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Chapter Three 

Fluid in Motion 
3.1 Introduction: 

 The path of an individual particle in a moving fluid is called a flow line. 

 If the overall flow pattern does not change with time; the flow is called steady flow. 

 The flow lines passing through the edge of an imaginary element of area, such 

as the area (A) in Fig. [1], form a tube called a flow tube. 

 
Figure [1]: A flow tube hounded by flow lines. In steady flow, fluid cannot cross the 

walls of a flow tube. 

 
 This is called turbulent flow (Fig. 2). In turbulent flow there is no steady-state 

pattern; the flow pattern changes continuously. 

 
Figure [2]: Theflowofsmokerisingfrom these incense sticks is laminar up to a 

certain point, and then becomes turbulent. 
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3.2 Equation of Continuity of Flow: 

The rate of flow of fluid into a system equals the rate of flow out of the system. 

 
Figure [3]: A flow tube with changing cross-sectional area. If the fluid is 

incompressible, the product ࣏࡭ has the same value at all points along the tube. 
 
Let's first consider the case of an incompressible fluid so that the density ࣋ has the same value 

at all points. The mass ࢓ࢊ૚ flowing into the tube across ࡭૚ in time dt is: ࢓ࢊ૚ =  .࢚ࢊ૚࣏૚࡭࣋

Similarly, the mass ࢓ࢊ૛ that flows out across ࡭૛ in the same time is: ࢓ࢊ૛ =  as ,࢚ࢊ૛࣏૛࡭࣋

shown in figure [3]. In steady flow the total mass in the tube is constant, so: 

૚࢓ࢊ =   ૛࢓ࢊ

(૚ࢂ࣋)ࢊ =  (૛ࢂ࣋)ࢊ

(૚࢞૚࡭)ࢊ࣋ =  (૛࢞૛࡭)ࢊ࣋

(૚࢚࣏)ࢊ૚࡭࣋ =  (૛࢚࣏)ࢊ૛࡭࣋

࢚ࢊ૚࣏૚࡭࣋ =  ࢚ࢊ૛࣏૛࡭࣋

૚࣏૚࡭ = ૛࣏૛࡭ = =  ࢚࢔ࢇ࢚࢙࢔࢕ࢉ    ∅  … (1) 

where ࣏ is the fluid speed, and ࢞ is the distance. 
 
This expression is called the equation of continuity for fluids. 

The product of the area and the fluid speed at all points along a pipe (࣏࡭) is the 

volume flow rate (࣐), the rate at which volume crosses a section of the tube: 

࣐ =
ࢂࢊ
࢚ࢊ

= …  ࣏࡭ (૛) 
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The mass flow rate is the mass flow per unit time through a cross section. This is equal 

to the density ࣋ times the volume flow rate ࢚ࢊ/ࢂࢊ. That is: ∵  ࣋ = ࢓
ࢂ

 → ࢂ = ࢓
࣋

 

࢓ࢊ
࢚ࢊ

= …   ࣏࡭࣋ (૜)  

We can generalize Eq. (1) for the case in which the fluid is not incompressible.  

If ࣋૚ and ࣋૛ are the densities at sections 1 and 2, then: 

࣋૚࡭૚࢜૚ = ࣋૛࡭૛࢜૛    … (૝) 

If the fluid is denser at point 2 than at point 1 (࣋૛ > ࣋૚), the volume flow rate at point 2 

will be less than at point 1 (࡭૛࢜૛ <  .(૚࢜૚࡭

 

3.3 Rate of flow: 

The rate of a liquid is defined as the volume of it that flows across any section in unit time. 

 

Let   ࢜ : velocity of liquid. 

 .area :࡭

 .distance between two sections :ࡸ

࢚ : time taken by the liquid to flow ࡸ distance. 

ݒ =
ܮ
ݐ

⇒ ܮ =  ݐݒ

Volume of the liquid flowing through the section OQ: ܸ = ܣܮ  =  ܣݐݒ

∴ Ratio of flow of liquid:  

࣐ =
ࢂࢊ
࢚ࢊ

=
࡭࢚࢜

࢚
=  ࢜࡭
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3.4 Energy of the Fluid: 

We have three types of the energy possessed by a liquid in flow: 

1- Kinetic Energy (ࡱࡷ): 

ࡱࡷ =
૚
૛

 ૛࢜࢓

ࢋ࢓࢛࢒࢕࢜ ࢚࢏࢔࢛ ࢘ࢋ࢖ ࡱࡷ =
૚
૛

࣋࢜૛ 

2- Potential Energy (ࡱࡼ): 

ࡱࡼ =  ࢎࢍ࢓

ࢋ࢓࢛࢒࢕࢜ ࢚࢏࢔࢛ ࢘ࢋ࢖ ࡱࡼ =  ࢎࢍ࣋

3- Pressure Energy (Energy = Work): 

 .Pressure of the liquid :ࡼ

࢟ࢍ࢘ࢋ࢔ࡱ ࢋ࢛࢙࢙࢘ࢋ࢘ࡼ = ࡸࡲ = ࡸ࡭ࡼ =  ࢂࡼ

ࢋ࢓࢛࢒࢕࢜ ࢚࢏࢔࢛ ࢘ࢋ࢖ ࢟ࢍ࢘ࢋ࢔ࡱ ࢋ࢛࢙࢙࢘ࢋ࢘ࡼ =  ࡼ

 

The three types of energy possessed by a liquid under flow are mutually converƟble, one 

into the other, and this sum will be constant. 

 

 

 

 

 

 

  

࣋ =
࢓
ࢂ

 

ࡼ =
ࡲ
࡭

 

࣋ =
࢓
ࢂ
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3.5 Bernoulli’s Equation: 

Bernoulli’s equation is not a free-standing law of physics; rather, it’s a consequence of 

energy conservation as applied to an ideal fluid. 

  

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure [4]: A fluid in laminar flow through a constricted pipe. The volume of the 
shaded section on the left is equal to the volume of the shaded section on the right. 

 
The relationship between fluid pressure (ࡼ), speed (࢜), and elevation (࢟) was first 

derived in 1738 by the Swiss physicist Daniel Bernoulli. Consider the flow of an ideal 

fluid through a no uniform pipe in a time ݐ, as illustrated in Figure (4).  

Let us call the lower shaded part section 1 and the upper shaded part section 2. 

The work done by the fluid in section 1 (ࢃ૚) in a time ࢚ is: 

૚ࢃ = ૚∆࢞૚ࡲ = ૚∆࢞૚࡭૚ࡼ = …  ࢂ૚ࡼ (૞) 

Where the force exerted by the fluid in section 1 (ࡲ૚) has a magnitude ࡲ૚ =  .૚࡭૚ࡼ

where ࢂ is the volume of section 1.  

In a similar manner, the work done by the fluid in section 2 (ࢃ૛) in the same time ࢚ is: 

૛ࢃ = ૛∆࢞૛ࡲ− = ૛∆࢞૛࡭૛ࡼ− = …  ࢂ૛ࡼ− (૟) 

Daniel Bernoulli (1700–1782): 

Daniel Bernoulli, a Swiss physicist 
and mathematician, made important 

discoveries in fluid dynamics. 
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(The volume that passes through section 1 in a time ࢚ equals the volume that passes 

through section 2 in the same time.) This work is negative because the fluid force 

opposes the displacement.  
 

Thus, the net work done (ࢃ) by these forces in the time ࢚ is: 

ࢃ = ૚ࡼ) − …  ࢂ(૛ࡼ (ૠ) 
 

Part of this work goes into changing the kinetic energy of the fluid, and part goes into 

changing the gravitational potential energy. If ࢓ is the mass that enters one end and leaves 

the other in a time ࢚, then the change in the kinetic energy (∆ࡷ) of this mass is: 

ࡷ∆ =
૚
૛

૛࢜࢓
૛ −

૚
૛

૚࢜࢓
૛   … (ૡ) 

The change in gravitational potential energy (∆ࢁ) is: 

ࢁ∆ = ૛࢟ࢍ࢓ − ૚࢟ࢍ࢓   … (ૢ) 
Therefore, the total work done is: 

ࢃ = ࡷ∆ + …  ࢁ∆ (૚૙) 
 

Substituting equations (7), (8) and (9) into equation (10), we get: 

( ଵܲ − ଶܲ)ܸ =
1
2

ଶݒ݉
ଶ −

1
2

ଵݒ݉
ଶ + ଶݕ݃݉ −    ଵݕ݃݉

If we divide each term by ࢂ and recall that ࣋ =  :this expression reduces to ,ࢂ/࢓

ଵܲ − ଶܲ =
1
2

ଶݒߩ
ଶ −

1
2

ଵݒߩ
ଶ + ଶݕ݃ߩ −    ଵݕ݃ߩ

૚ࡼ +
૚
૛

࣋࢜૚
૛ + ૚࢟ࢍ࣋ = ૛ࡼ +

૚
૛

࣋࢜૛
૛ + ૛࢟ࢍ࣋     … (૚૚) 

 
This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as: 

ࡼ +
૚
૛

࣋࢜૛ + ࢟ࢍ࣋ = …    ࢚࢔ࢇ࢚࢙࢔࢕࡯ (૚૛) 

Bernoulli’s equation states that the sum of the pressure ࡼ, the kinetic energy per unit 
volume ૚

૛
࣋࢜૛, and the potential energy per unit volume ࣋࢟ࢍ, has the same value at 

all points along a streamline. 
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3.6 Bernoulli’s Principle for Gases (Venturi meter): 

An important consequence of Bernoulli’s equation can be demonstrated by considering 

Figure [5], which shows water flowing through a horizontal constricted pipe from a 

region of large cross-sectional area into a region of smaller cross-sectional area. This 

device, called a Venturi tube, can be used to measure the speed 

of fluid flow. Because the pipe is horizontal ࢟૚ = ࢟૛, and 

equation (11) applied to points 1 and 2 gives: 

૚ࡼ +
૚
૛

࣋࢜૚
૛ = ૛ࡼ +

૚
૛

࣋࢜૛
૛    … (૚૜) 

 

In figure [5], the pressure ࡼ૚ is greater than the pressure ࡼ૛ 

(i.e., ࡼ૚ > ૛), because ࢜૚ࡼ < ࢜૛. This device can be used to measure the speed of fluid 

flow. This result is often expressed by the statement that swiftly moving fluids exert less 

pressure than do slowly moving fluids. 

 

3.7 Torricelli’s Law: 

The velocity of efflux of a liquid through an orifice is equal to that which a body attains 

in falling freely the surface of the liquid to the orifice. 

 ܶݕ݃ݎ݁݊ܧ ݈ܽݐ݋ = + ࡱࡷ  + ࡱࡼ   ࢟ࢍ࢘ࢋ࢔ࡱ ࢋ࢛࢙࢙࢘ࢋ࢘ࡼ 

 Total Energy at Point (1) = 0 + ࢎࢍ࣋ + 0 

 Total Energy at Point (2) = ૚
૛

࣋࢜૛ + 0 + 0 

Since total energy remains the same: 

∴ ℎ݃ߩ =
1
2

 ଶݒߩ

∴ ଶݒ = 2݃ℎ  

ݒ = ඥ2݃ℎ 

 
Figure [5] 

Prove it! 
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For example: An enclosed tank containing a liquid of density  has a hole in its side at a 

distance ࢟૚ from the tank’s bottom (this Figure). 

The hole is open to the atmosphere, and its diameter 

is much smaller than the diameter of the tank. 

The air above the liquid is maintained at a pressure 

 Determine the speed of the liquid as it leaves the .ࡼ

hole when the liquid’s level is a distance ࢎ above 

the hole. 

 

Solution:  

Because ࡭૛ ≫  ૚, the liquid is approximately at rest at the top of the tank, where the࡭ 

pressure is ܲ. Applying Bernoulli’s equation to points 1 and 2 and noting that at the hole 

 :૙, we find thatࡼ ૚ is equal to atmospheric pressureࡼ

 
But ࢟૛  −  ࢟૚  =  :thus, this expression reduces to ;ࢎ 

 
When ࡼ is much greater than ࡼ૙ (so that the term ૛ࢎࢍ can be neglected), the exit speed 

of the water is mainly a function of ܲ.  

 
If the tank is open to the atmosphere, then: 
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Example 1: As part of a lubricating system for heavy machinery, oil of density 

ૡ૞૙ ࢓/ࢍ࢑૜ is pumped through a cylindrical pipe of diameter ૡ. ૙ ࢓ࢉ at a rate of 

ૢ. ૞ ࢊ࢔࢕ࢉࢋ࢙ ࢘ࢋ࢖ ࢙࢘ࢋ࢚࢏࢒.  

(a) What is the speed of the oil? What is the mass flow rate?  

(b) If the pipe diameter is reduced to ૝. ૙ ࢓ࢉ, what are the new values of the speed and 

volume flow rate? Assume that the oil is incompressible. 

 
Solution:  

 
 
Example 2: Each second, ૞૞૛૞ ࢓૜ of water flows over the ૟ૠ૙ ࢓ wide cliff of the 
Horseshoe Falls portion of Niagara Falls. The water is approximately ૛ ࢓ deep as it 
reaches the cliff. What is its speed at that instant? 
 
Solution:  

 

࡭ = ࣊࢘૛ =
࣊
૝

 ૛ࡰ
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Example 3: Water enters a house through a pipe with an inside diameter of ૛. ૙ ࢓ࢉ at 

an absolute pressure of ૝ ×  ૚૙૞ ࢇࡼ (࢚࢛࢕࢈ࢇ ૝ ࢓࢚ࢇ). A ૚. ૙ ࢓ࢉ diameter pipe leads 

to the second-floor bathroom ૞. ૙ ࢓ above. When the flow speed at the inlet pipe is 

૚. ૞ ࢓/࢙, find the flow speed, pressure, and volume flow rate in the bathroom. 

 
Solution:  

૚ࢊ = ૛. ૙ ࢓ࢉ → ࢘૚ = ૚. ૙ ࢊ  ࢊ࢔ࢇ  ࢓ࢉ૛ = ૚. ૙ ࢓ࢉ → ࢘૛ = ૙. ૞ ࢓ࢉ 

 
 
Example 4: This figure shows a gasoline storage tank with cross-sectional area ࡭૚, filled 

to a depth ࢎ. The space above the gasoline contains air at pressure ࡼ૙, and the gasoline 

flows out through a short pipe with area ࡭૛. Derive expressions for the flow speed in the 

pipe and the volume flow rate. 

࡭ = ࣊࢘૛࡭ ࢘࢕ = ࣊
૝

૛, ࢟૛ࡰ  −  ࢟૚  =  ࢎ 
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Solution:  

 
 

Example 5: This figure shows a Venturi meter, used to measure flow speed in a pipe. 

The narrow part of the pipe is called the throat. Derive an expression for the flow speed 

࢜, in terms of the cross-sectional areas ࡭૚ and ࡭૛ and the difference in height ࢎ of the 

liquid levels in the two vertical tubes. 

 

 

 

 

 

 

 

×
૛
࣋

 

: 
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Solution:  

 
 

Example 6: If the diameters of a pip are ૙. ૙૛࢓ and ૙. ૙૝࢓. When a liquid of density 

ૡ૙૙࢓/ࢍࡷ૜ flows through it, the difference in pressure between two posiƟons is 

૙. ૙ૡ࢓. Calculate the rate of flow of the liquid through the tube. 

 

Solution:  

ଶܲ − ଵܲ = 0.08 ݉  = 800 × 9.8 × 0.08 

ଵܣ = ଵܴߨ
ଶ = ߨ ൬

0.02
2

൰
ଶ

=  ଶ(0.01)ߨ

ଶܣ = ଶܴߨ
ଶ = ߨ ൬

0.04
2

൰
ଶ

=  ଶ(0.02)ߨ

ଵܲ +
1
2

ଵݒߩ
ଶ + ℎଵ݃ߩ = ଶܲ +

1
2

ଶݒߩ
ଶ +  ℎଶ݃ߩ
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For horizontal case: 

ଵܲ +
1
2

ଵݒߩ
ଶ = ଶܲ +

1
2

ଶݒߩ
ଶ 

1
2

ଵݒ)ߩ
ଶ − ଶݒ

ଶ) = ଶܲ − ଵܲ 

ଵݒ
ଶ − ଶݒ

ଶ =
2( ଶܲ − ଵܲ)

ߩ
 

ଵݒ
ଶ =

2( ଶܲ − ଵܲ)
ߩ

+ ଶݒ
ଶ 

But: ݒଵܣଵ = ଶܣଶݒ  → ଵݒ  = ஺మ

஺భ
 ଶݒ

Squaring both sides: ஺మ
మ

஺భ
మ ଶݒ

ଶ = ଶ(௉మି௉భ)
ఘ

+ ଶݒ
ଶ  → ଶܣ 

ଶݒଶ
ଶ = ଶ(௉మି௉భ)

ఘ
ଵܣ

ଶ + ଵܣ
ଶݒଶ

ଶ 

ଶܣ
ଶݒଶ

ଶ − ଵܣ
ଶݒଶ

ଶ =
2( ଶܲ − ଵܲ)

ߩ
ଵܣ

ଶ  → ଶݒ 
ଶ =

2( ଶܲ − ଵܲ)
ଶܣ൫ ߩ

ଶ − ଵܣ
ଶ൯

ଵܣ
ଶ ⇒ ࢜૛ = ૚ඨ࡭

૛(ࡼ૛ − (૚ࡼ
࣋൫࡭૛

૛ − ૚࡭
૛൯

 

߮ = ଶ࢜૛ܣ = ଶඨܣଵܣ
2( ଶܲ − ଵܲ)

ଶܣ൫ߩ
ଶ − ଵܣ

ଶ൯
 

߮ = ଶ(0.01)ଶ(0.02)ଶඨߨ
2(800 × 9.8 × 0.08)

800 × ଶ((0.02)ସߨ − (0.01)ସ)   → ߮ = 4.062 × 10ିସ ݉ଷ/ܿ݁ݏ 
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Home Work: 

Q 1: The horizontal constricted pipe illustrated in this figure, known as a Venturi tube, can 

be used to measure the flow speed of an incompressible fluid. Determine the flow speed 

at point 2 if the pressure difference ଵܲ − ଶܲ is known. 

 

 

 

 

 

 

 

 

Solution:  
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Q 2: An airplane has wings, each with area 4.00 m2, designed so that air flows over the 

top of the wing at 245 m/s and underneath the wing at 222 m/s. Find the mass of the 

airplane such that the lift on the plane will support its weight, assuming the force from the 

pressure difference across the wings is directed straight upwards. 

Solution:  

 
 

Q 3: If the diameters of a pipe are 6 cm and 10 cm, at the points where a venturi meter 

is connected and the pressures at the points are shown to differ by 5 cm of water column. 

Find the volume of water flowing through the pipe per second. 

Solution:  

ଶܲ − ଵܲ = = ݊݉ݑ݈݋ܿ ݎ݁ݐܽݓ 5ܿ݉ 5 × 1 × 980 = 4900 

ଵܣ = ଵܴߨ
ଶ = ߨ ൬

10
2

൰
ଶ

=  ଶ݉ܿ ߨ25

ଶܣ = ଶܴߨ
ଶ = ߨ ൬

6
2

൰
ଶ

=  ଶ݉ܿ ߨ9

1
2

ଵݒߩ
ଶ + ℎଵ݃ߩ + ଵܲ =

1
2

ଶݒߩ
ଶ + ℎଶ݃ߩ + ଶܲ 

For horizontal case: 

1
2

ଵݒߩ
ଶ + ଵܲ =

1
2

ଶݒߩ
ଶ + ଶܲ 
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1
2

ଵݒ)ߩ
ଶ − ଶݒ

ଶ) = ଶܲ − ଵܲ 

ଵݒ)
ଶ − ଶݒ

ଶ) =
2( ଶܲ − ଵܲ)

ߩ
 

ଵݒ
ଶ =

2( ଶܲ − ଵܲ)
ߩ

+ ଶݒ
ଶ 

∴ ቈ
2( ଶܲ − ଵܲ)

ߩ
+ ଶݒ

ଶ቉
ଵ

ଶൗ

ଵܣ =  ଶܣଶݒ

Squaring both sides: ቂଶ(௉మି௉భ)
ఘ

+ ଶݒ
ଶቃ ଵܣ

ଶ = ଶݒ
ଶܣଶ

ଶ 

ଶݒ
ଶ = ଶ(௉మି௉భ)஺భ

మ

ఘ൫஺మ
మି஺భ

మ൯
ଶݒ      ⇒        = ଵටܣ

ଶ(௉మି௉భ)
ఘ൫஺మ

మି஺భ
మ൯

 

߮ = ଶܣଶݒ = ଶඨܣଵܣ
2( ଶܲ − ଵܲ)

ଶܣ൫ߩ
ଶ − ଵܣ

ଶ൯
 

߮ = ඨ(ߨ25)(ߨ9)
2(4900)

ଶ(ߨ25)) − (ଶ(ߨ9) = 3000 ܿ݉ଷ/ܿ݁ݏ. 

 
 

 

 

 

 

  

 


