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Chapter Six 

Transport Phenomena 
 

6.1 Introduction: 

When a fluid flows through a tube, the basic mechanism that produces the flow is a 
difference in pressure across the ends of the tube. This pressure difference is responsible 
for the transport of a mass of fluid from one location to another. The fluid may also move 
from place to place because of a second mechanism—one that depends on a difference in 
concentration between two points in the fluid, as opposed to a pressure difference. When 
the concentration (the number of molecules per unit volume) is higher at one location 
than at another, molecules will flow from the point where the concentration is high to the 
point where it is lower. The two fundamental processes involved in fluid transport 
resulting from concentration differences are called diffusion and osmosis. 
 
6.2 Diffusion: 

In a diffusion process, molecules move from a region where their concentration is 
high to a region where their concentration is lower. 

 
Figure [1]: When the concentration of gas molecules on the left side of the container 
exceeds the concentration on the right side, there will be a net motion (diffusion) of 

molecules from left to right. 
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To understand why diffusion occurs, consider Figure [1], which depicts a container in 
which a high concentration of molecules has been introduced into the left side. The dashed 
line in the figure represents an imaginary barrier separating the two regions. Because the 
molecules are moving with high speeds in random directions, many of them will cross the 
imaginary barrier moving from left to right. Very few molecules will pass through moving 
from right to left, simply because there are very few of them on the right side of the 
container at any instant. As a result, there will always be a net movement from the region 
with many molecules to the region with fewer molecules. For this reason, the 
concentration on the left side of the container will decrease, and that on the right side will 
increase with time. Once concentration equilibrium has been reached, there will be no net 
movement across the cross-sectional area: The rate of movement of molecules from left 
to right will equal the rate from right to left. 
 
The basic equation for diffusion is Fick’s law, 

푫풊풇풇풖풔풊풐풏 풓풂풕풆 =
풎풂풔풔
풕풊풎풆

=
풅풎
풅풕

= 푫푨
푪ퟐ − 푪ퟏ

푳
  … (ퟏ) 

where D is a constant of proportionality. The left side of this equation is called the 
diffusion rate and is a measure of the mass being transported per unit time. The equation 
says that the rate of diffusion is proportional to the cross-sectional area A and to the 
change in concentration per unit distance,(푪ퟐ − 푪ퟏ)/푳, which is called the 
concentration gradient. The concentrations C1 and C2 are measured in kilograms per 
cubic meter. The proportionality constant D is called the diffusion coefficient and 
has units of square meters per second.  
Table (1) lists diffusion coefficients for a few substances. 
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6.3: The Size of Cells and Osmosis: 

Diffusion through cell membranes is vital in carrying oxygen to the cells of the body and 
in removing carbon dioxide and other waste products from them. Cells require oxygen for 
those metabolic processes in which substances are either synthesized or broken down. In 
such processes, the cell uses up oxygen and produces carbon dioxide as a by-product. A 
fresh supply of oxygen diffuses from the blood, where its concentration is high, into the 
cell, where its concentration is low. Likewise, carbon dioxide diffuses from the cell into 
the blood, where it is in lower concentration. Water, ions, and other nutrients also pass 
into and out of cells by diffusion. 
A cell can function properly only if it can transport nutrients and waste products rapidly 
across the cell membrane. The surface area of the cell should be large enough so that the 
exposed membrane area can exchange materials effectively while the volume should be 
small enough so that materials can reach or leave particular locations rapidly. This requires 
a large surface-area-to-volume ratio. 
Model a cell as a cube, each side with length L. The total surface area is 6L2 and the 
volume is L3. The surface area to volume is then; 

 
Because L is in the denominator, a smaller L means a larger ratio. This shows that the 
smaller the size of a body, the more efficiently it can transport nutrients and waste products 
across the cell membrane. Cells range in size from a millionth of a meter to several 
millionths, so a good estimate of a typical cell’s surface-to-volume ratio is 106. 
The diffusion of material through a membrane is partially determined by the size of the 
pores (holes) in the membrane wall. Small molecules, such as water, may pass through 
the pores easily, while larger molecules, such as sugar, may pass through only with 
difficulty or not at all. A membrane that allows passage of some molecules but not others 
is called a selectively permeable membrane. 
Osmosis is the diffusion of water across a selectively permeable membrane from a 
high-water concentration to a low water concentration. As in the case of diffusion, 
osmosis continues until the concentrations on the two sides of the membrane are equal. 
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6.4 Motion through a Viscous Medium: 

When an object falls through air, its motion is impeded by the force of air resistance. In 
general, this force is dependent on the shape of the falling object and on its velocity. The 
force of air resistance acts on all falling objects, but the exact details of the motion can be 
calculated only for a few cases in which the object has a simple shape, such as a sphere. 
In this section, we will examine the motion of a tiny spherical object falling slowly through 
a viscous medium. 

In 1845 a scientist named George Stokes found that the magnitude of the resistive 
force on a very small spherical object of radius r falling slowly through a fluid of viscosity 
 with speed v is given by: 

푭풓 = ퟔ 흅 휼 풓 풗  … (ퟐ) 
This equation, called Stokes’s law, has many important applications. For example, it 
describes the sedimentation of particulate matter in blood samples. It was used by Robert 
Millikan (1886–1953) to calculate the radius of charged oil droplets falling through air. 
From this, Millikan was ultimately able to determine the charge on the electron, and was 
awarded the Nobel Prize in 1923 for his pioneering work on elemental charges. 

 
Figure [2]: A sphere falling through a viscous medium. The forces acting on the 
sphere are the resistive frictional force 푭풓⃑, the buoyant force 푩⃑, and the force of 

gravity acting on the sphere. 
 
As a sphere falls through a viscous medium, three forces act on it, as shown in Figure [2]: 
푭풓⃑, the force of friction; 푩⃑, the buoyant force of the fluid; and 풘⃑, the force of gravity 
acting on the sphere. The magnitude of is given by: 
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where  is the density of the sphere and is ퟒ
ퟑ

흅풓ퟑ its volume. According to Archimedes’s 
principle, the magnitude of the buoyant force is equal to the weight of the fluid displaced 
by the sphere: 

 
where 흆풇 is the density of the fluid. 
At the instant the sphere begins to fall, the force of friction is zero because the speed of 
the sphere is zero. As the sphere accelerates, its speed increases and so does 푭풓⃑. Finally, 
at a speed called the terminal speed t , the net force goes to zero. This occurs when 
the net upward force balances the downward force of gravity. Therefore, the sphere 
reaches terminal speed when: 

 
Or 

 
When this equation is solved for t, we get: 

풗풕 =
ퟐ풓ퟐ품
ퟗ 휼

흆 − 흆풇   … (ퟔ)  

 

6.5 Sedimentation and Centrifugation: 

If an object isn’t spherical, we can still use the basic approach just described to determine 
its terminal speed. The only difference is that we can’t use Stokes’s law for the resistive 
force. Instead, we assume that the resistive force has a magnitude given by Fr = k, 
where k is a coefficient that must be determined experimentally. As discussed 
previously, the object reaches its terminal speed when the downward force of gravity is 
balanced by the net upward force, or 

 
where 푩 = 흆풇 품 푽 is the buoyant force. The volume V of the displaced fluid is related 
to the density 흆 of the falling object by 푽 = 풎/흆. Hence, we can express the buoyant 
force as: 
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We substitute this expression for B and 푭풓  =  풌풕 into Equation (7) (terminal speed 
condition): 

         or 

 
 
The terminal speed for particles in biological samples is usually quite small. For example, 
the terminal speed for blood cells falling through plasma is about 5 cm/h in the 
gravitational field of the Earth. The terminal speeds for the molecules that make up a cell 
are many orders of magnitude smaller than this because of their much smaller mass. The 
speed at which materials fall through a fluid is called the sedimentation rate and is 
important in clinical analysis. 
The sedimentation rate in a fluid can be increased by increasing the effective acceleration 
g that appears in Equation (9). A fluid containing various biological molecules is placed 
in a centrifuge and whirled at very high angular speeds (Fig. 3). Under these conditions, 
the particles gain a large radial acceleration 푎 = 푣 /푟 = 휔 푟 that is much greater than 
the free-fall acceleration, so we can replace 푔 in Equation (9) by 휔 푟 and obtain: 

 
This equation indicates that the sedimentation rate is enormously speeded up in a 
centrifuge (휔 푟 ≫ 푔) and that those particles with the greatest mass will have the largest 
terminal speed. Consequently, the most massive particles will settle out on the bottom of 
a test tube first. 

 
Figure [3]: Simplified diagram of a centrifuge (top view). 
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Example 1: Sucrose is allowed to diffuse along a 10 cm length of tubing filled with 
water. The tube is 6.0 cm2 in cross-sectional area. The diffusion coefficient is equal to 
ퟓ. ퟎ ×  ퟏퟎ ퟏퟎ 풎ퟐ/풔, and ퟖ. ퟎ ×  ퟏퟎ ퟏퟒ 풌품 is transported along the tube in 15 s. What 
is the difference in the concentration levels of sucrose at the two ends of the tube? 

푫풊풇풇풖풔풊풐풏 풓풂풕풆 =
풎풂풔풔
풕풊풎풆

= 푫푨
푪ퟐ − 푪ퟏ

푳
  

ퟖ ×  ퟏퟎ ퟏퟒ 풌품
ퟏퟓ 풔

= ퟓ × ퟏퟎ ퟏퟎ 풎ퟐ

풔
(ퟔ ×  ퟏퟎ ퟒ풎ퟐ)

푪ퟐ − 푪ퟏ

ퟎ. ퟏ 풎
  

푪ퟐ − 푪ퟏ =
ퟖ ×  ퟏퟎ ퟏퟒ × ퟎ. ퟏ

ퟏퟓ × ퟓ × ퟏퟎ ퟏퟎ × ퟔ ×  ퟏퟎ ퟒ = ퟎ. ퟎퟎퟏퟕퟖ
풌품
풎ퟑ 

 
Example 2: The viscous force on an oil drop is measured to be ퟑ. ퟎ ×  ퟏퟎ ퟏퟑ 푵 when the 
drop is falling through air with a speed of ퟒ. ퟓ ×  ퟏퟎ ퟒ 풎/풔. If the radius of the drop is 
ퟐ. ퟓ ×  ퟏퟎ ퟔ 풎, what is the viscosity of air? 

푭 = 흆 품 푽 = 흆 품
ퟒ
ퟑ

흅 풓ퟑ   

ퟑ ×  ퟏퟎ ퟏퟑ 푵 = 흆 (ퟗ. ퟖ 풎/풔ퟐ)
ퟒ
ퟑ

흅 (ퟐ. ퟓ ×  ퟏퟎ ퟔ풎)ퟑ   

흆 =
ퟑ ×  ퟏퟎ ퟏퟑ 푵 × ퟑ

ퟒ × (ퟗ. ퟖ 풎/풔ퟐ) × 흅 × (ퟐ. ퟓ ×  ퟏퟎ ퟔ풎)ퟑ = ퟒퟔퟕ. ퟕퟐ 
풌품
풎ퟑ   

풗풕 =
ퟐ풓ퟐ품
ퟗ 휼

흆 − 흆풇  

휼 =
ퟐ(ퟐ. ퟓ ×  ퟏퟎ ퟔ풎)ퟐ(ퟗ. ퟖ 풎/풔ퟐ)

ퟗ (ퟒ. ퟓ ×  ퟏퟎ ퟒ)
(ퟒퟔퟕ. ퟕퟐ − ퟏ. ퟐ) 풌품/풎ퟑ 

휼 = ퟏ. ퟒ ×  ퟏퟎ ퟓ  
푵. 풔
풎ퟐ  

Example 3: Calculate the terminal velocity of an air bubble of radius 0.5mm rising in a 
liquid of viscosity 0.3푁푠/푚 . Density of the liquid = 900퐾푔/푚 . (Neglect density of 
air in comparison to that of the liquid. 

휂 =
2푟 휌 − 휌 푔

9푣
 

푣 =
2푟 휌 − 휌 푔

9휂
 

푣 =
2 × (0.5 × 10 ) × 9.8 × 900

9 × 0.3
= 1.63 × 10  푚/푠 
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Home Work: 

Q 1: Glycerin in water diffuses along a horizontal column that has a cross-sectional area 
of ퟐ. ퟎ  풄풎ퟐ. The concentration gradient is ퟑ. ퟎ ×  ퟏퟎ ퟐ 풌품/풎ퟒ, and the diffusion rate 
is found to be ퟓ. ퟕ ×  ퟏퟎ ퟏퟓ 풌품/풔. Determine the diffusion coefficient. 
 
Solution: 

푫풊풇풇풖풔풊풐풏 풓풂풕풆 =
풎풂풔풔
풕풊풎풆

= 푫푨
푪ퟐ − 푪ퟏ

푳
  

ퟓ. ퟕ ×  ퟏퟎ ퟏퟓ 풌품
풔

= 푫(ퟐ ×  ퟏퟎ ퟒ풎ퟐ) ퟑ ×  ퟏퟎ ퟐ  
풌품
풎ퟒ  

푫 =
ퟓ. ퟕ ×  ퟏퟎ ퟏퟓ

ퟑ ×  ퟏퟎ ퟐ × ퟐ ×  ퟏퟎ ퟒ = ퟎ. ퟗퟓ ×  ퟏퟎ ퟗ 풎ퟐ

풔
 

 
Q 2: Two equal drops of water each of radius r, are falling through air, with a steady 
velocity . If the two drops coalesce to form a bigger drop, find the new velocity of fall. 
 

Solution: 
Let the radius of the bigger drop be R. 

푉 =
4
3

휋푅 = 2푉 = 2
4
3

휋푟  

푅 = (2) /  푟 = 1.26 푟 

휂 =
2푟 휌 − 휌 푔

9푣
 

For water 휌 = 1푔/푐푚  
Density of air was neglected comparing to water. 

Small drop :  휂 =
2푟 푔

9푣
 

 Big drop:휂 =  
From these two equations: 

=       ⇒       =  

푉 = 푣 = ( . )   푣 = 1.5876 푣  
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Q 3: A gas bubble of diameter 2cm, rises steadily through a solution of density 
1.75 푔/푐푚  at the rate of 0.35 푐푚/푠푒푐. Calculate the coefficient of viscosity of the 
solution. (Neglect the density of the gas). 
 
Solution: 

휂 =
2푟 휌 − 휌 푔

9푣
 

휂 =
2 × (1) × 1.75 × 980

9 × 0.35
= 1088.88 푝표푖푠푒 

 
 
 


