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Mercury 0.39 0.24 4878 3.3 5.4 

Venus 0.72 0.62 12102 48.7 5.3 

Earth 1.00 1.00 12756 59.8 5.5 

Mars 1.52 1.88 6787 6.4 3.9 

Jupiter 5.20 11.86 142984 18991 1.3 

Saturn 9.54 29.46 120536 5686 0.7 

Uranus 19.18 84.07 51118 866 1.2 

Neptune 30.06 164.82 49660 1030 1.6 

Pluto 39.44 248.60 2200 0.01 2.1 

Name 

Distance 
from Sun 

(AU) 

Revolution 
Period 
(Years) 

Diameter 
(km) 

Mass 
(1023 kg) 

Density 
(g/cm3) 

Principle Characteristics of the Planets 



Planets follow elliptical orbits, with the Sun at one 

focus of the ellipse. 

Kepler’s first law 



Orbit Examples 

• planet’s orbit the Sun in ellipses, with 
the Sun at one focus. 

• the eccentricity of the ellipse, e, tells 
you how elongated it is. 

• e=0 is a circle, e<1 for all ellipses 

e=0.02           e=0.4 e=0.7 

• Pluto has the highest eccentricity 

of any planet 

– ePluto = 0.25 

• Halley’s comet has an orbit with 

high eccentricity 

– eHalley’s comet = 0.97 

Mercury 0.206 Saturn 0.054 

Venus 0.007 Uranus 0.048 

Earth 0.017 Neptune 0.007 

Mars 0.094 Pluto 0.253 

Jupiter 0.048 

eccentricity of the planets 



Notes About Ellipses Planet Orbits 

• The Sun is at one focus 

– Nothing is located at the other focus 

• Aphelion (afelion) is the point farthest away 
from the Sun 

– The distance for aphelion is a + c 
• For an orbit around the Earth, this point is called the 

apogee (apogee) 

• Perihelion is the point nearest the Sun 

– The distance for perihelion is a – c 
• For an orbit around the Earth, this point is called the 

perigee (perigee) 



The line joining the Sun and a planet sweeps out equal 

areas in equal time intervals. 

Kepler’s second law 

As a result, planets move fastest when they are near the Sun 
(perihelion) and slowest when they are far from the Sun 
(aphelion). 

 



Q. If the planet sweeps out equal areas in equal 

times, does it travel faster or slower when far from 

the Sun? 

Same Areas 



Law of Areas  
A line that connects a planet to the 
sun sweeps out equal areas in the 
plane of the planet’s orbit in equal 
time intervals; that is the rate 
dA/dt at which it sweeps out area A 
is constant 
Area A of the wedge is the area of 
the triangle i.e. 
A=(r2)/2;  
dA/dt = r2(d/dt)/2= r2/2 
But angular momentum L=mr2 
Then dA/dt= r2/2=L/2m 
In central field L is constant 
because in central field: 
Or in Fig.(b): 
  dA=|r x dr|/2=….=L/2m 
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Example: Kepler’s Second Law and Angular Momentum 

Conservation. 

Since the gravitational force acting on the planet is always toward 
radial direction, it is a conservative central force field. Therefore the 

torque acting on the planet by this force is always 0. 

Consider a planet of mass Mp moving 

around the Sun in an elliptical orbit. 

Since torque is the time rate change of angular momentum L, the 

angular momentum is constant. 
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Because the gravitational force exerted on a planet by the Sun results in 

no torque, the angular momentum L of the planet is constant.  

Since the area swept by the motion of the planet 

is:  
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This is Keper’s second law which states that the radius vector from the Sun 

to a planet sweeps out equal areas in equal time intervals.  



Kepler’s Third Law 

• The square of the orbital period of any planet is 
proportional to cube of the average distance from the 
Sun to the planet. 

 

 

 

– T is the period of the planet 

– a is the length of the semi-major axis  

– For orbit around the Sun, K = KS = 2.97x10-19 s2/m3 

– K is independent of the mass of the planet and K=1 in A.U. 

–             1 A.U. = 1.5 x 108 km 
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G is the gravitational constant = 6.673 x 10-11 m3 kg-1 sec-2 



Kepler’s Third Law 



• Approximately, T2
earth/a

3
earth = T2

planet/a
3

planet 

• Sometimes we use Earth-years and Earth-distance to the 

Sun (1 A.U.) as units. 

• The constant of proportionality depends on the mass of 

the Sun--and that’s how we know the mass of the Sun. 

• We can apply this to moons (or any satellite) orbiting a 

planet, and then the constant of proportionality depends 

on the mass of the planet. 

• Newton’s law of gravitation, and Newton’s second law 

(net force = mass x acceleration) can be used to derive 

Kepler’s three laws of planetary motion. 

 

Some Important Points of Kepler’s Third Law 



Example: Derivation of Kepler’s Third Law from 

Newton’s law of gravitation, and Newton’s second law 

• Can be predicted from the inverse square 
law 

• Start by assuming a circular orbit 

• The gravitational force supplies a 
centripetal force 

• Ks is a constant 
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• This can be extended to an elliptical orbit 

• Replace r  with a 

– Remember a is the semimajor axis 

 

• Ks is independent of the mass of the planet, and so is valid for any planet 

2
2 3 3

Sun

4
ST a K a

GM

 
  
 

• If an object is orbiting another object, the value of K will depend on the object 

being orbited 

• For example, for the Moon around the Earth, KSun is replaced with KEarth 



Example 
Calculate the mass of the Sun using the fact that the period of the Earth’s orbit around the 

Sun is 3.16x107s, and its distance from the Sun is 1.496x1011m. 

Using Kepler’s third law. 

The mass of the Sun, Ms, is 
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Orbital Paths 

• Extending Kepler’s Law, 

Newton found that ellipses 

were not the only orbital 

paths. 

• possible orbital paths 

– circle (bound) – e=0 

– ellipse (bound)  - e<1 

– parabola (unbound) – e=1 

– hyperbola (unbound) – e>1 



Orbit of a particle in a central force field 
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(Keper’s second law) 
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To find the equation of the orbit from Eq.(1), we shall use the 

variable u defined by: 

2

2
22

222

)()(

111














d

ud
uh

dt

d

d

du

d

d
h

d

du

dt

d
hr

d

du
h

d

du

ud

du

dt

d

u
u

u
r









)()( 2 rfrrm  

Using the above variables Eq.(1) becomes: 

)()
1

(
1 142

2

2
22  uf

u
fuh

u
m

d

ud
umh





Thus, the differentia equation of the orbit of a particle moving 

under a central field is: 

22

1

2

2 )(
)(

umh

uf
u

d

ud 




)()(

)()(

1

1









ufobtainweuufrom

uuobtainweufhaveweIf







Energy Equation of the orbit 
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In a central force field the force is a function of r only and it is 

conservative. Thus, 
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the energy equation of the orbit of a particle moving under a central 

field is: 
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Ex.: A particle in a central field moves in the spiral orbit  r=cΘ2.  

(a) Determine the form of the force function using differential 

equation of the orbit. 

(b) Determine the form of the force function using energy equation 

of the orbit. 

(c) Determine how the angle Θ  varies with the time. 
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Ex.: A particle in a central field moves in a logarithmic spiral orbit 

given by, r=k e α Θ  where k and α are constants.  

(a) Determine the form of the force function using differential 

equation of the orbit. 

(b) Determine the form of the force function using energy equation 

of the orbit. 

(c) Determine how the angle Θ  varies with the time. 



Ex. (H.W.) 

(a) Orbits of a particle in an inverse square field. 

(b) Orbital energies of a particle in the inverse square  

field.  
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