Salahaddin University-Erbil/College of Science
Department of Computer Science \& IT

Computer Graphics

Lecture 14

Tarza Hasan

tarza.abdullah@su.edu.krd

*Clipping

*Polygon Clipping
*Sutherland-Hodgeman Polygon Clipping Algorithm

To clip a polygon, we cannot directly apply a lineclipping method to the individual polygon edges because this approach would produce a series of unconnected line segments as shown in figure .

Polygon Clipping (Cont...)

The clipped polygons must be a bounded area after clipping as shown in figure.

- For polygon clipping, we require an algorithm that will generate one or more closed areas that are then scan converted for the appreciate area fill.
- The output of a polygon clipper should be a sequence of vertices that defines the clipped polygon boundaries.

Clip a polygon by processing the polygon boundary as a whole against each window edge.

- Processing all polygon vertices against each clip rectangle boundary in turn.
- Beginning with the initial set of polygon vertices, we could first clip the polygon against the left rectangle boundary to produce a new sequence of vertices.
- The new set of vertices could be successively passed to a right boundary clipper, a bottom boundary clipper, and a top boundary clipper, a right boundary clipper.

Sutherland-Hodgman Polygon Clipping (cont...)

A technique for clipping areas developed by Sutherland \& Hodgman. Basic Concept: Simplify via separation, clip the whole polygon against one edge Repeat with output for other 3 edges
Put simply the polygon is clipped by comparing it against each boundary in turn.

Original Area

Clip Left

Clip Right

Clip Top

Clip Bottom

Let $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{\mathrm{N}}\right)$ be the vertex list of the Polygon to be clipped and E be the edge clipping window.

We clip each edge of the polygon in turn against each window edge E, forming a new polygon whose vertices are determined as follows:

Sutherland-Hodgman Polygon Clipping (cont...)

Four cases:

$$
\text { In } \rightarrow \text { In }
$$

save ending vert
Inside
(1 output)

Out \rightarrow In
save new clip vert and ending vert

Entering
(2 outputs)

In \rightarrow Out
save new clip vert Leaving (1 output)

Out \rightarrow Out
save nothing
Outside
(0 output)

Sutherland-Hodgman Polygon Clipping (cont...)

There are four possible cases when processing vertices in sequence around the polygon.

As each pair of adjacent polygon vertices is passed to a next window boundary clipper, we make the following tests:

1. If the first vertex is outside the window boundary and the second vertex is inside

Then, both the intersection point of the polygon edge with the window boundary and the second vertex are added to the output vertex list.
2. If both input vertices are inside the window boundary.

Then, only the second vertex is added to the output vertex list.

Sutherland-Hodgman Polygon Clipping (cont...)

3. If the first vertex is inside the window boundary and the second vertex is outside.

Then, only the edge intersection with the window boundary is added to the output vertex list.

$\underbrace{\substack{2 \\ \text { d }}}_{\substack{12 \\ 20}}$ Sutherland-Hodgman Polygon Clipping (cont...)
4. If both input vertices are outside the window boundary. Then, nothing is added to the output vertex list.

Clippers and clipping stages

Left Clipper

Right Clipper

Bottom Clipper
Top Clipper

Sutherland-Hodgman Polygon Clipping (Example 1)

Sutherland-Hodgman Polygon Clipping (Example 1)

Sutherland-Hodgman Polygon Clipping (Example 1)

Line segment ($\mathrm{p} 2, \mathrm{p} 3$), both inside \rightarrow save p 3 .
Line segment ($\mathrm{p} 3^{\prime}, \mathrm{p} 4^{\prime}$), both inside \rightarrow save $\mathrm{p} 4^{\prime}$.
Line segment ($\mathrm{p} 4, \mathrm{p} 1$), both inside \rightarrow save p 1 .
Line segment $(\mathrm{p} 1, \mathrm{p} 2)$, both inside $\boldsymbol{\rightarrow}$ save p 2 .

Bottom clipper vertices:
Right clipper vertices:

Sutherland-Hodgman Polygon Clipping (Example 1)

Top clipper vertices:

Sutherland-Hodgman Polygon Clipping (Example)

Polygon after clipping

19
 Activity

Clip the following figures with Sutherland-Hodgman polygon clipping algorithm

