 7.3.2. ﬁ=ﬁ{l+ﬂJ=
m,

Since from eqn. 7.3.1. r:i=—ﬁ




Collisions

Collision in 1-D (Direct or Head-on Collision)
Collision in 2-D (Oblique Collision)




Basic Facts

Students will:

o Identify different types of collisions;

° Determine the changes in kinetic energy during perfectly

inelastic collisions

o Compare conservation of momentum and conservation of

kinetic energy in perfectly inelastic and elastic collisions.

o Find the final velocity of an object in perfectly inelastic and

elastic collisions.

27




Definition of Impulse

dp = F (t)dt
[ dp=[" F(t)dt

E P
J =th F (t)dt

\

Impulse-Momentum Theorem :

The theorem states that the impulse acting on a
system is equal to the change in momentum of
the system

F(1)

At

()

28
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Calculating the Change of Momentum

Ap == pafter = pbefore

= mvafter % mvbefore j
=M (Vafter 3 Vbefore )
For the teddy bear

Ap=m[0—(—V)]=mv |

For the bouncing ball l - X

}E%\ After

9
l
\
Q

Ap =m|v—(—Vv)|=2mv

(a)

(b)

29




Conservation of Momentum

| — — * In an isolated and closed system, the
} o total momentum of the system
I remains constant in time.

— Isolated system: no external forces

— Closed system: no mass enters or
Q System I eaves

— The linear momentum of each

ok colliding body may change
S ——— — The total momentum of the system
Q cannot change.
i
I T == — — f RN v
| After pbefore - ¥ pafter_> p A p g pi - pf

Direct (Head-on) collision
' “ 30




— . e ——— —— e ——

| Ex. Satisfy Conservation of Momentum from

| impulse-momentum theorem

Before collision « Start from impulse-momentum

C Vi %ii ) theorem
" "y F,At =myVv, —mV;

After collision Flet == m2V2f — m2V2i

3 Vi 2 2% ¥
‘ —0 (O™ s Fat--Foa

DﬂirecT (Head- on) collision
« Then MVj; —mVy; =—(MV,; —m,vy)

MVy; + M,V =MV M,V

pbefore v pafter_> pi : pf
31




Types of Collisions

Inelastic collisions: rubber ball and hard ball
— Kinetic energy is not conserved

— Perfectly inelastic collisions occur when the objects
stick together

Elastic collisions: billiard ball |
— both momentum and kinetic energy are conserved

Actual collisions

— Elastic and perfectly inelastic collisions are limiting
cases

— Most collisions fall between elastic and perfectly |
Inelastic collisions

i'
Momentum Is conserved in any collision |
|
:
|

:
32




Elastic Collisions

| An FElastic collision is a collision in which the total momentum and

the total kinetic energy remain constant.

@ ‘) Before collision

M Omentum Vii Vo, /f\\)
y
Cmyy MV, =My, MY, - \J

(a)

‘ Kinetic Energy

After collision

1 1 1 1 7 T,
LmyVg +imvy =3myy +imyvs. L Q O

I P_12. p_gi_ it o ot _(]:)”

2 MEIE, ANl 2T,

ooooooooooooooooo

’ ’ "Direct (Head-on) collision
il 33




A simpler equation can be used in place of the kinetic

energy equation:

gl 1 1 i
Lmyy +imyV, =imy +im,v;,

ml(vli _Vlf ) 67 mz (V22f _V2i)

ml(vli — Vi )(Vli + Vi ) o mz (sz _VZi)(VZf +V2i)

MV MV = MV +MyVo =My (Vy =Vyp ) =M, (Vyr V)|

(Vli + Vo ) = (sz +V2i)

— Vi =V =V, -V

Speed of separation

Speed of approach

”Vlf —sz - Coefficient of restitution
= ]_ for elastic collision
e 1 -
V2i Vli & :1 34




Inelastic Collisions

. Inelastic collision is a collision in which momentum is conserved but

|

~ kinetic energy is not. Moreover, the objects do not stick together.

Kinetic ‘Energy is not constant in inelastic collisions. Some kinetic energy is

converted to sound and/ or heat, or causes deformation. To calculate the amount

of kinetic energy that is lost, Before collision
- l 2 l 2 N / - \\\
T, = > My Vy; +5 MoV, “ TT\ 2y
i / 2 bt 2 —> +X
Tf =5 MV +5 M,V ()
Direct (Head-on) collision
AT T T/ After collision
Perfectly inelastic collision is a collision in which two {/ / *‘\\;—»
ob]ects stick together and move with a common . 4 T’7

Velocity after colliding. m + my

m\Vy,; +M,V,, = (ml + M, )Vf

—» +X

(b) 35
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|
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Summary of Collisions

* In general, for a system of two bodies undergo a collision, the total

linear momentum and total kinetic energy are:

pbefor ~ Dafter = m1\71i I m2\72i 3 ml\_ilf 1 m2\721‘

1 1
§m1v1 +5M V2I

1 1
mv1f +5 M v2f +Q

Q is the net energy loss or gain in kinetic energy that occurs as a

result of collision

O=0r ) 4. Elastic collision (there is no change in kinetic energy)

O=+ive ... Endoergic collision (there is an energy loss)

O=-/ve ..... Exoergic collision (there is an energy gain)

36




Velocity of particles after collision

« Now, we can find the velocities of particlel and particle2 relative to
their velocities before collision. For a head-on collision we have:

le1i + m2v2i - mlvlf S0 rnsz]c ...Conservation of Momentum

V1f _V2f

e — ...Coefficient of restitution ==p Vlf —sz = (C,‘(V2i _Vli)
V2i _Vli /
= (M, —m,)v;; + (M, +MyE)V,
A m, +m,
) (M, +my)vy; +(M, - M)V,
! m, +m,

3i(




From the above equations, we have the following cases:

In an elastic collision, €=1 and in the special case when /77,=/m, we
obtain: - A
Vlf _V2i & V2f Tl
Therefore, the two bodies just exchange their velocities as a result
of collision
In a perfectly inelastic collision, €=0 and V;; =V,

Thus the two objects stick together after the collision, so their final
velocities are the same

In the general case of a direct inelastic collision, €=(0-1) and the
energy loss Qs related to € by: 1

where QZ—ILNZ(].—(&‘Z)
H is the reduced mass 2
V' is the related speed before collision

38
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Comparison One-Dimensional & Two-Dimensional Collisions

Straight Pool, Practice

Before collision

— —
C ) V1 V217< >
m Mo

After collision

iy Vs
—2Q Q_f.

Direct (Head-on) Collision

Oblique Collision

39




Two-Dimensional (Oblique) Collisions

For a general collision of two objects in two-dimensional space, the
conservation of momentum principle implies that the total momentum of
the system in each direction is conserved

pbefor i pafter = m1\71i T m2\72i E ml\_ilf 1 I‘nz\72f

"4

MV, MV =MV + MLV, MV + MV, = MyVyg + MV
X-direction y-dlirection
. . . ___71/
Oblique Collision uysind 4§ A
+y // [
- vypcos 6
C L L»ﬂ' ———————— {—/—/ Y ————————
N b 7
my \.M//\ \\//, =, UgrCOS ¢
mo ‘ [JE;(_ |
—112/~5111(f) ———?2,
(a) Before the collision (b) After the collision

40
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In Oblique Collisions:

e The momentum is conserved in the x direction and In the
y direction. Apply conservation of momentum separately
to each direction.

 |f the collision Is elastic, use conservation of kinetic
energy as a second equation

— Remember, the simpler equation can only be used for
one-dimensional situations. .
(Vli TV ) s (sz +V2i)

41
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Ex.: Oblique Collision (2-D Collision)

Particle 1 is moving at velocity v, and
particle 2 is at rest.

In the x-direction, the initial momentum

IS myvy;

In the )~direction, the initial momentum

IS O

After the collision, the momentum in the

x-direction is:  m, Vv, ,C0S 6+ m,V,.COS ¢

After the collision, the momentum in the

J-direction is: my v Sin 6— m, v, ,Sin ¢
m,Vv,; +0=m,v,, cosé+m,v,, CoS¢
0+0=myv,;, sind-m,v,, sing

If the collision is elastic, apply the kinetic
energy equation 4 1 1
Emlvlzi :Emlvlzf +Em2V§f

© 2007 Thomson Higher Educat

(b) After the collision




 |f the collision is inelastic, the kinetic energy equation is

1 1 1 2 b B
MV = MV RS MV Qe Pi _ Par i3 P +0Q
g 2 2 2m,  2m, 2m,

« The momentum equation In vector notation can be written as:

m1\71i +O:m1\71f +m2\72f e pli 5 plf 2 p2f

P = (Pys + Pye) @ (By + Pyr) = Py + Py

* In the case, when the masses of the incident and target particles
are the same the kinetic energy equation becomes:

0y = Pyy + P

0- (e r:]pﬂ) N=0 ol

For elastic collision Q=0

43




P.7.7: A small car of mass m and initial speed v, collides head-on on an
icy road with a truck of mass 4m going toward the car with initial
speed v,/2 . If the coefficient of restitution in the collision is % , find
the speed and direction of each vehicle just after colliding.
Vo ~vp/2
(M, =M, E)V;; + (M, + M, &)V, - T dm
Vig = > ny |
m, +m,
. (m, +m.e)vy, +(m, —m, eV, S A
Zf = Il‘.' Iu"
m, +m, e
[. .i;rr—l 4m |1 +|.« 4m +l4m ]| —Lx] 0+ :Tm[ Y
5\ 4 )\ 4 N 2)_ L 2 ':_1‘_
) m+4m Sm 2
(LN (1Y)
|,~ mEm |‘+| e J|_f| Both car & truck are traveling in
Vi = i+ Am the initial direction of the truck
5 15 ( v ) with speeds vp/2 & vy/8,

7M™ T3]y [respectively.

|
= = |

Sm 3 44 |




P.7.9: If two bodies undergo a direct collision, show that the loss in

kinetic energy is equal to: [l is the reduced mass

Q:Eﬂvg(l_gz) where V

: IS the related speed before collision

& Is the coefficient of restitution

1 Kinetic Energy of a two particle system |
§- mV Ny ’LN before collision. |

TE- L mV s ; :LN . Kinetic Energy of a two particle system
af’rer' collision.

O=T1T-1 andsmcev_=v_:

1 5, 1 Vv
O=—pv —— " £=—
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¢nd of the Lecty, I




