Contents

No.	Experiment Name	Page No.
1.	Characteristic curves of Transistor using Point-by-Point Method	2
2.	Common emitter amplifier	4
3.	Common base amplifier	6
4.	Common Collector Amplifier	8
5.	Two-stage amplification using RC connection	10
6.	Differential Amplifier	11
7.	RC phase-shift oscillator	12
8.	Colpitts LC Oscillator	13
9.	HARTLY LC OSCILLATOR	14
10.	Pulse Generator(IC 555)	16
11.		19
12.		23
13.		
14.		25
15.		26
16.		28
17.		30

Experiment (1)

Characteristic curves of Transistor using Point-by-Point Method

Aim of the Exp.:

To construct measurement circuit use power supply and Avometer for drawing the important characteristics of transistor.

Apparatus and Components

1. Transistor type BC177
2. Constant resistant, $220 \Omega, 10 \mathrm{~K} \Omega$
3. Two Potentiometers, $1 \mathrm{~K} \Omega$
4. Micrometer, CRO

Note:

1. The transistor BC177 is of the type PNP and has the following values:

$$
\begin{array}{ccc}
\mathrm{I}_{\mathrm{c}}(\max)=100 \mathrm{~mA} & \mathrm{I}_{\mathrm{B}}(\max)=50 \mathrm{~mA} & \mathrm{~V}_{\mathrm{CBO}}=45 \mathrm{~V} \\
\mathrm{~V}_{\text {EBO }}=5 \mathrm{~V} & \mathrm{P}=300 \mathrm{~mW} &
\end{array}
$$

2. The most widely circuits for the transistor are the Common emitter circuit
(CE), so, the characteristic curves of transistor BC177 studied by connect the emitter with the Earth (i.e. reference).

Fig. 1: Experiment set up of the circuit.

Part 1: Input properties

1. Connect Avometer V_{BE} (voltmeter or CRO).
2. For the same values of I_{c} in Table(1), read $\mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\mathrm{BE}}$. Recognize that I_{B} varies slowly. Why? Write the results according to the Table(2).

Table (2): Input properties.

$\mathrm{I}_{\mathrm{C}} / \mathrm{mA}$	0.1	0.5	1	2	3	4	5	7	10	15
$\mathrm{I}_{\mathrm{B}} / \mu \mathrm{A}$										
$\mathrm{V}_{\mathrm{BE}} / \mathrm{Volt}$										

3. Plot a graph for input properties according to $\mathrm{I}_{\mathrm{B}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{BE}}\right)$.

Note: Recognize that the P 2 is in the midpoint of scale, so V_{CE} is constant and the line drawn in the input properties graph is one of the infinite lines for the input property whereas they are very close to each other however, very sensitive instrument is required to distinguish among them whenever V_{CE} varied.

Part 2: Output properties

Set values of I_{B} by P_{1}, and values of $V_{C E}$ by P_{2} then read values of I_{c} according to Table(3).

Table(3): Output properties.

$\mathrm{I}_{\mathrm{B}} / \mu \mathrm{A}$	10	20	50	75	100
$\mathrm{~V}_{\mathrm{CE}} / \mathrm{Volt}$	$\mathrm{I}_{\mathrm{C}} / \mathrm{mA}$				
1					
2					
3					
4					
5					
6					

Calculations(using graphs)

1. Compute input resistance from input properties $\left(R_{i n}=\Delta V_{B E} / \Delta I_{B}\right)$.
2. Compute forward conversion ratio from control properties $\left(\beta=\Delta I_{d} / \Delta I_{B}\right)$.
3. Compute output resistance from output properties $\left(\mathrm{R}_{\text {out }}=\left(\Delta \mathrm{V}_{\mathrm{CE}} / \Delta \mathrm{I}_{\mathrm{c}}\right)_{\mathrm{IB}=\text { cost. }}\right)$.
4. 4-Compute gain in voltage(static) from output properties $\left(\mathrm{A}_{\mathrm{v}}=\Delta \mathrm{V}_{\mathrm{CE}} / \Delta \mathrm{V}_{\mathrm{BE}}\right)$.

Discussion:
Discuss all the three graphs.

Experiment (2)

Common emitter amplifier

General

The common emitter circuit is the most widely used for voltage and this circuit gives current amplification, so, the highest power amplification.

Fig.(1): shows the principle of the common emitter circuit.

The voltage amplification is:
The current amplification is:
The input resistance is:
The output resistance is:
The power amplification is:

$$
\begin{gather*}
\mathrm{A}_{\mathrm{v}}=\Delta \mathrm{V}_{\mathrm{CE}} / \Delta \mathrm{V}_{\mathrm{BE}} \tag{1}\\
\mathrm{~A}_{\mathrm{i}}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{B}} \tag{2}\\
\mathrm{R}_{\mathrm{in}}=\Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{I}_{\mathrm{B}} \tag{3}\\
\mathrm{R}_{\text {out }}=\Delta \mathrm{V}_{\mathrm{CE}} / \Delta \mathrm{I}_{\mathrm{C}} \tag{4}\\
\mathrm{P}_{\mathrm{A}}=\mathrm{A}_{\mathrm{v}} . \mathrm{A}_{\mathrm{i}} \tag{5}
\end{gather*}
$$

Note: The difference of the variables are taken because the elements have Nonlinear properties (see Equations. 1-4).

Aim of the Exp.:

1. To construct a common emitter circuit and calculate: amplifications of current and voltage, input and output resistance, and amplification of power.
2. Inserting sine wave shapes with frequency 800 Hz and calculating dynamic amplification of voltage.
3. To study the relation between input resistance and amplification of voltage.
4. To study the noise.

Apparatus and components:(See Fig.(2))

Part 1: Static properties

1. Construct the circuit as in Fig.(2) and remove Oscillator and voltmeter V_{BE} and V_{CE}.

Fig(2): Circuit diagram of the common emitter circuit and the measuring circuit.
Note: You need only two Multimeters, M1 and M2. M1 set to milliamper for measuring I_{C} while M2 for measuring current and voltage. When remove M2 where used to measure I_{B}, its place must be short-circuited.
2. Set I_{B} as in following table and measure $\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{BE}}$, and V_{EC}.
3. Calculate $A_{i}, A_{v}, R_{i n}, R_{\text {out }}$, and P_{A}.

Part 2: Dynamic properties

$\mathrm{I}_{\mathrm{B}} / \mu \mathrm{A}$	$\mathrm{I}_{\mathrm{C}} / \mathrm{mA}$	$\mathrm{V}_{\mathrm{BE}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{CE}} / \mathrm{V}$
25			
50			

1. Remove M 2 , which used to measure V_{CE} and V_{BE}. Connect the oscillator and input sine wave shape with amplitude 50 mV and frequency 800 Hz . Its amplitude controlled by P1.
2. Connect CRO instead of voltmeter V_{BE}, plot input wave, and calculate their amplitude $\mathrm{V}_{1 \mathrm{p}}$.
3. Connect CRO in the output of the circuit and using $P 2$ to varying base current I_{B} to obtain the maximum output amplitude without noise.
4. Plot the output wave and write value of I_{B}, their amplitude $\mathrm{V}_{2 \mathrm{p}-\mathrm{p}}$.
5. Use the following equation to calculate dynamic voltage amplification:

$$
\begin{equation*}
\mathbf{A}_{\mathrm{V}}=\mathbf{V}_{2 \mathrm{p}-\mathrm{p}} / \mathbf{V}_{1 \mathrm{p}-\mathrm{p}} \tag{6}
\end{equation*}
$$

Part 3: Effect of collector resistance $\mathbf{R}_{\boldsymbol{c}}$

1. Set $\mathrm{R}_{\mathrm{c}}=2.2 \mathrm{~K} \Omega$.
2. Try to obtain maximum output voltage without noise by varying $P 2$, than write $I_{B}, V_{2 p-p}$ and plot the curve.
3. Use Equ.(6) to calculate $\mathbf{A}_{\mathbf{v}}$.

Part 4: Studying of Noise

1. Set $\mathrm{R}_{\mathrm{c}}=2.2 \mathrm{~K} \Omega$.
2. Answer the following question: you get noise for the wave shape for values $\mathrm{I}_{\mathrm{B}} \leq \ldots \mu \mathrm{A}$ and for $\mathrm{I}_{\mathrm{B}} \geq \ldots \mu \mathrm{A}$ [use P2 to vary I_{B}]. Why?

Discussion:

1. What is the time relation(phase difference) between V_{1} and V_{2} ?
2. Why amplification of voltage increased by increasing R_{c} ?
3. Can use transistor in this circuit to obtain amplifications in D.C. voltage and current? Why?
4. Is there difference between A_{v} and $\mathrm{A}^{\prime}{ }_{\mathrm{v}}$?
5. What are the reasons of noise in this amplifier?

Experiment (3)

Common base amplifier

General:

In the common base circuit (Fig.(1)) the base of the transistor is the common reference potential for the emitter electrodes as the input and the collector electrode as the output. Compared with other basic circuits, control of the common base circuit requires the largest control current, since the sum of the collector current and the base current takes effect in the emitter. The current amplification is therefore less than one. The input resistance is lowest with this circuit arrangement.

Fig.(1): shows the principle of the common base circuit.
The following Equations are necessary:

The voltage amplification is:
The current amplification is:
The input resistance is:
The power amplification is:

$$
\begin{gather*}
\mathrm{A}_{\mathrm{v}}=\Delta \mathrm{V}_{\mathrm{CB}} / \Delta \mathrm{V}_{\mathrm{EB}} \tag{1}\\
\mathrm{~A}_{\mathrm{i}}=\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{E}} \tag{2}\\
\mathrm{R}_{\mathrm{in}}=0.025 \mathrm{v} / \mathrm{I}_{\mathrm{E}} \tag{3}\\
\mathrm{~A}_{\mathrm{P}}=\mathrm{A}_{\mathrm{v}} \cdot \mathrm{~A}_{\mathrm{i}} \tag{4}
\end{gather*}
$$

Note: Equ.(3)is empirical equation and it more accurate than $\left(\mathrm{R}_{\mathrm{in}}=\Delta \mathrm{V}_{\mathrm{EB}} / \Delta \mathrm{I}_{\mathrm{E}}\right)$
Because (V_{EB}) is very small.

Aim of the Exp.:

1. Construct a common base circuit for measuring the characteristic values of transistor BC177.
2. Insert sine wave shape with frequency 800 Hz and finding amplification of voltage and study the noise.
3. Study the frequency response curve for amplifier.

Apparatus and Components:(see Fig.(2)
Part 1: Static properties

1. Construct the circuit as in Fig.(2) and remove the dotted parts.
2. Set $\mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}$ by P 2 and read I_{c} by ammeter M2.
3. Connect short circuit instead of M 2 and use it to measure V_{EB} and V_{CB}. Then, return M 2 for measuring I_{c}.
4. Set $\mathrm{IE}=30 \mathrm{~mA}$. Repeat the work...read I_{c} then V_{EB} and V_{CB}. Arrange the results in a table. Note that V_{EB} and V_{CB} measured relative to the base not to the earth.
5. Calculate A_{v}, A_{v}, A_{p} and $R_{i n}$. Arrange the results in a table.

Fig(2): Circuit diagram of the common emitter circuit and the measuring circuit.

Part 2: Dynamic properties and study the Noise

1. Prepare CRO for measuring and return M2 to measure I_{c}.
2. Set $\mathrm{I}_{\mathrm{E}}=25 \mathrm{~mA}$ by P2 (i.e. between $20-30 \mathrm{~mA}$).
3. Set the voltage of input signal 50 mV by P 1 , and then draw the output wave.
$\mathrm{V}_{\mathrm{in}}=50 \mathrm{mV}$
$\mathrm{V}_{\text {out }}=(\quad) \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
$A_{v}^{-}=\frac{V_{\text {out }} p-p}{V_{\text {in }} p-p}$

Noise(Clipping Distortion)

Introduction: This type of noise occur when the transistor go out from their operating range as a result of several reasons like nearly large amplitude wave input, low or large emitter current which lead to going the transistor to cut-off region or saturation region.

1. Decrease I_{E} by P2 in steps to obtain the noise of the wave, write I_{E}, the increase I_{E} by P2 to obtain noise again and write I_{E}, so:
Whenever $\mathrm{I}_{\mathrm{E}}<\ldots \ldots \mathrm{mA}$ there be noise in the output wave.
Whenever $\mathrm{I}_{\mathrm{E}}>\ldots \ldots \mathrm{mA}$ there be noise in the output wave.

Part 3: Frequency Response

Introduction: There are special response curves for each transistor which depend on the several parameters like configuration of the circuit and the type of the transistor (NPN or PNP). As known, the carriers of Bipolar Junction Transistors (BJT) are electrons and holes. If type of the transistor is NPN, the signal propagates from emitter to base dependent on the mobility of electrons. There are some limits for the permission frequencies depend on the thickness of the
base and mobility of the electrons (which depend on the type of the semiconductor). In general, the mobility of the electrons larger than holes because the holes are more weighted from the electrons. Therefore, the response of the hole is slower than electron for signals. In the amplifier circuit, the response also depend on the magnitude of the capacitors and resistors connected with the terminals of the transistor where they work as in the High pass or Low pass RC circuits. Therefore, the frequencies for the amplifier must not be very low or very high, which lower the gain (in current, voltage, and power). In this experiment, these limits must identify.

Fig.(3): Typical Amplifier Gain vs Frequency plot.

1. Prepare the amplifier to obtain output pulse without noise for an input sine wave has amplitude 50 mV .
2. Set the following frequencies and calculate \mathbf{A}_{v}^{\prime} from Eq.(5) and find $\mathrm{F}_{\text {Low }}$ and $\mathrm{F}_{\text {High }}$:
$(0.1,0.2,0.3,0.7,1,3,5,10,15,20,30,50,100,200,300,400,600,800) \mathrm{KHz},(1.2,1.4,1.6$, $1.8,2)$ MHZ.

Discussion:

1. Insert these and previous results into the following table and the compare between them and discuss it.

Quantity	Common Emitter Circuit	Common Base circuit
A_{i}		
A_{v}		
A_{p}		
A_{v}^{-}		
Φ		
$\mathrm{R}_{\text {in }}$		

2. Input resistance in the Common Base circuit is low. Why?
3. What is the benefit of C_{3} in the Fig.(2)?
4. What represent R_{4} in the Fig.(2)?
5. Discuss the frequency response curve and are you prefer NPN or PNP amplifying signals with large frequency?

Note: Use Semilog paper graph for drawing the frequency response curve.
100
90
80
70

Experiment (4)

Common Collector Amplifier

General

The name emitter follower, impedance transformer or, better, impedance converter, also knows the common collector circuit. The name impedance converter is attributable to the fact that this circuit has a high input resistance and a low output resistance. This property is due to a high current amplification, whereas the value of the voltage amplifications approximately 1.

Fig.(1) $\overline{\div}$ shows the principle of the common collector circuit.
The input resistance $R_{\text {in }}$ gives by:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{in}}=\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{BE}}+\mathrm{R}_{\mathrm{E}} \times \mathrm{A}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

The output resistance gives by:

$$
\begin{equation*}
\mathbf{R}_{\text {out }}=\frac{\left(\mathbf{R}_{\text {in }} / \mathbf{A}_{i}\right) \cdot \mathbf{R}_{E}}{\left(\mathbf{R}_{\text {in }} / \mathbf{A}_{\mathrm{i}}\right)+\mathbf{R}_{\mathrm{E}}} \tag{2}
\end{equation*}
$$

The voltage amplification:

$$
\begin{equation*}
\mathbf{A}_{v}^{\prime}=\mathbf{V}_{\text {out }} / \mathbf{V}_{\text {in }} \tag{3}
\end{equation*}
$$

The static current amplification:
$A_{i}=\Delta I_{E} / \Delta I_{B}$
The resistance between base and emitter: $\quad \mathbf{R}_{\mathrm{BE}}=\Delta \mathbf{V}_{\mathrm{BE}} / \Delta \mathbf{I}_{\mathbf{B}}$
The base voltage:

$$
\begin{equation*}
V_{B}=V_{E}+V_{B E} \tag{5}
\end{equation*}
$$

Aim of the Exp.;

To construct a common collector circuit from a given circuit diagram. To measure the values required for the characteristics.

Apparatus and components

1. resistors: $4.7 \mathrm{~K} \Omega, 220 \Omega$
2. potentiometer, $1 \mathrm{~K} \Omega$, two pieces
3. transistor, BC 177
4. capacitor, $10 \mu \mathrm{~F}$, two pieces, $0.1 \mu \mathrm{~F}$
5. CRO
6. DC power supply, AC power supply

Part 1: Static Properties (without AC power supply)

1. Connect the circuit as in Fig.(2) without connecting signal source

Fig.(2): Circuit diagram of the common collector circuit and measurement arrangements.
2. By P2 set I_{B} about $30 \mu A$ and measure V_{E} then calculate I_{E} from the relation $I_{E}=V_{E} / R_{E}$.
3. Measure V_{BE} and calculate V_{B} from Eq.(6).
4. Set $\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$ and repeat steps 2,3 , and rearrange the results as in the following table.
5. Using Eqs. $(1,2,4,5)$ for calculating $R_{i n}, R_{\text {out }}$, and A_{i}.

I_{B}	I_{E}	V_{E}	$\mathrm{V}_{\text {BE }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$

Part 2: Dynamic Properties(with signal source)

1. Remove the measurements instrument.
2. Set $\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.
3. Connect CRO on the output terminals then varying P2 to obtain the maximum output amplitude without noise then write $\mathrm{V}_{\text {out }}=\ldots \mathrm{V}_{\mathrm{p}-\mathrm{p}}$.
4. Use Eq.(3) for calculating \mathbf{A}_{v}^{\prime}.
5. Set $\mathrm{R}_{\mathrm{E}}=2.2 \mathrm{~K} \Omega$ and repeat steps 3,4 , and calculate $\mathbf{A}_{\mathrm{v}}^{\prime}$. Rearrange the results in another table.

Discuss

1. Compare the input resistance of the Common collector circuit with the common emitter and common base circuits?
2. Compare the output resistance of the Common collector circuit with the common emitter and common base circuits?
3. To which values of V converges when R_{E} increases?
4. What is the time relation of the $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$?
5. Are the V_{B} increases or decreases by increasing I_{E} ?

Experiment (5)

Two-stage amplification using RC connection

General

There are several way for connecting amplifier stages with each other like direct connection, RC connection, transformer connection which every connection have its prefer. The application of RC connection helps to reducing the cost and the volume of the amplifier with some dissipation of the amplifier gain. This way of connection useful especially in audio amplifiers which have low-level gain and low noise. The responds of the audio amplifiers using RC connection for the frequencies are more than amplifiers using transformer connection. Figure one shows circuit diagram for two-stage amplifier using RC connection that contains two PNP transistors connecting in common emitter. The value of C_{2} must be nearly large, 2-10 $\mu \mathrm{F}$, for low input resistances and low load resistance.

Aim of the Exp.

To construct two stage amplifier circuit and calculating the amplification of the output voltage.

Performance of the experiment

1. Construct the circuit diagram as in Fig. 1 and set input voltage as $\mathrm{V}_{1}=20 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ by P1.
2. Vary P2 to get a wave without noise for the first amplifier stage $\mathrm{V}_{2 \mathrm{p} \text {-p }}$ then vary P 3 to obtain another wave without noise $\mathrm{V}_{3 \mathrm{p}-\mathrm{p}}$. Calculate the gains for the two stages amplifiers in respect to $\mathrm{V}_{1 \text { p-p }}$.

Fig.(1): Circuit diagram of the Two-stage amplifier.

Discuss:

1. Why when the stage of amplifier increased to two stages, the gain not doubled?
2. Why the amplitude of the input wave $\mathrm{V}_{1 p-\mathrm{p}}$ must be small?

Experiment (6)

Differential Amplifier

General

The Differential Amplifier stage in Fig.(1) consists of two common emitter amplifier stages which have a common emitter resistor which acts as current feedback.

If the electrical characteristics of the transistors are identical, the differential voltage amplification given by the ratio of the output voltage V2 to the difference of the two input voltage V11 and V12.

Identical signals, i.e. when the difference between the two input voltages equals zero, virtually cancelled out. The degree of in-phase suppression stated by means of a factor F denoting the ratio of amplification of a differential signal to the unsuppressed amplification when the difference is zero.

Fig. (1): The basic circuit diagram of a differential amplifier stage.
Accordingly the amplification of the differential stage is:

$$
\begin{equation*}
A_{v}=\frac{V_{2}}{V_{11}-V_{12}} \tag{1}
\end{equation*}
$$

The in-phase amplification $\mathrm{A}_{\text {IP }}$ given by:

$$
\begin{equation*}
A_{I P}=\frac{V_{2}}{V_{1}} \quad(\mathrm{~V} 1=\mathrm{V} 11-\mathrm{V} 12) ;(\mathrm{V} 2=\mathrm{V} 21-\mathrm{V} 22) \tag{2}
\end{equation*}
$$

Moreover, the in-phase suppression by:

$$
\begin{equation*}
F=\left(\frac{A_{I P}}{A_{v}}\right) \mathrm{X} 100 \% \tag{3}
\end{equation*}
$$

Aim of the Exp.:

To construct a differential amplifier input stage to a given circuit diagram. To measure important characteristics values. The calculated amplification and in-phase suppression.

Performance of the Exp.:

Part I: In-phase case

1. Construct the circuit as in Fig.(2). Prepare channels ch1 and ch2 and note the polarity of the source.
2. Prepare Q1 and Q2 by P1 and P2 to obtain the following values of collector voltage: $\mathrm{V}_{\mathrm{c} 1}=5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{c} 2}=5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{RE}} \cong 2 \mathrm{~V}$.

Fig.(2): Circuit diagram of the differential amplifier and measuring arrangements.
3. Now connect the CRO between point A and the ground and set input voltage: $\mathrm{V}_{11 \mathrm{p}-\mathrm{p}}=40 \mathrm{mV}$ then return to their original place.
4. Connect points A with B (i.e. connect input of Q1 with the input of Q2 then repeat the measurements of step 2).
5. If there is no difference between Vc 1 and Vc 2 , see CRO. Is there are phase difference between the output voltages? Now write the values:
$\mathrm{V}_{21 \mathrm{p}-\mathrm{p}}=\ldots . \mathrm{V}, \mathrm{V}_{22 \mathrm{p}-\mathrm{p}}=\ldots . \mathrm{V}, \Phi_{11}=\ldots$. (phase difference between output voltages)
Calculate $\quad \mathrm{V}_{2 p-p}=\mathrm{V}_{21 p-p}-\mathrm{V}_{22 \mathrm{p}-\mathrm{p}}=\ldots \ldots . \mathrm{V}, \quad \mathrm{A}($ in phase $)=\mathrm{V}_{2 p-\mathrm{p}} / \mathrm{V}_{1 p-p}$

Part II: Difference phase case

6. Remove the connection of point A with B.
7. Connect point B with the ground and recognize the existence of the phase difference between output voltages. Write the following values:
$\mathrm{V}_{21 p-\mathrm{p}}=\ldots . \mathrm{V}, \mathrm{V}_{22 p-\mathrm{p}}=\ldots . \mathrm{V}, \Phi_{12}=\ldots . \quad \mathrm{V}_{2 p-\mathrm{p}}($ Diff. $)=\mathrm{V}_{21 \mathrm{p}-\mathrm{p}}-\mathrm{V}_{22 p-\mathrm{p}}=\ldots \ldots . \mathrm{V}$,
$\mathrm{A}_{\mathrm{v}}($ diff. phase $)=\mathrm{V}_{2 p-\mathrm{p}}($ Diff. $) / \mathrm{V}_{1 p-\mathrm{p}}$
8. Calculate the percentage ratio for coefficient F .

Important Note: In step 7, reversed the sign of the output when there happen some phase difference. So, recognize this when you write V21p-p and V22p-p and in the calculation of difference between them.

Discuss:

1 . What is the benefit of the difference amplifier? Where it used?
2. What is the purpose of connecting R_{E} in the emitter circuit of the $Q 1$ and $Q 2$? Is this connection necessary?
3. How you can to reduce the coefficient of F ?
4. What is the purpose of step 6 ?

Experiment (7)

RC phase-shift oscillator

General

The RC oscillator Fig.(1) consists of an amplifier stage with feedback circuit. The feedback circuit consists of a multi-element circuit with RC elements lying between the output and input of the amplifier.

In order to fulfill the positive feedback condition (output and input voltage
The transistor oscillation phase) the RC networks must cancel out the 180° phase shift that occurs.

If there are three phase networks, the minimum number, the individual RC networks have to shift the phase by 60°. Four RC networks require a phase shift of 45° per element. This phase shift achieved when the reactance of the capacitor is exactly equal to the value of the resistor, which corresponds at the same time to the cut-off frequency of the RC network.

The power gain must exceed one to conserve the oscillation process. Whenever, it lowers than one, the oscillation decrease exponentially with time to stop. The oscillator circuits need power gain more than one because the output power divides between the load and feedback circuit.

The frequency of the circuit determined by RC circuit, LC circuit, and crystal. They put in the base or collector circuit.

Fig. (1): A simple circuit diagram shows that the output power divided between the load and feedback circuit.

Fig.(2): RC phase-shift oscillator.

Aim of the Exp.:

To construct an RC phase-shift oscillator to given data and to measure the oscillation that is generated with the CRO.

Performance of the Exp.:

1. Prepare CRO and construct the circuit as in Fig.(3).

Fig.(3): Arrangement for testing the phase-shift oscillator.
Set P 2 in the middle (i.e. 5) and vary P 1 to get $12 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. Then adjust P 2 to obtain a sine wave without noise.
2. Calculate the frequency.
3. Repeat the processes for the following cases:

C_{1}	C_{5}	T	$\mathrm{~F}=1 / \mathrm{T}$
$0.1 \mu \mathrm{f}$	$10 \mu \mathrm{f}$		
$0.1 \mu \mathrm{f}$	$2 \mu \mathrm{f}$		
10 nf	$10 \mu \mathrm{f}$		
10 nf	$2 \mu \mathrm{f}$		

4. Vary the values of $\mathrm{R}_{2}, \mathrm{R}_{3}$, and R_{4} to $4.7 \mathrm{~K} \Omega$ then set $\mathrm{C}_{1}=10 \mathrm{nF}$ and $\mathrm{C}_{5}=10 \mu \mathrm{~F}$. calculate the frequency and describe the results.

C_{1}	C_{5}	T	$\mathrm{~F}=1 / \mathrm{T}$
10 nf	$10 \mu \mathrm{f}$		

5. Remove C_{4} what happened? Discuss it?
6. Remove C_{5} what happened? Discuss it?

Experiment (8)

Colpitts LC Oscillator

General

The Colpitts oscillator works with a capacitive three-point connection (fig. 1). The resonance voltage, which appears across the oscillatory circuit, split to two component voltages by capacitors C_{1} and C_{2}.

The voltage across C_{2} fed to the emitter as positive feedback voltage. As regards alternating voltage, the base lies at zero potential via capacitor C_{B}, as a result of which the transistor works in the common base configuration in which no phase shift occurs between the input and output voltages.

The advantage of this circuit arrangement lies in the fact that the base is at zero potential and thus acts as an electrical separator between the output and input. Capacitive reactive effects are thereby avoided, resulting in a raising of the upper limiting frequency of the amplifier.

Fig.(1): Colpitts Oscillator

Aim of the Exp.:

To construct a Colpitts LC oscillator to given data, and to measure the oscillation generated with the oscilloscope.

Performance of the Exp.:

1. Construct the circuit as in Fig. (2).

BCY 58

$P_{1}=1 \mathrm{k} \Omega$	C_{4}	C_{3}	R_{4}	$\mathrm{~V}_{\text {in }}$

Fig.(2): Arrangement for testing the Colpitts Oscillator.
Rotate P_{2} to the end of right side (position ze
2. Rotate P_{2} to the end of right side (position zero). Adjust P 2 to obtain maximum output amplitude and calculate the amplitude and frequency of the signal:
$\mathrm{V}_{\mathrm{o}}=$ \qquad $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$

F= \qquad .Hz
3. Calculate the alternating voltage across the emitter resistor R_{E} : $\mathrm{V}_{\mathrm{i}}=\ldots \ldots . . \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ And the gain coefficient: $A_{v}^{-}=\mathrm{V}_{\mathrm{o}} / V_{i}$
4. Rotate P_{L} slowly toward left and right and release the CRO. What happened?.
5. Repeat calculations $\mathrm{V}_{\mathrm{o}}, \mathrm{V}_{\mathrm{i}}$ and A_{v}. What happened to A_{v} ? Why?
6. Rotate P_{2} toward the end of left side, then measure the alternating voltage from the collector. Vary P_{1} to obtain maximum amplitude. Remove C_{3}. What happened?
7. Measure the alternating voltage from emitter, remove C3, and note the changes.

Experiment (9)

HARTLY LC OSCILLATOR

General

In the Hartley circuit two coils, L_{1} and L_{2} are connected together in series (fig 1). Consequently, the junction forms a tapping of the total winding thus created (principle of the autotrans former). As regards A.C. voltage, the tapping lies at zero potential.

Fig (1): Hartly oscillator (inductive three-point connection)

Two alternating voltages which are 180° out of phase with reference to the center tap are produced in the component windings L_{1} and L_{2}.the voltage across coil is the out put voltage of the amplifier .the voltage induced in coil L_{2} is fed to the amplifier as positive feedback voltage via the potential divider $\mathrm{R}_{\mathrm{B},} \mathrm{R}_{\mathrm{Q} \text {. }}$ the frequency of oscillation is determined by the total inductance, L_{1} and L_{2}. And capacitor C_{1}. By virtue of the way in which the coils are connected, the Hartley oscillator is also called an inductive therr-point connection.

Aim of the Exp.:

To construct a Hartley LC oscillator to given data, and to measure the oscillation generated with the oscilloscope.

Performance of the Exp.:

1. Construct the circuit as in Fig.(2).

Fig(2): Arrangement for testing the hartly LC oscillator.
2. Rotate P_{2} to the end of right side (position zero). Adjust P_{1} to obtain maximum amplitude ($20 \mathrm{~V}_{\text {p.p }}$) with out noise and calculate the amplitude and frequency of the signal:
$V_{0}=$. \qquad F= \qquad Hz
3. Calculate the alternating voltage across coil L_{2} $\mathrm{V}=$ \qquad
4. Calculate alternating voltage at the base of T_{1}
$\mathrm{V}=$ \qquad V_{p-p}
\square
5. What happens when the core of either coil L_{1} or coil L_{2} is screwed out?

Discuss:

1. Compare between the circuits and output frequency of this oscillator and previous one?
2. Explain reason of changing frequency in step 4 of procedure of the exp.

Experiment (10)

Pulse Generator(IC 555)

General

The 555 timer is one of the most popular and versatile integrated circuits ever produced. It includes 23 transistors, 2 diodes and 16 resistors on a silicon chip installed in an 8 pin mini dual-in-line package (DIP). The 556 is a 24 pin (DIP) that combines two 555 's on a single chip. In addition, ultra-low power versions of the 555 are available. The 555 has two principle operating modes.
Mono stable mode: in this mode the 555 functions as a "one-shot". Applications include timers, missing pulse detection, bounce free switches, touch logic locks, tone generation switches ...etc.

A stable mode: the 555 can operate as an oscillator. Uses include LED and LAMP flashers, pulse generations, security alarms ...etc.

555 SPECIFICATIONS

Supply voltage (v_{cc}) $\quad 4.5$ to 15 V
Supply current $\left(\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}\right)^{2} \quad 3$ to 6 mA
Supply current $\left(\mathrm{V}_{\mathrm{cc}}=+15 \mathrm{~V}\right)^{2} \quad 10$ to 15 mA
Output current 200mA (maximum)
Power dissipation
Operating temperature

600 mw
0 to $70^{\circ} \mathrm{C}$

1- Values shown apply to NE 555 (8 PIN MINI-DIP)
2- Output current $=0$

Aim of the Exp.:

To construct an IC555 pulse generator circuit, and to measure the output frequency by the oscilloscope.

Performance of the Exp.:

1. Construct the circuit as in Fig.(2).
2. Change values of R and C according to following table.
3. Draw frequency with resistance curve for different C .

Fig.(1): Internal block diagram.

Fig.(2): :

