Salahaddin University-Erbil/College of Science Department of Computer Science & IT

Computer Graphics

Lecture 14

Tarza Hasan

tarza.abdullah@su.edu.krd

Clipping

Polygon Clipping

Sutherland-Hodgeman Polygon Clipping Algorithm

Polygon Clipping

To clip a **polygon**, we cannot directly apply a lineclipping method to the individual polygon edges because this approach would produce a series of **unconnected line segments** as shown in figure .

Polygon Clipping (Cont...)

The clipped polygons must be a bounded area after clipping as shown in figure.

• For polygon clipping, we require an algorithm that will generate one or more **closed areas** that are then scan converted for the appreciate area fill.

• The output of a polygon clipper should be a **sequence of vertices** that defines the clipped polygon boundaries.

Sutherland-Hodgman Polygon Clipping

Clip a polygon by processing the polygon boundary as a whole against each window edge.

- Processing all polygon vertices against each clip rectangle boundary in turn.
- Beginning with the initial set of polygon vertices, we could first clip the polygon against the left rectangle boundary to produce a new sequence of vertices.

• The new set of vertices could be successively passed to a **right** boundary clipper, a **bottom** boundary clipper, and a **top** boundary clipper, a right boundary clipper.

A technique for clipping areas developed by **Sutherland & Hodgman**. **Basic Concept:** Simplify via separation, clip the whole polygon against one edge Repeat with output for other 3 edges

Put simply the **polygon** is clipped by comparing it **against** each boundary in turn. \wedge

⁷_{of} Sutherland-Hodgman Polygon Clipping (cont...)

Let (P_1, P_2, \dots, P_N) be the vertex list of the Polygon to be clipped and E be the edge <u>clipping window</u>.

We **clip** each **edge** of the polygon in turn against each window **edge E**, forming **a new polygon** whose vertices are determined as follows:

Four cases:

There are **four** possible **cases** when processing vertices in sequence around the polygon.

- As each pair of adjacent polygon vertices is passed to a next window boundary clipper, we make the following tests:
- **1.** If the first vertex is outside the window boundary
- and the **second vertex** is **inside**

Then , both the intersection point of the polygon edge with the window boundary and the second vertex are added to the output vertex list.

2. If both input vertices are **inside** the window boundary.

Then, only the second vertex is added to the output vertex list.

¹¹ ^{of}₂₃ Sutherland-Hodgman Polygon Clipping (cont...)

3. If the first vertex is inside the window boundary and the second vertex is outside.

Then, only the edge intersection with the window boundary is added to the output vertex list.

4. If both input vertices are **outside** the window boundary.

Then, nothing is added to the output vertex list.

13

of 23

¹⁴ Sutherland-Hodgman Polygon Clipping (Example 1)

Left Clipper Vertices list is passed stage by estage to clippers Order: Left, Right, Bottom, Top Initial vertices: **P1** P2 $\mathbf{P4}$ P2 **P**3 P4 Line segment (p1,p2), both inside \rightarrow save p2. P3 Left clipper vertices: Line segment (p2,p3), both inside \rightarrow save p3. P2 Line segment (p3,p4), both inside \rightarrow save p4. **P**3 P4 Line segment (p4,p1), both inside \rightarrow save p1.

P1

¹⁵ Sutherland-Hodgman Polygon Clipping (Example 1)

16 Sutherland-Hodgman Polygon Clipping (Example 1)

of 23

	e 11
	P3
	P3'
	P4'
	P1
	P2
E	Bottom clipper vertices:
F	23
F	> 3'
F	> 4'
F	21
F	22

Right clipper vertices:

¹⁷ Sutherland-Hodgman Polygon Clipping (Example 1)

¹⁸ Sutherland-Hodgman Polygon Clipping (Example)

Polygon after clipping

P3

Clip the following figures with Sutherland-Hodgman polygon clipping algorithm

