Lect. 6

Septoria Leaf Spot (leaf blotch)

Pathogen: Mycosphaerella graminicola (Septoria tritici)
Hosts: Mainly wheat, but also barley and most small grains and many grasses can be infected

Symptoms:

- brown oval leaf spots (lesions) which contain the diagnostic small black fruiting bodies (pycnidia) occur on older leaves.
- Several lesions may turn large areas of leaf brown.

Importance:

- Can be the most damaging foliar disease in higher rainfall areas.
- The pathogen can cause significant yield losses every year.

Risk factors:

- Susceptible varieties
- Rainfall: high-risk septoria periods occur during 'splashy' or prolonged rain.

Environmental conditions:

- Optimum temperatures are $15-20^{\circ} \mathrm{C}$.
- Symptoms appear after a latent period $(14-28)$ days after infection, this period reduces as temperatures rise.
- Requires more than 24 hours of wetness.

Survival:
Can survive for several years in the form of mycelium, pycnidia and pseudothecia in wheat residues.

Control:

- Resistant cultivars.
- Pathogen-free seed.
- Crop rotation.
- Destruction of infested straw, stubble, and volunteer wheat.
- Foliar fungicides.
- Fungicide seed treatment.

Net Blotch:
 Drechslera teres
 (Pyrenophora teres)

Hosts:
 Most current barley varieties are susceptible. Other crops are not affected.

Symptoms:

1.net type symptom

A characteristic "netting" of the dark,
chocolate-colored blotches on leaves,
A characteristic "netting" of the dark,
chocolate-colored blotches on leaves, sheaths and glumes
2. oval spot type

Importance:

- Very important disease of barley.
- Barley can be attacked anytime during growing season.
- Can cause sever yield losses in years with abundant rains.

Survival:

- Overwinters on seeds or crop residue as pseudothecia and in the seeds as mycelium.
- From primary inoculum (barley stubble), the fungus can rapidly spread to new plants.
- \quad Seed-borne infection is less important and is transmitted from one geographical area to another.

Environmental conditions:

- \quad The optimum temperature for spore production an infection in $15-25^{\circ} \mathrm{C}$.
- Spore release occurs at near 100% relative humidity.
- Infection of barley leaves is greatest when humid, moist conditions persist for 10 to 30 hours or longer.

Control:

1- Seed treatments.
2- Fungicide sprays.
3- Resistant varieties
4- Crop rotation.
5- Manage crop residues when not rotating crops.

Wheat Streak Mosaic Virus (WSMV)

Disease Symptoms:

1- Plants can die prematurely or fail to grow, becoming stunted .
2- Have spotted and yellow streaked leaves.
3- Heads can be sterile or can contain small to shriveled grain.

Hosts:

Wheat, some grasses.

Disease Spread:

The mites, known by the scientific name of Aceria tulipae carry the virus from diseased to healthy plants.

Losses From WSMV:

may cause losses that range from minimal to complete crop failure.

Yield loss is dependent on:

- The growth stage at the time of the infection.
(The earlier the growth stage at which infection occurs, the greater the loss).
- Temperature and moisture.

Warm, dry conditions stress the crop and favor mite development and movement, and increase losses.

Control:

- Control volunteers, grassy weeds and mites.
- Seed treatment insecticide serves as the first line of defense.
- Cultural practices (planting dates).

Early planting may allow crop to develop prior to an arrival of large populations of aphids which may be carrying the virus.

Root Lesion Nematodes

- Round worms that parasite agricultural crops in every part of the world.

Two species of root lesion nematode are damaging to wheat:

- Pratylenchus thornei and
- Pratylenchus neglectus

Wheat Gall Nematode

Sympotoms:

- Roots are thinner and less branched than normal
- stunting,
- yellowing of older leaves
- reduced tillering
- loss in kernel weight.

Patchiness, stunting and yellowing of cereal

Importance: (Yield losses)

- Winter wheat losses can be up to 37%
- Greatest losses occur in low-rainfall, annually cropped wheat.

Penetration:

The parasitic nematode penetrates and moves into plant root cells using its sharp, hollow stylet

Survival:

They can enter a resting stage when field conditions are dry and hosts are not available.
They revive (recover) under favorable conditions.

Spread:

Are dispersed from field to field on farm equipment, shoes, animals and by wind.

Control:

- Rotations with resistant or non-host.
- Resistant crops suppress multiplication and may improve yields
- Healthy soils and good nutrition
- Control of host weed species and crop volunteers is important.

