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Chapter Three 

Fluid in Motion 
3.1 Introduction: 

 The path of an individual particle in a moving fluid is called a flow line. 

 If the overall flow pattern does not change with time; the flow is called steady flow. 

 The flow lines passing through the edge of an imaginary element of area, such 

as the area (A) in Fig. [1], form a tube called a flow tube. 

 
Figure [1]: A flow tube hounded by flow lines. In steady flow, fluid cannot cross the 

walls of a flow tube. 

 
 This is called turbulent flow (Fig. 2). In turbulent flow there is no steady-state 

pattern; the flow pattern changes continuously. 

 
Figure [2]: Theflowofsmokerisingfrom these incense sticks is laminar up to a 

certain point, and then becomes turbulent. 
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3.2 Equation of Continuity of Flow: 

The rate of flow of fluid into a system equals the rate of flow out of the system. 

 
Figure [3]: A flow tube with changing cross-sectional area. If the fluid is 

incompressible, the product 푨흊 has the same value at all points along the tube. 
 
Let's first consider the case of an incompressible fluid so that the density 흆 has the same value 

at all points. The mass 풅풎ퟏ flowing into the tube across 푨ퟏ in time dt is: 풅풎ퟏ = 흆푨ퟏ흊ퟏ풅풕. 

Similarly, the mass 풅풎ퟐ that flows out across 푨ퟐ in the same time is: 풅풎ퟐ = 흆푨ퟐ흊ퟐ풅풕, as 

shown in figure [3]. In steady flow the total mass in the tube is constant, so: 

풅풎ퟏ = 풅풎ퟐ  

풅(흆푽ퟏ) = 풅(흆푽ퟐ) 

흆풅(푨ퟏ풙ퟏ) = 흆풅(푨ퟐ풙ퟐ) 

흆푨ퟏ풅(흊ퟏ풕) = 흆푨ퟐ풅(흊ퟐ풕) 

흆푨ퟏ흊ퟏ풅풕 = 흆푨ퟐ흊ퟐ풅풕 

푨ퟏ흊ퟏ = 푨ퟐ흊ퟐ = 풄풐풏풔풕풂풏풕  =    ∅  … (1) 

where 흊 is the fluid speed, and 풙 is the distance. 
 
This expression is called the equation of continuity for fluids. 

The product of the area and the fluid speed at all points along a pipe (푨흊) is the 

volume flow rate (흋), the rate at which volume crosses a section of the tube: 

흋 =
풅푽
풅풕

= 푨흊  … (ퟐ) 
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The mass flow rate is the mass flow per unit time through a cross section. This is equal 

to the density 흆 times the volume flow rate 풅푽/풅풕. That is: ∵  흆 = 풎
푽

 → 푽 = 풎
흆

 

풅풎
풅풕

= 흆푨흊   … (ퟑ)  

We can generalize Eq. (1) for the case in which the fluid is not incompressible.  

If 흆ퟏ and 흆ퟐ are the densities at sections 1 and 2, then: 

흆ퟏ푨ퟏ풗ퟏ = 흆ퟐ푨ퟐ풗ퟐ    … (ퟒ) 

If the fluid is denser at point 2 than at point 1 (흆ퟐ > 흆ퟏ), the volume flow rate at point 2 

will be less than at point 1 (푨ퟐ풗ퟐ < 푨ퟏ풗ퟏ). 

 

3.3 Rate of flow: 

The rate of a liquid is defined as the volume of it that flows across any section in unit time. 

 

Let   풗 : velocity of liquid. 

푨: area. 

푳: distance between two sections. 

풕 : time taken by the liquid to flow 푳 distance. 

푣 =
퐿
푡

⇒ 퐿 = 푣푡 

Volume of the liquid flowing through the section OQ: 푉 =  퐿퐴 = 푣푡퐴 

∴ Ratio of flow of liquid:  

흋 =
풅푽
풅풕

=
풗풕푨

풕
= 푨풗 
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3.4 Energy of the Fluid: 

We have three types of the energy possessed by a liquid in flow: 

1- Kinetic Energy (푲푬): 

푲푬 =
ퟏ
ퟐ

풎풗ퟐ 

푲푬 풑풆풓 풖풏풊풕 풗풐풍풖풎풆 =
ퟏ
ퟐ

흆풗ퟐ 

2- Potential Energy (푷푬): 

푷푬 = 풎품풉 

푷푬 풑풆풓 풖풏풊풕 풗풐풍풖풎풆 = 흆품풉 

3- Pressure Energy (Energy = Work): 

푷: Pressure of the liquid. 

푷풓풆풔풔풖풓풆 푬풏풆풓품풚 = 푭푳 = 푷푨푳 = 푷푽 

푷풓풆풔풔풖풓풆 푬풏풆풓품풚 풑풆풓 풖풏풊풕 풗풐풍풖풎풆 = 푷 

 

The three types of energy possessed by a liquid under flow are mutually conver ble, one 

into the other, and this sum will be constant. 

 

 

 

 

 

 

  

흆 =
풎
푽

 

푷 =
푭
푨

 

흆 =
풎
푽
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3.5 Bernoulli’s Equation: 

Bernoulli’s equation is not a free-standing law of physics; rather, it’s a consequence of 

energy conservation as applied to an ideal fluid. 

  

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure [4]: A fluid in laminar flow through a constricted pipe. The volume of the 
shaded section on the left is equal to the volume of the shaded section on the right. 

 
The relationship between fluid pressure (푷), speed (풗), and elevation (풚) was first 

derived in 1738 by the Swiss physicist Daniel Bernoulli. Consider the flow of an ideal 

fluid through a no uniform pipe in a time 푡, as illustrated in Figure (4).  

Let us call the lower shaded part section 1 and the upper shaded part section 2. 

The work done by the fluid in section 1 (푾ퟏ) in a time 풕 is: 

푾ퟏ = 푭ퟏ∆풙ퟏ = 푷ퟏ푨ퟏ∆풙ퟏ = 푷ퟏ푽  … (ퟓ) 

Where the force exerted by the fluid in section 1 (푭ퟏ) has a magnitude 푭ퟏ = 푷ퟏ푨ퟏ. 

where 푽 is the volume of section 1.  

In a similar manner, the work done by the fluid in section 2 (푾ퟐ) in the same time 풕 is: 

푾ퟐ = −푭ퟐ∆풙ퟐ = −푷ퟐ푨ퟐ∆풙ퟐ = −푷ퟐ푽  … (ퟔ) 

Daniel Bernoulli (1700–1782): 

Daniel Bernoulli, a Swiss physicist 
and mathematician, made important 

discoveries in fluid dynamics. 
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(The volume that passes through section 1 in a time 풕 equals the volume that passes 

through section 2 in the same time.) This work is negative because the fluid force 

opposes the displacement.  
 

Thus, the net work done (푾) by these forces in the time 풕 is: 

푾 = (푷ퟏ − 푷ퟐ)푽  … (ퟕ) 
 

Part of this work goes into changing the kinetic energy of the fluid, and part goes into 

changing the gravitational potential energy. If 풎 is the mass that enters one end and leaves 

the other in a time 풕, then the change in the kinetic energy (∆푲) of this mass is: 

∆푲 =
ퟏ
ퟐ

풎풗ퟐ
ퟐ −

ퟏ
ퟐ

풎풗ퟏ
ퟐ   … (ퟖ) 

The change in gravitational potential energy (∆푼) is: 

∆푼 = 풎품풚ퟐ − 풎품풚ퟏ   … (ퟗ) 
Therefore, the total work done is: 

푾 = ∆푲 + ∆푼  … (ퟏퟎ) 
 

Substituting equations (7), (8) and (9) into equation (10), we get: 

(푃 − 푃 )푉 =
1
2

푚푣 −
1
2

푚푣 + 푚푔푦 − 푚푔푦    

If we divide each term by 푽 and recall that 흆 = 풎/푽, this expression reduces to: 

푃 − 푃 =
1
2

휌푣 −
1
2

휌푣 + 휌푔푦 − 휌푔푦    

푷ퟏ +
ퟏ
ퟐ

흆풗ퟏ
ퟐ + 흆품풚ퟏ = 푷ퟐ +

ퟏ
ퟐ

흆풗ퟐ
ퟐ + 흆품풚ퟐ     … (ퟏퟏ) 

 
This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as: 

푷 +
ퟏ
ퟐ

흆풗ퟐ + 흆품풚 = 푪풐풏풔풕풂풏풕    … (ퟏퟐ) 

Bernoulli’s equation states that the sum of the pressure 푷, the kinetic energy per unit 
volume ퟏ

ퟐ
흆풗ퟐ, and the potential energy per unit volume 흆품풚, has the same value at 

all points along a streamline. 
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3.6 Bernoulli’s Principle for Gases (Venturi meter): 

An important consequence of Bernoulli’s equation can be demonstrated by considering 

Figure [5], which shows water flowing through a horizontal constricted pipe from a 

region of large cross-sectional area into a region of smaller cross-sectional area. This 

device, called a Venturi tube, can be used to measure the speed 

of fluid flow. Because the pipe is horizontal 풚ퟏ = 풚ퟐ, and 

equation (11) applied to points 1 and 2 gives: 

푷ퟏ +
ퟏ
ퟐ

흆풗ퟏ
ퟐ = 푷ퟐ +

ퟏ
ퟐ

흆풗ퟐ
ퟐ    … (ퟏퟑ) 

 

In figure [5], the pressure 푷ퟏ is greater than the pressure 푷ퟐ 

(i.e., 푷ퟏ > 푷ퟐ), because 풗ퟏ < 풗ퟐ. This device can be used to measure the speed of fluid 

flow. This result is often expressed by the statement that swiftly moving fluids exert less 

pressure than do slowly moving fluids. 

 

3.7 Torricelli’s Law: 

The velocity of efflux of a liquid through an orifice is equal to that which a body attains 

in falling freely the surface of the liquid to the orifice. 

 푇표푡푎푙 퐸푛푒푟푔푦 =  푲푬 +  푷푬 +  푷풓풆풔풔풖풓풆 푬풏풆풓품풚 

 Total Energy at Point (1) = 0 + 흆품풉 + 0 

 Total Energy at Point (2) = ퟏ
ퟐ

흆풗ퟐ + 0 + 0 

Since total energy remains the same: 

∴ 휌푔ℎ =
1
2

휌푣  

∴ 푣 = 2푔ℎ  

푣 = 2푔ℎ 

 
Figure [5] 

Prove it! 
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For example: An enclosed tank containing a liquid of density  has a hole in its side at a 

distance 풚ퟏ from the tank’s bottom (this Figure). 

The hole is open to the atmosphere, and its diameter 

is much smaller than the diameter of the tank. 

The air above the liquid is maintained at a pressure 

푷. Determine the speed of the liquid as it leaves the 

hole when the liquid’s level is a distance 풉 above 

the hole. 

 

Solution:  

Because 푨ퟐ ≫  푨ퟏ, the liquid is approximately at rest at the top of the tank, where the 

pressure is 푃. Applying Bernoulli’s equation to points 1 and 2 and noting that at the hole 

푷ퟏ is equal to atmospheric pressure 푷ퟎ, we find that: 

 
But 풚ퟐ  −  풚ퟏ  =  풉; thus, this expression reduces to: 

 
When 푷 is much greater than 푷ퟎ (so that the term ퟐ품풉 can be neglected), the exit speed 

of the water is mainly a function of 푃.  

 
If the tank is open to the atmosphere, then: 
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Example 1: As part of a lubricating system for heavy machinery, oil of density 

ퟖퟓퟎ 풌품/풎ퟑ is pumped through a cylindrical pipe of diameter ퟖ. ퟎ 풄풎 at a rate of 

ퟗ. ퟓ 풍풊풕풆풓풔 풑풆풓 풔풆풄풐풏풅.  

(a) What is the speed of the oil? What is the mass flow rate?  

(b) If the pipe diameter is reduced to ퟒ. ퟎ 풄풎, what are the new values of the speed and 

volume flow rate? Assume that the oil is incompressible. 

 
Solution:  

 
 
Example 2: Each second, ퟓퟓퟐퟓ 풎ퟑ of water flows over the ퟔퟕퟎ 풎 wide cliff of the 
Horseshoe Falls portion of Niagara Falls. The water is approximately ퟐ 풎 deep as it 
reaches the cliff. What is its speed at that instant? 
 
Solution:  

 

푨 = 흅풓ퟐ =
흅
ퟒ

푫ퟐ 
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Example 3: Water enters a house through a pipe with an inside diameter of ퟐ. ퟎ 풄풎 at 

an absolute pressure of ퟒ ×  ퟏퟎퟓ 푷풂 (풂풃풐풖풕 ퟒ 풂풕풎). A ퟏ. ퟎ 풄풎 diameter pipe leads 

to the second-floor bathroom ퟓ. ퟎ 풎 above. When the flow speed at the inlet pipe is 

ퟏ. ퟓ 풎/풔, find the flow speed, pressure, and volume flow rate in the bathroom. 

 
Solution:  

풅ퟏ = ퟐ. ퟎ 풄풎 → 풓ퟏ = ퟏ. ퟎ 풄풎  풂풏풅  풅ퟐ = ퟏ. ퟎ 풄풎 → 풓ퟐ = ퟎ. ퟓ 풄풎 

 
 
Example 4: This figure shows a gasoline storage tank with cross-sectional area 푨ퟏ, filled 

to a depth 풉. The space above the gasoline contains air at pressure 푷ퟎ, and the gasoline 

flows out through a short pipe with area 푨ퟐ. Derive expressions for the flow speed in the 

pipe and the volume flow rate. 

푨 = 흅풓ퟐ풐풓 푨 = 흅
ퟒ

푫ퟐ, 풚ퟐ  −  풚ퟏ  =  풉 
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Solution:  

 
 

Example 5: This figure shows a Venturi meter, used to measure flow speed in a pipe. 

The narrow part of the pipe is called the throat. Derive an expression for the flow speed 

풗, in terms of the cross-sectional areas 푨ퟏ and 푨ퟐ and the difference in height 풉 of the 

liquid levels in the two vertical tubes. 

 

 

 

 

 

 

 

×
ퟐ
흆

 

: 
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Solution:  

 
 

Example 6: If the diameters of a pip are ퟎ. ퟎퟐ풎 and ퟎ. ퟎퟒ풎. When a liquid of density 

ퟖퟎퟎ푲품/풎ퟑ flows through it, the difference in pressure between two posi ons is 

ퟎ. ퟎퟖ풎. Calculate the rate of flow of the liquid through the tube. 

 

Solution:  

푃 − 푃 = 0.08 푚  = 800 × 9.8 × 0.08 

퐴 = 휋푅 = 휋
0.02

2
= 휋(0.01)  

퐴 = 휋푅 = 휋
0.04

2
= 휋(0.02)  

푃 +
1
2

휌푣 + 휌푔ℎ = 푃 +
1
2

휌푣 + 휌푔ℎ  
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For horizontal case: 

푃 +
1
2

휌푣 = 푃 +
1
2

휌푣  

1
2

휌(푣 − 푣 ) = 푃 − 푃  

푣 − 푣 =
2(푃 − 푃 )

휌
 

푣 =
2(푃 − 푃 )

휌
+ 푣  

But: 푣 퐴 = 푣 퐴  →  푣 = 푣  

Squaring both sides: 푣 = ( ) + 푣  →  퐴 푣 = ( ) 퐴 + 퐴 푣  

퐴 푣 − 퐴 푣 =
2(푃 − 푃 )

휌
퐴  →  푣 =

2(푃 − 푃 )
휌 퐴 − 퐴

퐴 ⇒ 풗ퟐ = 푨ퟏ
ퟐ(푷ퟐ − 푷ퟏ)

흆 푨ퟐ
ퟐ − 푨ퟏ

ퟐ  

휑 = 퐴 풗ퟐ = 퐴 퐴
2(푃 − 푃 )

휌 퐴 − 퐴
 

휑 = 휋 (0.01) (0.02)
2(800 × 9.8 × 0.08)

800 × 휋 ((0.02) − (0.01) )   → 휑 = 4.062 × 10  푚 /푠푒푐 
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Home Work: 

Q 1: The horizontal constricted pipe illustrated in this figure, known as a Venturi tube, can 

be used to measure the flow speed of an incompressible fluid. Determine the flow speed 

at point 2 if the pressure difference 푃 − 푃  is known. 

 

 

 

 

 

 

 

 

Solution:  
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Q 2: An airplane has wings, each with area 4.00 m2, designed so that air flows over the 

top of the wing at 245 m/s and underneath the wing at 222 m/s. Find the mass of the 

airplane such that the lift on the plane will support its weight, assuming the force from the 

pressure difference across the wings is directed straight upwards. 

Solution:  

 
 

Q 3: If the diameters of a pipe are 6 cm and 10 cm, at the points where a venturi meter 

is connected and the pressures at the points are shown to differ by 5 cm of water column. 

Find the volume of water flowing through the pipe per second. 

Solution:  

푃 − 푃 = 5푐푚 푤푎푡푒푟 푐표푙푢푚푛 = 5 × 1 × 980 = 4900 

퐴 = 휋푅 = 휋
10
2

= 25휋 푐푚  

퐴 = 휋푅 = 휋
6
2

= 9휋 푐푚  

1
2

휌푣 + 휌푔ℎ + 푃 =
1
2

휌푣 + 휌푔ℎ + 푃  

For horizontal case: 

1
2

휌푣 + 푃 =
1
2

휌푣 + 푃  
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1
2

휌(푣 − 푣 ) = 푃 − 푃  

(푣 − 푣 ) =
2(푃 − 푃 )

휌
 

푣 =
2(푃 − 푃 )

휌
+ 푣  

∴
2(푃 − 푃 )

휌
+ 푣 퐴 = 푣 퐴  

Squaring both sides: 
( ) + 푣 퐴 = 푣 퐴  

푣 = ( )
       ⇒      푣 = 퐴 ( )

 

휑 = 푣 퐴 = 퐴 퐴
2(푃 − 푃 )

휌 퐴 − 퐴
 

휑 = (9휋)(25휋)
2(4900)

((25휋) − (9휋) ) = 3000 푐푚 /푠푒푐. 

 
 

 

 

 

 

  

 


