# BS111 <br> <br> Probability and Statistics 

 <br> <br> Probability and Statistics}

Lecture 06

## Chapter 2: Random Variable

- Discrete Random Variables.
- Probability Mass Functions.
- Cumulative Distribution Functions.
- Discrete R.V. (Mean and Variance.(
- Continuous Random Variables.
- Probability Density Functions.
- Continuous R.V. (Mean and Variance.(
- Joint Probability Distributions.


## Mean and Variance ((1/15

Two numbers are often used to summarize a probability distribution for a random variable $X$. The mean is a measure of the center or middle of the probability distribution and the variance is a measure of the dispersion, or variability in the distribution.

## Mean and Variance ((2/15

mean
Probability distributions with equal means but different variances.


The y-axis represent the probability that shows in length of the arrow

Same mean, but differ distribution


## Mean and Variance ((3/15

Two probability distributions can differ even though they have identical means and variances.

0



## Mean and Variance ((4/15

## Mean, Variance, and Standard deviation

The mean or expected value of the discrete random variable $X$, denoted as $\mu$ or $E(X)$, is

$$
\mu=E(X)=\sum_{x} x f(x)
$$

The variance of $X$, denoted as $\sigma^{2}$ or $V(X)$, is

$$
\begin{array}{ll}
\sigma^{2}=V(X)=E(X-\mu)^{2}=\sum_{x}(x-\mu)^{2} f(x)=\sum_{x} x^{2} f(x)-\mu^{2} \\
\text { dard deviation of } X \text { is } \sigma=\sqrt{\sigma^{2}} . & E\left(X^{2}\right)-(E(X))^{2}
\end{array}
$$

## Mean and Variance ((5/15

## Example1

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)=P(X=x)$ | $1 / 8$ | $2 / 8$ | $2 / 8$ | $2 / 8$ | $1 / 8$ |

Find:
Determine the mean and variance of the random variable $X$

## Mean and Variance ((6/15

## Example1

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)=P(X=x)$ | $1 / 8$ | $2 / 8$ | $2 / 8$ | $2 / 8$ | $1 / 8$ |

Find:
Determine the mean and variance of the random variable $X$
Answer: ((1/2

$$
\begin{aligned}
& E(X)= \\
& \begin{aligned}
\sum x_{i} P\left(x_{i}\right) & =(-2)\left(\frac{1}{8}\right)+(-1)\left(\frac{2}{8}\right)+(0)\left(\frac{2}{8}\right)+(1)\left(\frac{2}{8}\right)+(2)\left(\frac{1}{8}\right) \\
& =0
\end{aligned}
\end{aligned}
$$

## Mean and Variance ((6/15

\section*{Example1 <br> | $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)=P(X=x)$ | $1 / 8$ | $2 / 8$ | $2 / 8$ | $2 / 8$ | $1 / 8$ |}

Answer: (2/2)
$V(X)=E\left(X^{2}\right)-(E(X))^{2}$
$E(X)=0$
$E\left(X^{2}\right)$
$=\sum x_{i}^{2} P\left(x_{i}\right)=(4)\left(\frac{1}{8}\right)+(1)\left(\frac{2}{8}\right)+(0)\left(\frac{2}{8}\right)+(1)\left(\frac{2}{8}\right)+(4)\left(\frac{1}{8}\right)=1.5$
$V(X)=1.5-(0)^{2}=1.5, \quad$ Standard Deviation $(\sigma)=\sqrt{1.5}$

## Mean and Variance ((7/15

## Example:2

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

## Mean and Variance ((8/15

## Example2 - Answer ((1/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Let $X$ represent the number of good components in the sample. Then $\boldsymbol{x}$ can only take the numbers $0,1,2$ and .3

## Mean and Variance ((8/15

## Example2 - Answer ((2/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

The probability distribution of $X$ is

$$
f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{(7)}, \quad x=0,1,2,3
$$

## Mean and Variance ((8/15

## Example2 - Answer ((3/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

$$
f(0)=P(X=0)=\frac{\binom{4}{0}\binom{3}{3}}{\binom{7}{3}}=\frac{1}{35}
$$

## Mean and Variance ((8/15

## Example2 - Answer ((4/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

$$
f(1)=P(X=1)=\frac{\binom{4}{1}\binom{3}{2}}{\binom{7}{3}}=\frac{12}{35}
$$

## Mean and Variance ((8/15

## Example2 - Answer ((5/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

$$
f(2)=P(X=2)=\frac{\binom{4}{2}\binom{3}{1}}{\binom{7}{3}}=\frac{18}{35}
$$

## Mean and Variance ((8/15

## Example2 - Answer ((6/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

$$
f(3)=P(X=3)=\frac{\binom{4}{3}\binom{3}{0}}{\binom{7}{3}}=\frac{4}{35}
$$

## Mean and Variance ((8/15

## Example2 - Answer ((7/9

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(X)=P(X=x)$ | $1 / 35$ | $12 / 35$ | $18 / 35$ | $4 / 35$ |

## Mean and Variance ((8/15

## Example2 - Answer ((8/9

Find the expected value of the number of good components in this sample.

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(X)=P(X=x)$ | $1 / 35$ | $12 / 35$ | $18 / 35$ | $4 / 35$ |

$$
E(X)=(0)\left(\frac{1}{35}\right)+(1)\left(\frac{12}{35}\right)+(2)\left(\frac{18}{35}\right)+(3)\left(\frac{4}{35}\right)=\frac{12}{7}=1.7 .
$$

## Mean and Variance ((8/15

## Example2 - Answer ((9/9

$$
E(X)=1.7
$$

Determine the variance of the random variable $X$

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(X)=P(X=x)$ | $1 / 35$ | $12 / 35$ | $18 / 35$ | $4 / 35$ |

$V(X)=E\left(X^{2}\right)-(E(X))^{2}$
$E\left(X^{2}\right)=\sum x_{i}^{2} P\left(x_{i}\right)=0\left(\frac{1}{35}\right)+(1)\left(\frac{12}{35}\right)+(4)\left(\frac{18}{35}\right)+(9)\left(\frac{4}{35}\right)=\frac{120}{35}=3.43$
$V(X)=3.43-(1.7)^{2}=0.54, \quad$ Standard Deviation $(\sigma)=\sqrt{0.54}=0.74$

## Mean and Variance ((9/15

For any constants $a$ and $b$ :

## Mean

1. $E(a)=a, \quad a \in \mathbb{R}$
2. $E(a X+b)=a E(X)+b, \quad a, b \in \mathbb{R}$

Variance

1. $V(a)=0, a \in \mathbb{R}$
2. $V(a X+b)=a^{2} V(X), \quad a, b \in \mathbb{R}$

## Mean and Variance ((10/15

## Example3: - Answer

A discrete random variable with $V(X)=2.5$
Evaluate $V(2 X+1)$

$$
\begin{aligned}
& V(a X+b)=a^{2} V(X), \quad a, b \in \mathbb{R} \\
& V(2 X+1)=4 V(X)=4 \times 2.5=10
\end{aligned}
$$

## Mean and Variance ((12/15

## Example 4 : - Answer

A discrete random variable with $E(X)=2.5$
Evaluate $E(2 X+1)$
$E(a X+b)=a E(X)+b, \quad a, b \in \mathbb{R}$
$E(2 X+1)=2 E(X)+1$
$E(2 X+1)=2 \times 2.5+1=6$

## Mean and Variance ((14/15

## Example:5-Answer

Let $X$ is a random variable with mean 6 and variance 100 . Consider another random variable $Y$ such that $Y=3 X+6$, evaluate the mean and variance of $Y$ ?

$$
\begin{aligned}
& E(X)=6, \quad V(X)=100 \\
& E(Y)=E(3 X+6)=3 E(X)+6=3(6)+6=24 \\
& V(Y)=V(3 X+6)=9 V(X)=9(100)=900
\end{aligned}
$$

## Continuous R. V. ((1/3

## Continuous Random Variable:

If the range space $R_{x}$ of the random variable $X$ is an interval or a collection of intervals, $X$ is called a continuous random variable.

A continuous random variable has a probability of $\mathbf{0}$ of assuming exactly any of its values. Consequently, its probability distribution cannot be given in tabular form.

## Continuous R. V. ((2/3

## Example:

If we talk about the probability of selecting a person who is at least 163 centimeters but not more than 165 centimeters tall. Now we are dealing with an interval rather than a point value of our random variable.
$X$ should be between two values
$F(x)$ is probability and it Represented as AREA


## Continuous R. V. ((3/3



If $X$ is a continuous random variable, for any $x_{1}$ and $x_{2}$,

$$
P\left(x_{1} \leq X \leq x_{2}\right)=P\left(x_{1}<X \leq x_{2}\right)=P\left(x_{1} \leq X<x_{2}\right)=P\left(x_{1}<X<x_{2}\right)
$$

## Prob. Density Functions ((1/6

## Probability Density Function

For a continuous random variable $X$, a probability density function is a function such that
(1) $f(x) \geq 0$
(2) $\int_{-\infty}^{\infty} f(x) d x=1$
(3) $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=$ area under $f(x)$ from $a$ to $b$ for any $a$ and $b$

## Prob. Density Functions ((2/6

## Definite Integral:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
& \int_{1}^{3} x^{2} d x \\
& \int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\left[\frac{3^{3}}{3}\right]-\left[\frac{1^{3}}{3}\right]=\left[9-\left(\frac{1}{3}\right)\right]=\frac{26}{3}
\end{aligned}
$$

## Prob. Density Functions ((2/6

Definite Integral:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=F \\
& \int_{1}^{3} x^{2} d x \\
& \int_{1}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{3}=\left[\frac{3^{3}}{3}\right]-\left[\frac{1^{3}}{3}\right]=\left[9-\left(\frac{1}{3}\right)\right]=\frac{26}{3}
\end{aligned}
$$

## Prob. Density Functions ((3/6

## Example:1

Suppose that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{-\boldsymbol{x}}$ for $\boldsymbol{x} \geq 0$
Check the probability density function, then determine the following probabilities:

$$
\begin{array}{ll}
\text { 1. } & P(X<1) \\
\text { 2. } & P(1 \leq X<2.5) \\
\text { 3. } & P(X=3) \\
\text { 4. } & P(X \geq 3)
\end{array}
$$

## Prob. Density Functions ((4/6

Example1 - Answer ((1/5
Check the probability density function:
$\int_{0}^{\infty} e^{-x} d x \quad \begin{gathered}\text { When the result }=1 \\ \text { Proved that this function is } \\ \text { probability density function }\end{gathered}$
$\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=\left(-e^{-\infty}\right)-\left(-e^{0}\right)=0+1=1$

## Prob. Density Functions ((4/6

## Example1 - Answer ((2/5

1) $P(X<1)$
$P(X<1)=\int_{0}^{1} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{1}=\left(-e^{-1}\right)-\left(-e^{0}\right)$

$$
=-0.367879+1=0.632121
$$

1
We should always remember that the result is "Probability" and must be +ve and between 0 and 1

## Prob. Density Functions ((4/6

## Example1 - Answer ((3/5

2) $\boldsymbol{P}(\mathbf{1} \leq X<\mathbf{2 . 5})$
$P(1 \leq X<2.5)=\int_{1}^{2.5} e^{-x} d x=-e^{-x} \left\lvert\, \begin{gathered}2.5 \\ 1\end{gathered}\right.$
$=\left(-e^{-2.5}\right)-\left(-e^{-1}\right)=-0.082085+0.367879$
$=0.285794$

## Prob. Density Functions ((4/6

## Example1 - Answer ((4/5

3) $P(X=3)$
$\boldsymbol{P}(\boldsymbol{X}=3)=\mathbf{0}$

## Prob. Density Functions ((4/6

## Example1 - Answer ((5/5 <br> $$
\text { 4) } P(X \geq 3)
$$

$$
P(X \geq 3)=\int_{3}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{3} ^{\infty}=\left(-e^{-\infty}\right)-\left(-e^{-3}\right)
$$

$$
=0+0.049787=0.049787
$$

## Prob. Density Functions ((5/6

## Example:2

Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$ (Celsius), for a controlled laboratory experiment is a continuous random variable $X$ having the probability density function

$$
f(x)= \begin{cases}\frac{x^{2}}{3}, & -1<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Verify that $f(x)$ is a density function.
(b) Find $P(0<X \leq 1)$.

## Prob. Density Functions ((6/6

## Example2 - Answer ((1/2

Check the probability density function:

$$
\begin{aligned}
& \int_{-1}^{2} \frac{x^{2}}{3} d x \\
& \int_{-1}^{2} \frac{x^{2}}{3} d x=\left.\frac{x^{3}}{9}\right|_{-1} ^{2}=\left(\frac{(2)^{3}}{9}\right)-\left(\frac{(-1)^{3}}{9}\right)=\frac{8}{9}+\frac{1}{9}=\mathbf{1}
\end{aligned}
$$

## Prob. Density Functions ((6/6

## Example2 - Answer ((2/2

$$
\text { 2) } P(0<X \leq 1)
$$

$$
P(\mathbf{0}<\boldsymbol{X} \leq \mathbf{1})=\int_{0}^{1} \frac{x^{2}}{3} \boldsymbol{d} x=\left.\frac{x^{3}}{9}\right|_{0} ^{1}
$$

$$
=\left(\frac{(1)^{3}}{9}\right)-\left(\frac{(0)^{3}}{9}\right)=\frac{1}{9}+\frac{0}{9}=\frac{\mathbf{1}}{9}
$$

## Joint Prob. Distributions ((1/9

## Definition:

If $X$ and $Y$ are two random variables, the probability distribution that defines their simultaneous behavior is called a joìnt probability distribution.

## Joint Prob. Distributions ((2/9

If $X$ and $Y$ are discrete random variables:
Joint Probability Mass Function
The joint probability mass function of the discrete random variables $X$ and $Y$, denoted as $f_{X Y}(x, y)$, satisfies
(1) $f_{X Y}(x, y) \geq 0$
(2) $\sum_{X} \sum_{Y} f_{X Y}(x, y)=1$
(3) $f_{X Y}(x, y)=P(X=x, Y=y)$

## Joint Prob. Distributions ((3/9

## Example:1

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables $X$ and $Y$, where $X$ denote the number of heads appear and $Y$ denote the number of tails appear.

## Joint Prob. Distributions ((4/9

## Example1 - Answer ((1/2

$S=\{H H, T H, H T, T T\}$

| $X$ | 2 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $Y$ | 0 | 1 | 1 | 2 |

## Joint Prob. Distributions ((4/9

## Example1 - Answer ((2/2

$S=\{H H, T H, H T, T T\}$

| $X$ | 2 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $Y$ | 0 | 1 | 1 | 2 |


| $\boldsymbol{y}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

## Joint Prob. Distributions ((5/9

## Example: 2

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables $X$ and $Y$, where $X$ denote the number of heads appear and $Y$ denote the number of tails appear.

## Find:

1) $f_{X Y}(1,2)=P(X=1, Y=2)$
2) $f_{X Y}(2,0)=P(X=2, Y=0)$
3) $P(X=1, Y \leq 2)$
4) $P(Y=2)$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((1/4

Find:

| $\boldsymbol{y}$ | $\boldsymbol{x}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

1) $f_{X Y}(1,2)=P(X=1, Y=2)=0$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((2/4

## Find:

| $\boldsymbol{y}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

2) $f_{X Y}(2,0)=P(X=2, Y=0)$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((2/4

## Find:

| $\boldsymbol{y}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

2) $f_{X Y}(2,0)=P(X=2, Y=0)=1 / 4$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((3/4

## Find:

(3 $\quad P(X=1, \quad Y \leq 2)$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((3/4

## Find:

| $\boldsymbol{y}$ | $\boldsymbol{x}$ | $\mathbf{0}$ | $(\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ |  | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ |  | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ |  | $1 / 4$ | 0 | 0 |

3) $P(X=1, Y \leq 2)=0+\frac{2}{4}+0=\frac{2}{4}$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((4/4

## Find:

(4 $\quad P(Y=2)$

## Joint Prob. Distributions ((6/9

## Example2 - Answer ((4/4

## Find:

| $\boldsymbol{y}$ | $\boldsymbol{x}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $\mathbf{2}$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

4) $P(Y=2)=\frac{1}{4}+0+0=\frac{1}{4}$

## Joint Prob. Distributions ((7/9

## Marginal Probability Distributions

The marginal distributions of the random variable $X$ alone is:

$$
f_{X}(x)=\sum_{y} f_{X Y}(x, y)
$$

The marginal distributions of the random variable $Y$ alone is:

$$
f_{Y}(y)=\sum_{x} f_{X Y}(x, y)
$$

## Joint Prob. Distributions ((8/9

## Example:3

A coin is tossed two times. Calculate the joint probability mass function of the discrete random variables $X$ and $Y$, where $X$ denote the number of heads appear and $Y$ denote the number of tails appear.

## Find:

$$
\begin{aligned}
& \text { 1) } f_{X}(x) \\
& \text { 2) } f_{Y}(y)
\end{aligned}
$$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((1/4

| $\boldsymbol{y}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

## Find:

1) $f_{X}(x)$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((1/4

## Find:

| $y$ | $\mathbf{x}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |
| $f_{X}(x)$ | $\mathbf{4 / 1}$ | $\mathbf{4 / 2}$ | $\mathbf{4 / 1}$ |

1) $f_{X}(x)$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((2/4

| $x$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $f_{X}(x)$ | $4 / 1$ | $4 / 2$ | $4 / 1$ |

Find:

1) $f_{X}(x)$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((3/4

| $\boldsymbol{y}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 |

Find:
2) $f_{Y}(y)$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((3/4

| $y$ | $\boldsymbol{x}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | $1 / 4$ | $\mathbf{4} / \mathbf{1}$ |
| $\mathbf{1}$ | 0 | $2 / 4$ | 0 | $\mathbf{4 / 2}$ |
| $\mathbf{2}$ | $1 / 4$ | 0 | 0 | $\mathbf{4 / 1}$ |

Find:
2) $f_{Y}(y)$

## Joint Prob. Distributions ((9/9

## Example3 - Answer ((4/4

| $y$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $f_{Y}(y)$ | $4 / 1$ | $4 / 2$ | $4 / 1$ |

## Find:

2) $f_{Y}(y)$

Thank You

