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Consider a system consisting of N particles of masses 

m1,m2,…,mN. The total mass of the system is  

                                                     

Each particle can be represented by its location     , velocity     

and its acceleration        .                              
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• Definition: 
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• We can see that a system of particles behaves a lot like a 

particle itself 

• It has a mass, position (center of mass), momentum, 

velocity, acceleration, and it responds to forces: 

 

 

• We can also define it’s angular momentum, moment of the 

force and kinetic energy: 
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  In terms of components, Eq(1) can be written as                                                            
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• Position of the Center of Mass: 

The  cm of the  system can be defined by 

where xn , yn & zn are the coordinates 

of the nth particle.  
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Taking the derivative of the cm 
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Differentiating once again:  

……Velocity of the cm 

……Acceleration of the cm 

By Newton’s third law, the vector sum of all the internal forces is cancelled, 

and 
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This Eq. is just the Newton’s second law for the system of N particles 

treated as a single particle of mass m located at the center of mass(      ), 

experiencing           .  

The mass center moves as if the entire mass and all of the external forces 

were concentrated at that point. 
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Example: System of two particles. 

The velocity and acceleration of the cm are:   
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Suppose there is an external force on each particle in 

above expt., then 

This looks very like a particle of mass             located at the 
center of mass.  



  212121212211 FFFFFFamam extext

02112 


FF 


 extextext FFF 21, and if write 

cmext ammF


)( 21 


 extFamam


2211 













21

2211

mm

amam
acm




21 mm 

Newton’s second law for 
system of two particles 



8 

For a system containing N particles, the total linear momentum 

is:  

    

 

 

 

Differentiating w.r.t time, 

That is, the rate of change of total momentum is the net 

external force acting on the system. 

If the net external force acting on a system is zero (                 ) 

and so the total linear momentum      of the system remains 

constant. 
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• Linear Momentum of the system: 

That is, the total linear momentum of a system of particles is 

the total mass times the velocity of center of mass. 
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If we view the system from the cm frame,  the velocity         of a 

particle in this frame is  

    

 

 

 

 

Then in this cm frame, the total momentum is  
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• If forces are generated within the particle system (say from gravity, or 

springs connecting particles) they must obey Newton’s Third Law 

(every action has an equal and opposite reaction) 

• This means that internal forces will balance out and have no net effect 

on the total momentum of the system 

• As those opposite forces act along the same line of action, the torques 

on the center of mass cancel out as well 

• In the absence of interaction among the particles, the problem is rather 

simple. 

• One can solve the motion of each particle of the system separately. 

• In the presence of interaction, the motion of the system gets 

enormously complicated 

•  With gravitational interaction, the motion of a three-body system in 

unsolvable.  

 

• Newton’s 2nd Law & Internal Forces 
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Application of Newton’s Laws.  Effective Forces 

• Newton’s second law for each particle  

Pi  in a system of  N  particles, 
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• The system of external and internal forces on 

a particle is equivalent to the effective force 

of the particle. 

• The system of external and internal forces 

acting on the entire system of particles is 

equivalent to the system of effective forces. 
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• Summing over all the elements, 
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• Since the internal forces occur in equal and 

opposite collinear pairs, the resultant force 

and couple due to the internal forces are 

zero, 
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system of effective forces are 

equipollent by not equivalent. 
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•  To calculate the total angular momentum of a system of particle about 

a given point,  we must add vectorially the angular momenta of all the 

individual particles about  this point: 
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• Moment resultant about fixed point O of the external forces is equal to 

the rate of change of angular momentum of the system of particles, 

 

• For isolated system, the angular momentum remains constant in both 

magnitude and direction (Conservation of Angular Momentum). 

• Angular Momentum for a System 
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The angular momentum of the system of particles is: 

Example: Show that the angular momentum for a system is: 
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• Kinetic energy of a system of particles, 
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Kinetic energy is equal to kinetic energy of mass 

center plus kinetic energy relative to the cm. 

• Kinetic Energy for a System 
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Kinetic energy of motion of the 

individual particles relative to the cm . Kinetic energy of translation of 

the cm relative to the origin. 

See P.7.8 & 7.11 
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• Relative motion and reduced mass 
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Proof: 

The relative motion of two particles subject only to their mutual 
interaction is equivalent to the motion, relative to an inertial 
observer, of a particle of mass equal to to the reduced mass 
under a force equal to their interaction. 

Example: sun and eath isolated or earth and moon (isolated…) 
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• Motion of Two Interacting Bodies. Two Body Problem 

 
 

Let us consider the motion of a system consisting of two bodies 
that interact with one another by a central force. 
For isolated system: 
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The differential equation of motion of particle1 relative to the 
center of mass is given by Newton’s 2nd  law:  
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This is the same as the equation of a single 
particle in an (Inverse-Square-Central field) 
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P.7.1: A system consists of three particles, each of unit mass, with 
positions and velocities as follows: 
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Find the position and velocity of the center of mass. Find also the 
linear momentum of the system. 
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P.7.2: Find also from P.7.1: (a) Kinetic energy for a system (b) Kinetic 
energy of the center of mass relative to the origin and (c) Angular 
momentum of the system.  
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(b) 

(c)  
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i
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P.7.8: Show that the kinetic energy of a two particle system is equal 
to:  

 

Where                         ,      is the related speed before collision and is 
the reduced mass .       (H.W.) 
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P.7.11: Show that the angular momentum of a two particle system is 
equal to:  

 

Where              ,             

              is the relative position vector,          is the reduced mass    

   and         is the relative velocity of the two particles.             (H.W.) 
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• Solution of P. 7.8: 
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• Solution of P. 7.11: 
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•  Collision in 1-D (Direct or Head-on Collision) 

•  Collision in 2-D (Oblique Collision) 

Collisions 
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Basic Facts 

Students will: 
• Identify different types of collisions; 

• Determine the changes in kinetic energy during perfectly 
inelastic collisions 

• Compare conservation of momentum  and conservation of 
kinetic energy in perfectly inelastic and elastic collisions. 

• Find the final velocity of an object in perfectly inelastic and 
elastic collisions. 
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Impulse-Momentum Theorem : 

 The theorem states that the impulse acting on a 
system is equal to the change in momentum of 
the system 

if vmvmpJ




JtFp net




Definition of Impulse 











f

i

f

i

f

i

t

t

t

t

p

p

dttFJ

dttFpd

dttFpd

)(

)(

)(













29 

Calculating the Change of Momentum 
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Conservation of Momentum 

• In an isolated and closed system, the 

total momentum of the system 

remains constant in time.  

– Isolated system: no external forces 

– Closed system: no mass enters or 

leaves 

– The linear momentum of each 

colliding body may change 

– The total momentum of the system 

cannot change.  
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 pp 
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fi pp
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Direct (Head-on) collision 
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Ex. Satisfy Conservation of Momentum from 
impulse-momentum theorem 

• Start from impulse-momentum 

theorem 

 

 

 

• Since 

 

• Then 

 

• So 
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Types of Collisions 

• Momentum is conserved in any collision 

• Inelastic collisions: rubber ball and hard ball 

– Kinetic energy is not conserved 

– Perfectly inelastic collisions occur when the objects 
stick together 

• Elastic collisions: billiard ball 

– both momentum and kinetic energy are conserved 

• Actual collisions 
– Elastic and perfectly inelastic collisions are limiting 

cases 

– Most collisions fall between elastic and perfectly 
inelastic collisions 
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An Elastic collision is a collision in which the total momentum and 
the total kinetic energy remain constant. 

Elastic Collisions 
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• A simpler equation can be used in place of the kinetic 

energy equation: 
2
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Perfectly inelastic collision is a collision in which two 
objects stick together and move with a common 
velocity after colliding. 

fii vmmvmvm )( 212211 

Kinetic Energy is not constant in inelastic collisions. Some kinetic energy is 
converted to sound and/or heat, or causes deformation. To calculate the amount 
of kinetic energy that is lost,  
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Inelastic Collisions 
Inelastic collision is a collision in which momentum is conserved but 
kinetic energy is not. Moreover,  the objects do not stick together. 

Direct (Head-on) collision 
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Summary of Collisions 

• In general, for a system of two bodies undergo a collision, the total 
linear momentum and total kinetic energy are: 

Qvmvmvmvm ffii  2
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1

ffiiafterbefor vmvmvmvmpp 22112211




Q  is the net energy loss or gain in kinetic energy that occurs as a 
result of collision 

Q=0       …..Elastic collision (there is no change in kinetic energy) 

Q=+ive  …..Endoergic collision (there is an energy loss) 

Q=-ive  …..Exoergic collision (there is an energy gain) 
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• Now, we can find the velocities of particle1 and particle2 relative to 

their velocities before collision. For a head-on collision we have: 

ffii vmvmvmvm 22112211 

Velocity of particles after collision 

…Conservation of Momentum 
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From the above equations, we have the following cases: 

• In an elastic collision, ε=1 and in the special case when m1=m2 we 
obtain: 

ifif vvvv 1221 & 
Therefore, the two bodies just exchange their velocities as a result 

of collision 

• In a perfectly inelastic collision, ε=0 and  

Thus the two objects stick together after the collision, so their final 
velocities are the same 

ff vv 21 

• In the general case of a direct inelastic collision, ε=(0-1) and the 

energy loss Q is related to ε by: 

)1(
2

1 22   vQwhere 



v

is the reduced mass 

is the related speed before collision 



39 

Comparison One-Dimensional & Two-Dimensional Collisions 

Oblique Collision 

Direct (Head-on) Collision 



40 

Two-Dimensional (Oblique) Collisions 

• For a general collision of two objects in two-dimensional space, the 
conservation of momentum principle implies that the total momentum of 
the system in each direction is conserved 

Oblique Collision 

fxfxixix vmvmvmvm 22112211 

x-direction 

ffiiafterbefor vmvmvmvmpp 22112211




fyfyiyiy vmvmvmvm 22112211 

y-direction 
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     In Oblique Collisions: 

•  The momentum is conserved in the x direction and in the 
y direction. Apply conservation of momentum separately 

to each direction. 

• If the collision is elastic, use conservation of kinetic 

energy as a second equation 

– Remember, the simpler equation can only be used for 

one-dimensional situations. )()( 2211 iffi vvvv 
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Ex.: Oblique Collision (2-D Collision) 

• Particle 1 is moving at velocity      and 

particle 2 is at rest. 

• In the x-direction, the initial momentum 

is m1v1i 

• In the y-direction, the initial momentum 

is 0 

• After the collision, the momentum in the 

x-direction is:    m1v1f cos q  m2v2f cos f 

• After the collision, the momentum in the 

y-direction is:   m1v1f sin q  m2v2f sin f 

 

 

 

• If the collision is elastic, apply the kinetic 

energy equation 
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• If the collision is inelastic, the kinetic energy equation is 
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• The momentum equation  in vector notation can be written as: 
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• In the case, when the masses of the incident and target particles 

are the same the kinetic energy equation becomes: 
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For elastic collision Q=0: 
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P.7.7: A small car of mass m and initial speed v0 collides head-on on an 
icy road with a truck of mass 4m going toward the car with initial 
speed v0/2 . If the coefficient of restitution in the collision is ¼ , find 
the speed and direction of each vehicle just after colliding. 
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Both car & truck are traveling in 
the initial direction of the truck 
with speeds v0/2 & v0/8, 
respectively. 
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P.7.9: If two bodies undergo a direct collision, show that the loss in 
kinetic energy is equal to: 

                                  where 

 

... Kinetic Energy of a two particle system 
before collision. 

)1(
2

1 22   vQ



v

is the reduced mass 

is the related speed before collision 

 Is the coefficient of restitution 

... Kinetic Energy of a two particle system 
after collision. 
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