The Average Nearest Neighbor ratio is given as:

$$ANN = \frac{\bar{D}_O}{\bar{D}_E} \tag{1}$$

where $ar{D}_O$ is the observed mean distance between each feature and its nearest neighbor:

$$\bar{D}_O = \frac{\sum\limits_{i=1}^n d_i}{n} \tag{2}$$

and $ar{D}_E$ is the expected mean distance for the features given in a random pattern:

$$\bar{D}_E = \frac{0.5}{\sqrt{n/A}} \tag{3}$$

In the above equations, d_i equals the distance between feature i and it's nearest neighboring feature, n corresponds to the total number of features, and A is the area of a minimum enclosing rectangle around all features, or it's a user-specified Area value.

The average nearest neighbor z-score for the statistic is calculated as:

$$z = \frac{\bar{D}_O - \bar{D}_E}{SE} \tag{4}$$

where:

$$SE = \frac{0.26136}{\sqrt{n^2/A}} \tag{5}$$

z-score (Standard Deviations)	p-value (Probability)	Confidence level
< -1.65 or > +1.65	< 0.10	90%
< -1.96 or > +1.96	< 0.05	95%
< -2.58 or > +2.58	< 0.01	99%