
Mr. Velar Hikmat

Elias

Database

Modeling

Chapter 1

•File system
and
Database

Introducing the database

• Data vs information

– Data constitute building blocks of information.

– Information produced by processing data.

– Information reveals the meaning of data.

– Good, timely, relevant information key to

decision making.

– Good decision-making key to organizational

survival.

Introduction (Data Model)

• A data model is a conceptual representation

of the data structures that are required by a

database.

• The data structures include the data

objects, the associations between data

objects, and the rules which govern

operations on the objects.

• There are two major methodologies used to

create a data model: the Entity-Relationship

(ER) approach and the Object Model.

Purpose of database

• The purpose of a database

– To store data

– To provide an organizational structure for data

– To provide a mechanism for querying, creating

modifying, and deleting data

• A database can store information and

relationships that are more complicated

than a simple list

Purpose of database

• Create

• Read

• Update

• Delete

Database Design

• Database design is defined as: "design the logical

and physical structure of one or more databases

to accommodate the information needs of the

users in an organization for a defined set of

applications". The design process roughly follows

five steps:

• 1. planning and analysis

• 2. conceptual design

• 3. logical design

• 4. physical design

• 5. implementation

1. planning and analysis

• Collect all requirements and analyze it

– Data requirements

– Function requirements

by using dataflow diagram ,sequences diagram

.....etc

2. conceptual design

• After collecting all data, the designer start to

design a conceptual schema for the

database using (High-level conceptual data

Models) like ER-model

• And the conceptual design is a feedback of

all data collection .

3. logical design

• Logical design or DATA MODEL MAPPING

• In this case we convert conceptual design

from High level conceptual data Model to

Implementation data Model

• Like converting E-R model mapping to

Relational Model.

4. physical design

• This level shows all saved details by

indicating Access paths, file organization for

database file.

• Then design the internal schema for DBMS

The Entity-Relationship Model

• The Entity-Relation Model (ER) is the most

common method used to build data models

for relational databases.

• The ER model views the real world as a

construct of entities and association

between entities.

1. Entity 2. Attributes

3. Table 4. Coordinate

5. Order 6. Keys

7. Domain 8. NF

Entities

• Entities are the principal data object about

which information is to be collected.

• Thing In real world with an Independent

existence

• Entities can be classified into:

1. Physical existence Entities

• Car, house, person, student

2. Conceptual existence Entities

• Job, company, course

Attributes

• Attributes are the properties to describe the

Entities.

Example:

Entity like ―Employee‖

Have many Attributes like ―Name, SSN

,Gender, salary , address , age ‖

 (Attribute Values become a major part of

data in the DB)

Attributes tables

• Atomic Attribute (or simple): if it does not

contain any meaningful smaller.

• A Composite attribute has multiple

components, each of which is atomic or

composite, which are sub-part attributes.

Address

Office Address

state Street No City

Home Address

Atomic Attribute

• An attribute is considered atomic (or simple) if it does not contain any

meaningful smaller components.

• For example, suppose "Gender" is an attribute in our design. The Gender

attribute has a small set of possible values, for example M or F. It is not

meaningful to decompose Gender into smaller units, and so we say Gender is

a Simple attribute.

• As another example consider an attribute for product price, prodPrice. A

sample value for prodPrice is $21.03. Of course, one could decompose

prodPrice into two attributes where one attribute represents the dollar

component (21), and the other attribute represents the cents component (03),

but our assumption here is that such a decomposition is not meaningful to the

intended application or system that will make use of it. So we would consider

prodPrice to be atomic because it cannot be usefully decomposed into

meaningful components.

• Exercise:

• Consider an attribute for the employee's last name, such as empLname. Can this be

decomposed into smaller meaningful attributes?

Attributes classification

• Single Valued Attribute: Attributes that can have

single value at a particular instance of time are

called single valued. A person can‘t have more

than one age value. Therefore, age of a person is

a single-values attribute.

• Multivalve attribute: A multi-valued attribute can

have more than one value at one time. For

example, an entity CAR have a COLOR attribute

that represent one color for some or more than

one for another.

Database Terminology

• Tables within a relational database hold sets of data using
rows and columns

• Rows (records) appear horizontally in a report, and contain
one or more columns

• Columns (fields) are named data elements and appear
vertically in a report

• Primary Keys identify uniqueness in a row

• Indexes are created for faster access to the data in the
database

Basic Database Concepts

• Table
– A set of related records

• Record

– A collection of data about an individual item

• Field

– A single item of data common to all records

• Relation file table

• Attributes field column

• Table record row

An Example of a Table

Null value

• Some attributes have null value to represent

the entity case, and this field is unknown

value or not exist.

• Example:

– College certificate is an attribute to the person

entity how complete a college

– Null value for college certificate is to the person

how doesn't have college certificate.

Primary and Foreign Keys

• Primary and foreign keys are the most basic

components on which relational theory is

based.

• Primary keys enforce entity integrity by

uniquely identifying entity instances.

• Foreign keys enforce referential integrity by

completing an association between two

entities.

Primary key

• The primary key is an attribute or a set of attributes that
uniquely identify a specific instance of an entity.

• Every entity in the data model must have a primary key

whose values uniquely identify instances of the entity.

• To qualify as a primary key for an entity, an attribute must

have the following properties:

1. it must have a non-null value for each instance of the entity

2. the value must be unique (no repeat)for each instance of an entity

3. the values must not change or become null during the life of each

entity instance

In some instances, an entity will have more than one attribute that can

serve as a primary key.

Primary Key

• Any key or minimum set of keys that could

be a primary key is called a Candidate Key

• Candidate keys which are not chosen as the

primary key are known as Alternate keys.

• Sometimes it requires more than one

attribute to uniquely identify an entity. A

primary key that made up of more than one

attribute is known as a Composite key.

Foreign Key

• Foreign key is a field (or collection of fields)

in one table that uniquely identifies a row of

another table or the same table.

• In simpler words, the foreign key is defined

in a second table, but it refers to the

primary key or a unique key in the first table.

Example

Relation Anomalies

• Anomalies are problems that can occur in poorly

planned, un-normalised databases where all

the data is stored in one table (a flat-

file database).

• Data Anomalies. Normalization is the process of

splitting relations into well structured relations that

allow users to insert, delete, and update tables

without introducing database inconsistencies.

• Without normalization many problems can occur

when trying to load an integrated

conceptual model into the DBMS.

Relation anomalies

ID Name Salary Project P. No. Project

Address

1 Azad 500 A 1001 Hawler

2 Naz 300 B 1002 Koya

3 Kawa 250 A 1001 Hawler

4 Dara 300 C 1003 Karkuk

.

.

.

1000

30B 5B 2B 8B 30B2B

77B

For

Each

row

Employees table

Relation anomalies

• Each cell has different storage capacity

• row capacity = ∑ of all cells for same row

• row capacity = 2+30+5+2+8+30 = 77 Byte

• If the table have 1000 rows

• Then table capacity = 1000 x 77B = 77000B

• This is very big capacity if we have huge

database system

Relation anomalies

• Database modeling required ?

• Start split the table to the two Relational

tables

• With indicate the Key for these tables

Relation anomalies

ID Name Salary Project

1 Azad 500 A

2 Naz 300 B

3 Kawa 250 A

4 Dara 300 C

. . . .

. . . .

. . . .

1000 . . .

30B 5B 2B2B

39B
For

Each

row

Table capacity

= 1000 x 39B

= 39000 Byte

Employees table-1

Relation anomalies

40B
For

Each

row

Table capacity

= 3 x 40B

= 120 Byte

Employees table-2

Project P. No. Project

Address

A 1001 Hawler

B 1002 Koya

C 1003 Karkuk

2B 8B 30B

And the total capacity for two tables is

39000 B + 120 B = 39120 Byte

Relation anomalies

• To complete the model we need a

common column link between two tables

• Some time we need to split the tables to

protect the database system from loss the

information

Relation anomalies

ID Name Activity Fees

001 Azad Football 50 $

002 Aree Golf 40 $

001 Azad Basketball 30 $

003 Naz Swimming 20 $

002 Aree Swimming 20 $

004 Khalid Football 50 $

If we

remove

Aree from

Golf

We remove Golf Fees (40 $) with it

And the system will lose this value

To remove this anomalies we need to split the table to

Two tables

Relation anomalies

ID Name Activity

001 Azad Football

002 Aree Golf

001 Azad Basketball

003 Naz Swimming

002 Aree Swimming

004 Khalid Football

Activity Fees

Football 50 $

Golf 40 $

Basketball 30 $

Swimming 20 $

Functional dependency

Important to indicating the KEYS

Functional dependency is the link between two tables

Relation anomalies

• X Y (X determines Y)

• Or

• Y functionally dependency to X

• Ex:

– customer account customer balance

– Ex: (X,Z) Y X (Y,Z)

determine

Functional dependency

Normalization

• Normalization is a design technique that is widely

used as a guide in designing relational

• databases.

• Normalization is essentially a two step process

that puts data into tabular form by removing

repeating groups and then removes duplicated

from the relational tables.

• Normalization theory is based on the concepts of

normal forms.

Normalization

• Normalization generally involves splitting existing

table into multiple ones, which must be re-joined

or linked each time a query is issued

• Steps of Normalization

1. First Normal Form (1NF)

2. Second Normal Form (2NF)

3. Third Normal Form (3NF)

In practice these normal form are enough for good

database design.

Normalization-1NF

• A relational table, by definition, is in first normal

form. All values of the columns are atomic. That

is, they contain no repeating values. Figure1

shows the table (Supplier) in 1NF.

• Although the table FIRST is in 1NF it contains

redundant data.

• For example, information about the supplier's

location and the location's status have to be

repeated for every part supplied.

Normalization-1NF

Normalization-1NF

• s# - supplier identification number (this is

the primary key)

• Status - status code assigned to city

• city - name of city where supplier is located

• p# - part number of part supplied

• Qty - quantity of parts supplied to date

Normalization-1NF

• Redundancy causes what are called update anomalies. Update
anomalies are problems that arise when information is inserted,

deleted, or updated. For example, the following anomalies could occur

in FIRST:

1. INSERT. The fact that a certain supplier (s5) is located in

a particular city (Athens) cannot be added until they

supplied a part.

2. DELETE. If a row is deleted, then not only is the

information about quantity and part lost but also

information about the supplier.

3. UPDATE. If supplier s1 moved from London to New York,

then six rows would have to be updated with this new

information.

Normalization-2NF

• The definition of second normal form states

that only tables with composite primary keys

can be in 1NF but not in 2NF.

• A relational table is in second normal form

2NF if it is in 1NF and every non-key

column is fully dependent upon the primary

key.

• All partial dependencies are removed to

place in another table

Normalization-2NF

• Table ―FIRST‖ is in 1NF but not in 2NF

because status and city are functionally

dependent upon only on the column S#

of the composite key (S#, P#).

• S# city, status

• City status

• (S#, P#) qty

Normalization-2NF

• To transform FIRST into 2NF we move the

columns s#, status, and city to a new table

called SECOND. The column s# becomes

the primary key of this new table.

Normalization-2NF

Normalization-2NF

• Tables in 2NF but not in 3NF still contain

modification anomalies.

• In the example of SECOND, they are:

– INSERT. The fact that a particular city has a

certain status (Rome has a status of 50) cannot

be inserted until there is a supplier in the city.

– DELETE. Deleting any row in SUPPLIER

destroys the status information about the city as

well as the association between supplier and

city.

Normalization-3NF

• The third normal form requires that all columns in

a relational table are dependent only upon the

primary key.

• A more formal definition is:

– A relational table is in third normal form (3NF) if

it is already in 2NF and every non-key column

is non transitively dependent upon its primary

key.

– In other words, all nonkey attributes are

functionally dependent only upon the primary

key.

Normalization-3NF

• Table PARTS is already in 3NF. The non-key

column, qty, is fully dependent upon the primary

key (s#, p#).

• SUPPLIER is in 2NF but not in 3NF because it

contains a transitive dependency.

• transitive dependency is occurs when a non-key

column that is a determinant of the primary key is

the determinate of other columns.

Normalization-3NF

• The concept of a transitive dependency can

be illustrated by showing the functional

dependencies in SUPPLIER:

– SUPPLIER.s# —> SUPPLIER.status

– SUPPLIER.s# —> SUPPLIER.city

– SUPPLIER.city—> SUPPLIER.status

• Note that SUPPLIER.status is determined both by

the primary key s# and the non-key column city.

Normalization-3NF

• To transform SUPPLIER into 3NF,

• We create a new table called

CITY_STATUS and move the columns city

and status into it.

• Status is deleted from the original table, city

is left behind to serve as a foreign key to

CITY_STATUS, and the original table is

renamed to SUPPLIER_CITY to reflect its

semantic meaning.

Normalization-3NF

Advantages of Third Normal Form

• The advantages to having relational tables in 3NF is that it

eliminates redundant data which in turn saves space and

reduces manipulation anomalies. For example, the

improvements to our sample database are:

– INSERT. Facts about the status of a city, Rome has a

status of 50, can be added even though there is not

supplier in that city. Likewise, facts about new suppliers

can be added even though they have not yet supplied

parts.

– DELETE. Information about parts supplied can be deleted

without destroying information about a supplier or a city.

– UPDATE. Changing the location of a supplier or the status

of a city requires modifying only one row.

Normalization-3NF
• These can be represented in "psuedo-SQL" as:

• PARTS (#s, p#, qty)

• Primary Key (s#, #p)

• Foreign Key (s#) references SUPPLIER_CITY.s#

• SUPPLIER_CITY(s#, city)

• Primary Key (s#)

• Foreign Key (city) references CITY_STATUS.city

• CITY_STATUS (city, status)

• Primary Key (city)

SQL AND FILTERS

Chapter 2

SQL-Structured Query Language

• SQL: is a domain-specific language used in

programming and designed for managing data

held in a relational database management system

(RDBMS).

• SQLite is an embedded SQL database engine.

Unlike most other SQL databases, SQLite does

not have a separate server process. SQLite reads

and writes directly to ordinary disk files. A

complete SQL database with multiple tables,

indices, triggers, and views, is contained in a

single disk file.

SQL-select

SQL-select

• select *

• from employees

• This command will shows all attributes from

table Employees

• Note: make sure from tables name

SQL-select

• select EmployeeId, FirstName, Lastname, Title,

Phone

• from employees

SQL-select

• select EmployeeId, phone, lastname,

firstname, Phone

• from employees

SQL-select

• select EmployeeId, firstname, lastname, reportsto

• from employees

• order by reportsto

• Try it out:::::::

• select EmployeeId, firstname, lastname, reportsto

• from employees

• order by firstname

SQL-select

• Sorting multiple columns

• select EmployeeId, FirstName, Lastname, Title, reportsto

• from employees

• Order by firstname and reportsto;

SQL-select

• Sorting by column position

• select EmployeeId, FirstName, Lastname, Title, reportsto

• from employees

• Order by 2 and 5;

SQL-select

• Ascending and descending order

• select EmployeeId, FirstName, Lastname, Title, reportsto

• from employees

• Order by firstname DESC

SQL-select

• select EmployeeId, firstname, lastname,

reportsto

• from employees

• where reportsto = 2

SQL-select

• Where clause operations
operator Description

= Equality

<> Non-equality

!= Non-equality

< Less than

<= Less than or equal

!< Not less than

> Greater than

>= Greater than or equal

!> Not greater than

Between Between two specified values

Is NULL Is a Null value

SQL-select, ―AND‖ & ―OR‖

• For the following table

There are two different output when I use AND or OR

Instructions

Lastname Firstname Title Reportsto country

Adams Andrew General Manager Iraq

Edwards Nancy Sales Manager 1 Iraq

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

Johnson Steve IT Manager 2 Canada

Mitchell Michael IT Manager 1 Canada

King Robert IT Staff 6 Canada

Callahan Laura IT Staff 6 Canada

SQL-select, ―AND‖ & ―OR‖

• Using ―OR‖

– select lastname, firstname, title, reportsto,

country

– from employees

– where reportsto=2 or title='IT Manager'

Lastname Firstname Title Reportsto country

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

Johnson Steve IT Manager 2 Canada

Mitchell Michael IT Manager 1 Canada

SQL-select, ―AND‖ & ―OR‖

• Using ―AND‖

– select lastname, firstname, title, reportsto,

country

– from employees

– where reportsto=2 and title='IT Manager'

Lastname Firstname Title Reportsto country

Johnson Steve IT Manager 2 Canada

SQL-select, ―AND‖ & ―OR‖

• Using ―AND‖ & ―OR‖

– select lastname, firstname, title, reportsto, country

– from employees

– where reportsto=2 or title='IT Manager' and

country='iraq'

Lastname Firstname Title Reportsto country

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

Johnson Steve IT Manager 2 Canada

Using IN operator

• The ―in‖ operator is used to specify a range

of conditions, any of which can be matched.

– Select lastname, firstname, title, reportsto,

country

– from employees

– where title IN ('IT Manager' , 'IT Staff ‗)

Lastname Firstname Title Reportsto country

Johnson Steve IT Manager 2 Canada

Mitchell Michael IT Manager 1 Canada

King Robert IT Staff 6 Canada

Callahan Laura IT Staff 6 Canada

Using NOT operator

• The WHERE clause‘s NOT operator has one

function and one function only NOT negates

whatever condition come next

– select lastname, firstname, title, reportsto, country

– from employees

– where NOT Country = 'canada'

Lastname Firstname Title Reportsto country

Adams Andrew General Manager Iraq

Edwards Nancy Sales Manager 1 Iraq

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

SQL-LIKE operator

• All previous operator was against known

values. It matching one or more value,

greater than, less than known values.

• But filtering data by that way does not

always work.

• Specially when we want to search for a text

inside a word

SQL-LIKE ―Percentage Sign %‖

• It is most widely Wildcard used within a search.

– Select lastname, firstname, title, reportsto, country

– From employees

– where Title LIKE 'Sales%‗

• For this example is used to find all Titles that start with

Sales.

• The % tells the DBMS to accept any characters after the

word Sales. Regardless of how many characters there are.

Lastname Firstname Title Reportsto country

Edwards Nancy Sales Manager 1 Iraq

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

SQL-LIKE ―Percentage Sign %‖

• select lastname, firstname, title, reportsto, country

• from employees

• where Title LIKE '%Manager'

Lastname Firstname Title Reportsto country

Adams Andrew General Manager Iraq

Edwards Nancy Sales Manager 1 Iraq

Johnson Steve IT Manager 2 Canada

Mitchell Michael IT Manager 1 Canada

SQL-LIKE ―Percentage Sign %‖

• select lastname, firstname, title, reportsto, country

• from employees

• where Title LIKE '%al%'

Lastname Firstname Title Reportsto country

Adams Andrew General Manager Iraq

Edwards Nancy Sales Manager 1 Iraq

Peacock Jane Sales Support Agent 2 Iraq

Park Margaret Sales Support Agent 2 Iraq

SQL-LIKE Wildcard

• The underscore is used jest like ―%‖ except

that ―_‖ matches just a single character.

– Select lastname, title, reportsto, country, phone

– From Employees

– where Title LIKE '_ _ _Manager'

• The brackets ―[]‖ is used to specify a set of

characters, any which must match a

character in the specified position.

Text Manipulation Function

• Select lastname, Upper(title), reportsto, country, phone

• From Employees

• Select lastname, Upper(title), reportsto, country as CITY,

phone

• From Employees

Lastname Title Reportsto country phone

Adams GENERAL MANAGER Iraq 7804289482

Edwards SALES MANAGER 1 Iraq 4032623443

Peacock SALES SUPPORT AGENT 2 Iraq 4032623443

Park SALES SUPPORT AGENT 2 Iraq 4032634423

Johnson IT MANAGER 2 Canada 7808369987

Mitchell IT MANAGER 1 Canada 4032469887

King IT STAFF 6 Canada 4034569986

Callahan IT STAFF 6 Canada 4034673351

Lastname Title Reportsto CITY phone

Adams GENERAL MANAGER Iraq 7804289482

Edwards SALES MANAGER 1 Iraq 4032623443

Peacock SALES SUPPORT AGENT 2 Iraq 4032623443

Park SALES SUPPORT AGENT 2 Iraq 4032634423

Johnson IT MANAGER 2 Canada 7808369987

Mitchell IT MANAGER 1 Canada 4032469887

King IT STAFF 6 Canada 4034569986

Callahan IT STAFF 6 Canada 4034673351

Text Manipulation Function

• Commonly used Text-Manipulation functions

Function Description

LEFT () Returns characters from left of string

Length () or Len () Returns the length of a string

LOWER () Converts the string to lowercase

LTRIM () Trims white space from right of string

RIGHT () Returns characters from right of string

RTRIM () Trims white space from right of string

UPPER () Converts string to uppercase

Using Aggregate functions

• Select lastname, title, BirthDate, MIN(Salary) as min_salary

• From Employees

– MIN () it return the lowest value in a specified column

– MAX () it return the largest value in a specified column

Lastname Title Salary CITY phone

Adams GENERAL MANAGER 3000 Iraq 7804289482

Edwards SALES MANAGER 2000 Iraq 4032623443

Peacock SALES SUPPORT AGENT 1000 Iraq 4032623443

Park SALES SUPPORT AGENT 1000 Iraq 4032634423

Johnson IT MANAGER 2000 Canada 7808369987

Mitchell IT MANAGER 2000 Canada 4032469887

King IT STAFF 1500 Canada 4034569986

Callahan IT STAFF 1500 Canada 4034673351

Using Aggregate functions

• SUM () it return the sum total of the values in a specified column

– Select sum(Salary) as total_salary

– From Employees

– select sum(itemprice * quantity) as total_sale

– from Invoices

• Result

Invoice ID Customer name Unit Price Quantity

1001 Global 1.99 2

1002 Global 4 5

1003 Airport 10 3

1004 University 12 2

1005 University 6 1

1006 Airport 11 5

1007 IT Center 2 10

Total_sale

158.98

Using Aggregate functions

• select avg(itemprice) as average_price

• from Invoices

• select count(invoiceid) as no_of_invoices,

• min(Itemprice) as minimum_price,

• max(itemprice) as maximum_price,

• avg(itemprice) as average_price

• from Invoices

Average_Price

6.712

No_of_invoices Minimum_price Maximum_price Average_price

7 1.99 12 6.72

Joining Tables

• As just explained, breaking data into

multiple tables enables more efficient

storage, easer manipulation, and grater

scalability.

• select *

• from invoices, invoice_items

• where invoices.InvoiceId = invoice_items.InvoiceId

