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Principle Characteristics of the Planets

Distance Revolution
from Sun Period
(AU) (Years)

Diameter Mass Density
(km) (10°% kg) (9/cm?3)

0.39 0.24 4878 3.3 5.4
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the eccentricity of the ellipse, e, tells
you how elongated it is.

« e=0isacircle, e<1 for all ellipses
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Orbit Examples

 Pluto has the highest eccentricity

of any planet
_ Venus 0.007 Uranus 0.048
- ePIuto =0.25

Earth 0.017 Neptune | 0.007

eccentricity of the planets
Mercury | 0.206 Saturn 0.054

» Halley’s comet has an orbit with
high eccentricity Mars 0.094 Pluto 0.253
Jupiter | 0.048

- eHalley’s comet — 0.97




MPlanet Orbits

* The Sun Is at one focus
— Nothing is located at the other focus

* Aphelion (2721100 Is the point farthest away
from the Sun

— The distance for aphelionis a+ ¢




/Kﬂr’s §econd law

1 month

As a result, planets move fastest when they are near the Sun
(perihelion) and slowest when they are far from the Sun
(aphelion).



Q. If the planet sweeps out equal areas In equal
times, does It travel faster or slower when far from
the Sun?
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Area AA of the wedge is the area of
the triangle i.e.

AA=(r2A0)/2;

dA/dt = r2(de/dt)/2= réw/2
But angular momentum L=mréw
Then dA/dt= réw/2=L/2m

In central field L is constant
because in central field:

Or in Fig.(b):
dA=|r x ar|/2=....=L/2m




Example: Kepler’s Second =awsand Angular Momentum
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Because the gravitational force exerted on a planet by the Sun results in
no torque, the angular momentum L of the planet is constant.

This is Keper’s second law which states that the radius vector from the Sun
to a planet sweeps out equal areas in equal time intervals.




et @®BTEL’s Third Law

 The square of the orbital period of any planet Is
proportional to cube of the average distance from the
Sun to the planet.

— T iIs the period of the planet

— a s the length of the semi-major axis ==
— For orbit around the Sun, K = Kg = 2.97x10-%° s?/m?3

— K is independent of the mass of the planet and K=1 in A.U.

— 1AU.=15x108km
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This zoomout box makes
Mars = It easier to see the data
' points for the inner planets.
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The straight line tells us that the
square of each planet's orbital
period equals the cube of its
average distance from the Sun.

200 400 600 800 1,000

average distance” (AU3)
from Sun
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Ws of Kepler’s Third Law

é I 2 3 — T2 3
ApprOXImately’ T earth/a earth — T planet/a planet

« Sometimes we use Earth-years and Earth-distance to the
Sun (1 A.U.) as units.

» The constant of proportionality depends on the mass of
the Sun--and that’s how we know the mass of the Sun.

« We can apply this to moons (or any satellite) orbiting a
planet, and then the constant of proportionality depends
on the mass of the planet.

 Newton’s law of gravitation, and Newton’s second law
(net force = mass x acceleration) can be used to derive
Kepler’s three laws of planetary motion.



/}E{W\ of “Kcpler’s Third Law from
cwton’s law of gravitation, and Newton’s second law

2
. Can be predicted from the inverse square AT

EW r’
e Start by assuming a circular orbit v 2zr
 The gravitational force supplies a T

cen_tripetal force o _ A7
K. IS a constant | oM

This can be extended to an elliptical orbit
Replace r with a
— Remember ais the semimajor axis

Sun

K. is independent of the mass of the planet, and so is valid for any planet

 If an object is orbiting another object, the value of K will depend on the object
being orbited

- For example, for the Moon around the Earth, Ky, is replaced with K¢,



Calculate the mass of the Sun using the fact that the period of the Earth’s orbit around the
Sun is 3.16x10’s, and its distance from the Sun is 1.496x10"m.

2
6.67 %10 x(3.16x10")

=1.99%x10°°kg




/fbital Paths

- Extending Kepler’s Law,
Newton found that ellipses
were not the only orbital
paths.

» possible orbital paths

— circle —e=0
— ellipse - e<]
— parabola —e=1

— hyperbola —e>1



}bimmle tha central force field

ma=F = f(r)f

m[(F —r&?)f +(ré +2r0)0] = f (r)f
m(ik —ro?) = f(r) ...(1)
ro+2ré=0 ..(2)

Eq.(2)*r > r?0+2ri@d=0— % (r?0) =0

r20 = const. — L_ hl| Angular momentum per unit mass
m (Keper’s second law)




To find the equation of the orbit from Eq.(1), we shall use the
variable u defined by:

du,dé

dH(dH) dt

1 1 ]
oMot =)= fu)




Thus, the differentia equation of the orbit of a particle moving
under a central field is:

+ |f wehave f(u™)— weobtain u=u(é)

* from u =u(@) — weobtain f(u™)




yuation of the orbit

In a central force field the force is a function of r only and it is

conservative. Thus,

T+V =const.= E —>%mv2 +V(r)=E

%m(r2 +r?0>)+V(r)=E

the energy equation of the orbit of a partic
field is:
1

2

e moving under a central

—th[((‘j—‘;)2 +u2)+VUY =E



Ex.: A particle in a central field moves in the spiral orbit r=c¢¥.

(@) Determine the form of the force function using differential
equation of the orbit.

(b) Determine the form of the force function using energy equation
of the orbit.

(c) Determine how the angle @ varies with the time.

=99‘4 — 6cu®
C

—f@u™)
mh?u?

> f (U™) =—mh*(6cu® +u°)

6CU® +U =




1 2 d_uz 2 -1y _
2mh [(dé?) +u°)+VUu)=E

du (\/a) _ _9pl/2 302
C

=—[0—%mh2[‘fzc =)

- f(r) = —th(f—HF)
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Ex.. A particle in a central field moves in a logarithmic spiral orbit
given by, r=k e @© where k and a are constants.

(a) Determine the form of the force function using differential
equation of the orbit.

(b) Determine the form of the force function using energy equation
of the orbit.

(c) Determine how the angle @ varies with the time.



EX. (H
(a) Or

W.)
0iIts of a particle In an inverse square field.

(b) Or

nital energies of a particle in the inverse square

field.

1
2

f(r)= _r_k2 — f(u™)=—ku’

= mhz[(((;l—l;)2 +u’)+V@Uu)=E

V (r) = —% —V(@Uu)=—ku
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