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Chapter 1: Linear transformations

1.1 Examples and elementary properties.

Definition 1.1.1:

Let V and W be two vector spaces over the same field F. A mapping T:V—W is called a linear

transformation if it is satisfied the following axioms

1. T (vi+vo)=T (vo)+wT (v2), where vy,voeV.

2. T (AVv)=AT (v), where veV and reF.
In a linear transformation T, if V=W, then T is called a linear operator on V.
Theorem 1.1.2:

Let V and W be two vector spaces over the same field F. A mapping T:V—>W is linear

transformation if and only if
Vi,VoeV A K,LLE F->T (7\,V1+MV2):7\,T (V1)+MT (Vg).
Example 1.1.3:

i Consider the vector spaces %” and %> over R, define
1. T: R25R3 such that T (X, y)=(x+y, 3x-4y, 2y)

2. T: K>>R3 such that T (x, y)=(x-y, x+y-1, X)

3. T: R2>R?suchthat T (x, y)=(xy, X)

ii. Consider the vector spaces Py.1, P, and Pp+q

1. T:Py—>Ppasuchthat T (p (x>>=d3—§c)

2. T:P,—Py+1such that

T(p(x)) = f p(t)dt
0



Theorem 1.1.4:
Let T:V—W be a linear transformation, then

1. T (0)=0.
2. ueV-oT (-u)=-T(u),

Definition 1.1.5:

1. The linear operator ly:V—V such that Iy(v)=v, YveV is called the identity operator

onV.

2. The linear transformation 0:V—W such that 0(v)=0, VveV is called the zero

transformation.

Theorem 1.1.6:

Let T,S:V>W be two linear transformations such that V=span ({vi,..., Vn}).
If T(vi)=S(vi), Vi, 1<i<n, then T=S.

Exercise 1.1.7:

i Verify whether the following functions are linear transformations or not.
1. T:R*>R%such that T (x; y)=(x,-y).
2. T:C—C such that T(z)=z.
3. S:Mpm—> Mua such that S (A)=A+A".
ii. Let T:V—>W be a linear transformation, {vi,....vo}cV. If {T (v1),...,T (vn)} is
linearly independent, then so is {vi,...,vn}.

1.2Kernel and image of linear transformation
Definition 1.2.1:

Let T:V—>W be a linear transformation, the kernel and the image of T is defined as

follows
ker(T)={veV|T(v)=0}.

img(T)={weW| w=T(v), for some veV}.



Example 1.2.2:
Let T:)R°*—> % be a mapping defined by T(x, y, 2)=(x-Y, z, y-X).

1. Show that T is a linear transformation.
2. Find ker(T) and img(T).

Solution:

Ker (T)={(x,x,0)|[xeR} and img (T)={(a,b,-a)|a,beR}.

Example 1.2.3:

Let S:Mpn—> M., be a linear transformation such that S(A)=A-A". Find ker(T) and img(T).
Theorem 1.2.4:

For any linear transformation T:V—W, ker(T) is a subspace of V.and img(T) is a subspaces of
W.

Theorem 1.2.5:
Any linear transformation T:V—W is 1-1 if and only if ker(T)={0}.
Example 1.2.6:

Let S:R°>R> and T:R°*—>R? be linear transformation such that. Apply Theorem 1.2.5 for

each of the following

1. T (XY, 2)=(X+y,Xx-y).
2. S (XY)=(x+y,x-y,X).

Exercise 1.2.7:

Let T:V—W be a linear transformation, prove or disprove

Ker(T)=V—>W={0}.

V=W— Ker(T)cimg(T).
W={0}c Ker(T)=V.

V=W A img(T)cker(T)—>T=0.
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1.3 Isomorphism and composition

Definition 1.3.1:

A linear transformation T:V—W is called isomorphism if T is 1-1 and onto. Two vector
spaces are called isomorphic if there is an isomorphism between them. We use the notation
V=W,

Example 1.3.2:

1. The identity linear transformation on V is isomorphism.
2. S:Mnm—> Mnwn such that S (A)= AT is an isomorphism.

3. The zero linear transformation T:V—W is not isomorphism.
Theorem 1.3.3:

Let T:V—W be a linear transformation for which V and W are finite dimensional. Then the

following statements are equivalent

1. Tisanisomorphism.
2. If {vi,...,vn} is a basis of V, then {T(v1),..., T(vy)} is a basis of W.
3. There exists a base {va,...,vn} 0f V, such that {T(v1),..., T(vy)} is a basis of W.

Theorem 1.3.4:
Let V and W be two finite dimensional vector spaces. Then
V=W < dim(V)=dim(W).
Proof:
Let V=W, then 3 an isomorphism T:V—>W.
Suppose {ri,...,rm} be a base of V, then by Theorem 1.3.3, {T(r1),..., T(rm)} is a basis of W.
On the other hand, T (r;)=T(r;), since T is 1-1, then dim(V)=dim(W).
Conversely, let {vi,...,vo} and {wi,...,w,} be basis for V and W respectively.
Define T:V—W as follows

1. T (Vi):Wi.



2. ForveV, we have v=a,vi+...+ayv, then we define

T (V)= a1 T(va)+...Fa,T(Vh)=aiWy+. .. +anWp.
Is T well defined?
Vi=Vi—=>T (Vi)=T (v)).
Otherwise dim (V)=dim (W).
V=V > V= agVit. . AanVe=V T (V)= arT(va)+. .. +an T(vn)=T(V).
To show that T is a linear transformation,
1. Letv, v eV, then

v=byVi+...+b,v, and v =cqvi+. . .4CoVi.

T (v#v")=T ((bvi+.. . +baVi)+(Cavat. .. +CoVi))

=T ((by+Co)Vat...+(Br+Co)V)

=(by+Cy) T(Va)+...+ (by+Co) T(V)
=(01T(va)+...+baT(vo) )+ (CoT(va)+.. .+ T (Vi)
=T (VT (V)

2. LetveVand A be ascalar,
T (OW)=T (Mavs+...+avn))=T (Ahagvi+...+hanVn)= AayT (Vo)+...+ AagT (Vi)
=h(aiT(vo)+...+anT(vn))=AT (V).

For1-1,

Let T (V)=T (v))

T (V)=T (v))— v=v" (Homework).
For onto,

LetweW

weW—-w=a;w;+...+anwy=ai T(v1)+...+anT(vy)=T(avi+...+anvn)=T (v), for some veV.
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Example 1.3.5:
P, and the set of all symmetric matrices of order two are isomorphic.
Dimension Theorem:

Let T:V—W be al linear transformation for which ker(T) and img(T) are finite dimensional,

then V is a finite dimensional and
dim (ker (T))+dim(img(T))=dim (V)
Proof:
Not required.
Theorem 1.3.6:

Let V and W be two finite dimensional vector spaces of the same order. A linear

transformation T:V—W is isomorphism if T is either 1-1 or onto.
Exercise 1.3.7:

Let T:®°>%® be a linear transformation such that T(x, vy, 2z)=(x+y,y+z,x+2).

Is T isomorphism?
Theorem 1.3.8:
Let T:V—>W and S:W—Z be linear transformations, then

1. SoT is a linear transformation, where SoT is the composition function of T and S.

2. If T.and Sare isomorphism, then so is SoT.
Proof:
SoT (vi+Vvo)= S(T (v1+Vv2)) (Definition of composition of functions)
=S(T (vo)+T (v2)) (TisL.T.)
=S(T (vo))+S (T (v2)) (SisL.T.)
=SoT (v1)+SoT (v2) (Why?)

SoT (W)=S(T (Av))= S(AT (v))= AS(T (V))=ASoT (V)



2. Sand T are bijective— SoT is bijective.
Then form 1. and 2. SoT is isomorphism.
Definition 1.3.9:

Let V and W be vector spaces, T:V—>W and S:W—V be linear transformations. We say that

Sisthe inverse of T if
ToS=lyand SoT=ly.

The inverse of T is denoted by T ™.
A linear transformation T is called invertible if it has the inverse.
Notice that if S is the inverse of T, then T is the inverse of S.
Exercise 1.3.10:
A linear transformation T has the inverse if and only if T is'1-1 and onto.
Example 1.3.11:
Verify whether the following transformation is invertible or not.

1. T:%°5>%3such that T (x, Y, 2)=(x+y,y+z, X+2)

2 0 Olu—-v+w
(O -2 0—u—v+w>

0 0 2cku+v+w

2. T:®*>%*such that T (x, y, Z,W)=(x+y,y+z, Z+wW,X+W)

h oo R
cCOoORr R
SRR O
R, RO O

Exercise 1.3.12:

I. Find a linear transformation with the given properties and compute T(v):
1. T:R°>R% T(1,2)=(1,0,1), T(-1,0)=(0,1,1), v=(-3,2)
2. T:P,>Ps, T (XA)=, T (x+1)=0, T (x-1)=x v=x’+x+1.



Remark:
Step 1: Show that {(1,2),(-1,0)} is a base of R?.
Step 2: Write v=(-3,2) as a linear combination of (1,2) and (-1,0).
(-3,2)=1(1,2)+4(-1,0)
Step 3: Take T for Step 2,
T (-3,2)=T(1(1,2)+4(-1,0))

=1T (1,2)+4T(-1,0)

=1(1,0,1)+4(0,1,1)=(1,4,5).

ii. Verify whether the following linear transformations are isomorphism or not

1. T:P,—»%%such that T (p(x))=(p(0), p(2)).
2. T:V-V, T(v)=Av, A is a nonzero scalar.
3. T:P,—Pzsuch that T (p(x))=p (x+1).
iii. Is the linear transformation T that is defined in Exercise 1.3.12, i. isomorphism?

1.4 Operations with linear transformations

Definition 1.4.1:
Let T:V—>W and S:V—W be linear transformations. Define
1. The sum (T®S) of T and S as a function from V to W as follows
(TAS)(V)= T(V)+S (V). V vi,v2€V.
2. The scalar product AT from V to W as follows:

(AOT)(V)=AT(v). V veV and LeF.

Theorem 1.4.2:

Let V and W be vector spaces over the same field F, then the collection of all linear
transformations with the operations defined in Definition 1.4.1 is a vector space denoted by
Hom(V,W).



Proof:
Hom(V,W)={T|T:V—>W is a linear transformation}

We have to show that Hom(V,W) with the operations @ and © is a vector space over the filed
F.

For associativity (T®S)®U=T®(S®OU)

(T®S)@U(V)= (TO®S)(V)BU(v)= (T(V)®S(V)) ®U(V)= T(V)D(S(v) @UV))= T(v)®(S dU(v))
=T®(S®U)(V).

For commutativity, homework

The zero transformation is the identity.

For any T:V—>W, -T:V—>W is the inverse of T.

For A+p)OT=A+p)OT ?

(AW OT(V)= A+ T(V)= ATV)+uT (V)= LOT(V)+u OT(V).

The others are homework.

Theorem 1.4.3:

Let V and W be two vector space such that dim(V)=m and dim(W)=n. Then
dim(Hom(V,W))=mn.

Proof: Not required.
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1.5 Matrix representation of a linear transformation

Definition 1.5.1:

Let Ann be a matrix. The matrix transformation Ta:R"—>R" is defined by
Ta(X)=AX, where XeR".

Theorem 1.5.2:

For each matrix Anxn, the matrix transformation T, defined in Definition 1.5.1 is a linear

transformation.

Proof:

TA(AX+RY)=A(AX+pnY) (By Definition 1.5.1)
=A(AX)+A(nY) (Matrix property)
=AAX+uAY (Matrix property)
=ATA(X)+uTA(Y)

Example 1.5.3:

For each of the following matrices, find T

L ]

2 ot

Solution:

=

L. TACO)=Ta((

D=1 ol G)C)
2. TW0=Tu(G )= (2 3 (;):(Zyx )

Exercise 1.5.4:

2 <

Find the matrix transformation of the matrix A:[(l) 1 )
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Chapter 2: Eigenvalues and Digonalisation

2.1 Eigenvalues and similarity
Definition 2.1.1:

Let A be a square matrix of order n. A scalar A (real or complex) is said to be an eigenvalue
of Aif,

3 a nonzero column vector X such that AX=AX. ...(2.1)
In this case, X is called an eigenvector of A corresponding to A.
Definition 2.1.2:

Let A be an eigenvalue of the matrix An.,. The set of all eigenvectors defined in

Definition 2.1.1 is called the eigenspace associated to A, i.e.
E(A)={ X| AX=AX}.
Theorem 2.1.3:
For each 2, the set E;(A) is a subspace of (R" or C").
Remark 2.1.4:
The equation (2.1) is the same as the equation (A-Al,)X=0.
Definition 2.1.5:

The determinant of the equation A-Al1,=0 is called the characteristic polynomial of the matrix

Anxn, and denoted by ca(1),
ca(A)=det(A-1ly)

Clearly, the eigenvalues of a matrix A is the roots (zeros) of the characteristic polynomial and

vice versa.
Example 2.1.6:

Find the eigenvalues and the eigenspace of the following matrices

12



1 4
1 -2 3
2 A=<z 6 —6)
1 2 -1
Solution:
p(k):|A-XI2|:|(i 2)—/’1(3 (1))|:|ZI’1 4f/1:x2-6x+5.

The eigenvalues are A=5 and A=1.
For the eigenvector of A=5, we apply

AX=AX, then
G D=5~ Ty)=()
Then, we obtain y=x.

So, the eigenvector of A=5is (i)

ez 3pesonl(D)

For the eigenvector of A=1,

G D016~

I
VR

)
Then, we obtain y:_?x.

So, the eigenvector of A=5 is (_13)
S ()]
Definition 2.1.7:

An eigenvalue A is said to be of multiplicity m if it is repeated m times.

Ca (1)=(x-1)"q(x)
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Example 2.1.8:

5 8 16
A=| 4 1 8
-4 -4 11

=1 and A=-3 (with multiplicity two) are the eigenvalues of A.

2 -1\ /-2
El(A):span{< 1 )} and E-3(A):span{< 1 )( 0 >}
-1 0 1

Exercise 2.1.9:

Find the eigenvalues and the eigenspace of the following matrix.
1 -2 3
A= (2 6 —6>
1 2 -1

If A is an eigenvalue of a matrix A with the nonzero eigenvector X, then A% is an eigenvalue of

Theorem 2.1.10:

the matrix A? with the same eigenvector X.

Proof:

IAZ-021=|AZ- 021 (A-LD (A+LD]E [A-A] JA+L1[=0. |A+A1|=O.

Then A2 is an eigenvalue of A%

AZX= A(AX)=AX)=L(AX)=A(LX)=AX.

Then X is the eigenvector of A% corresponding to A%

Exercise 2.1.11:

Regarding to Theorem 2.1.10, show that A3-2A+3 is an eigenvalue of the matrix A3-2A+3l.
Example 2.1.12:

For a triangular matrix A=(ajj), the set of eigenvalues are the entries of the main diagonal.
Solution:

Let A be an upper triangular matrix of order n. Then,
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@ = 14— = | [cai—2

Then A=g;j, for all i=1,...,n.
Similarly, for the lower triangular matrix.
Example 2.1.13:
Prove that A and AT have the same eigenvalues.
Solution:
Let A be a square matrix of order n. Then,
for AT, the characteristic polynomial is given by,
¢ v (D)=|AT-Alnl=](A-A1n) T[=IA- L.
Definition 2.1.14:

Let A and B be two square matrices of the same order, we say that A and B are similar
if B=P AP or B=P AP, for some invertible matrix P.

We use the expression (A~B) for two similar matrices A and B.

Example 2.1.15:

LetA = (_21 _11) Show that A~B if B = (:i g)
Solution:
We may select Pz(_l1 _32) Then

L G [ & Rl [ G B
Theorem 2.1.16:

Let A~B, then

1. At-B?
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2. AA~AB.
3. A™-B".

Proof:

1. A~B—3 an invertible matrix P such that B=PAP.
—3 an invertible matrix P such that B*=(PAP)*
—3 an invertible matrix P such that B*=P*A*(P)™*

—s3 an invertible matrix P such that B*=PApP.
Theorem 2.1.17:
Let A and B be two similar matrices, then

1. Aand B have the same determinant.

2. Aand B have the same trace.

3. Aand B have the same characteristics polynomial.
4

. Aand B have the same eigenvalues.
Proof:

1 [BIEIPAIPI

2. trace(B)= trace(PAP) = trace(AP'P) = trace(Al,) = trace(A).

3. cg(1)=|B-Ll|=|PAP-AL=|PAP-APP|=|PAP-PAP|=|P Y (AP-AP) |=|P| |AP-AP]
=[P IA-ADPI={P™] JA-M| | PI==|A-AI [=ca(h).

Theorem 2.1.18:
If A~B, then rank (A)=rank (B).
Remark 2.1.19:

1. The converse of all tasks that mentioned in Theorem 2.1.17 need not be true.

2. The converse of Theorem 2.1.18 need not be true.

Example 2.1.20:

The matrix A = (1 2

0 1) and I, are not similar, while,
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IA=(I2].

trace(A)= trace(l,).

rank(A)= rank(ly).

The eigenvalue of A is A=1 with multiplicity 2.

P W np e

Theorem 2.1.21:
Let ¥ be the set of all square matrices of order n. Define a relation R as follows,
R={(A,B) e Yx'V|A~B}.
Then R is an equivalence relation on V.
Exercise 2.1.22:
I Find the eigenvalues and eigenspaces of the following matrices,

W

1 1
2A< 1 0)
-1 2

( COSsx smx)
sinx cosx

3. A

ii. LetA = ( )and B = (_11 1) Is A~B?

2.2 Diagonalisation

Definition 2.2 1:

A real square matrix A of order n is said to be diagonalisable if it is similar to a diagonal

matrix. That is,
PAP is diagonalisable, for some invertible matrix P.
Theorem 2.2.2:

A square matrix A of order n is diagonalisable if and only if it has n linearly independent

eigenvectors.
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Proof:

Step 1: Let A be a diagonalisable matrix of order n,

Then
A 0 0
p=piap=|"° ’1:2 : )
0 -0 ,1n

Step 2: We find P by finding each of its columns, P=(X; Xz ... Xp).

Step 3: From Step 1, we have AP=PD, then,

A 0 0
0 A, -

A(Xl X, ...Xn): (Xl X2 Xn) . :2 . 0
0 = 0 Ay

—)(AX]_ AX2 SN AXn):(k]_Xl 7\.2X2 oo ann)
—AXi=AiXi, i=1,...,n.

So, X;, i=1,...,n are the eigenvectors of A corresponds to the eigenvalues %, i=I,...,n

respectively.
Previous result: A matrix P is invertible if and only if its columns are linearly independent.
Then X;, i=1,...,n are linearly independent.

Conversely, if X;, iI=1,...,n are linearly independent, then P=(X; X, ...X,) is invertible, hence

we obtain AP=PD, or equivalently, D=P™AP.
Diagonalisation Algorithm
Let A be a square matrix of order n,

1. Find the eigenvalues of A.

2. Find n eigenvectors if possible Xy, ..., X.
3. Select P=[ X3 Xz ... Xp]

4. P'AP is diagonal.

18



Example 2.2.3:

Determine whether the following matrices are diagonalisable or not
_ (2 -4
L a=(4 )

5 8 16
2. A=| 4 1 8
-4 -4 11

Solution:

1 Fora=(% 7H)

A=0 and A=4 are the eigenvalues of A.

EO(A):span{(i)} and E4(A):span{(_12)}.

Xlz(i) and XZ:(_lz) are linearly independent.

Let P:(i _12)

Then P'lzi (_11 3)

Hence, D:P'lAP:(g 2)

5 8 16
2. ForA=| 4 1 8
-4 -4 11

A=1 and A=-3 (with multiplicity two) are the eigenvalues of A.

2 -1 -2
El(A):span{< 1 )} and E-3(A):span{< 1 >< 0 >}
-1 0 1

2 -1 -2
X1:< 1 ) Xo= ( 1 )and X3= < 0 )are linearly independent.
—1 0 1

2 -1 -2
LetP={ 1 1 (I
-1 0 1

1 1 2
ThenP'1:<—1 0 —2)

1 1 3
Hence,
1 0 0
D=P!AP=({0 -3 0
0 0 -3
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Example 2.2.4:

Consider the matrix

2 1 1
A=2 1 =2
-1 0 -2

2=3 and A=-1 (with multiplicity two) are the eigenvalues of A.

5 -1
E3(A):span{< 6 )} and E_l(A):span{< 2 )}
-1 1

Any other eigenvector X3 of A=-1 is linearly dependent with respect to X,. Then we

cannot obtain an invertible matrix P. Hence A is not diagonalisable.
Theorem 2.2.5:

Let A4,...,An be distinct eigenvalues of a square matrix. If Xy, ...,X, are the corresponding
eigenvectors to As,...,An, then {Xi, ....Xp} is a linearly independent set.

Proof:
We apply mathematical induction on n,

Step 1: n=1, clearly {X1} is linearly independent, since it is a nonzero vector.
Step 2: Suppose it is true for all numbers less than n.

Step 3: For n, let
n
Z bX; = 0...(1),
i=1

Then,

n
Z bl'AXl' = 0,
i=1

Since AX;=A\X;, forall iz1,..,n., then

n
z bAX; = 0...(2),
i=1

Let’s multiply (1) by A4, then, we obtain

n
Z bi)LlXi =0.. (3),
i=1

20



Take (2)-(3), we obtain,

Z by(A; — A)X; = 0 ... (4),
i=2

From Step 2, we obtain,

bi(ri-A1)=0, for all i=1,...,n.

Since A, are distinct, for all i=1,...,n.
Then b;=0, for all i=1,...,n.

Theorem 2.2.6:

A square matrix of order n with n distinct eigenvalues is diagonalisable,
Remark 2.2.7:

The converse of Theorem 2.2.6 need not be true.

Theorem 2.2.8:

Let A be a square matrix of order n and
n
=] Jee-rom
i=1
be the characteristic polynomial.
If di=dim(E;, (4)).

Then the following statements are equivalent:

1. Alsdiagonalisable

2.
n
Zdi =n,Vi=1,..,n
i=1
3. di=mi, Vi
Example 2.2.9:
Let
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Prove that A is not diagonalisable.
Exercise 2.2.10:

i. Show that

is a diagonalisable matrix

ii. Show that

is not a diagonalisable matrix.

iii. Prove or disprove:
1. The sum of two diagonalisable matrices is diagonalisable.
2. If Alis diagonalisable, then so is AA, A=0.

22



Chapter 3: Inner product spaces, Orthogonality

3.1 Inner product spaces (Definition and examples)
Definition 3.1.1:

Let V be a vector spaces over a field R. An inner product on V is a function that assigns a

number (u, v) to every pairs u,veV such that the following axioms are satisfied:

3. (u, v)=(v, u). (symmetric property)
4. (autbw, v)=au, vy+b(w, v), Va, be(R or C). (linear property)
5. (u,u)>0, Yu=0. (positive definite property)

A vector space V with an inner product ¢ , ) is called an inner product space.
Clearly,
(au-bw, vy=a(u, v)-b{w, V).
Example 3.1.2:

1. Consider the vector space R over R. Define (, ) on R as follows

(X, Y)=x.y (The dot product)
2. Consider the vector space R* over R. Define (, ) on R as follows
{(X1,Y1), (X2,Y2))=X1.X2+ y1.y> (The dot product)
Example 3.1.3:
Consider the vector space R over R. Define (, ) as follows
% y)=lx-yl.

(X, y) is not an inner product on R.
Example 3.1.4:
Let a, be®R, define
C[a, b]={ f | f is continuous on the closed interval [a, b]}.
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Define (, ) on C[a, b] as follows

b
. g) = f £ () g()dx

Then (f, g) is an inner product on C[a, b].
Example 3.1.5:
In %* and for every u and veR®, If

(u,v)=u'Av, where

2 01
A= <O 1 0).
1 0 2

Then (u,v) is an inner product.
Exercise 3.1.6:

5. According to Example 3.1.2, Task 2., how can we define an inner product on the

vector space R" over R? Explain your answer.

6. Determine whether the following ( , ) on the corresponding vector space is an inner

product or not.

i V=P3 with (p(x), a(x)>=p(1)q(1)
ii. V=C (the set of complex numbers) with (z, w)=zw
iii. V=M. with (A B)=|AB|

Theorem 3.1.7:
Let ( , ) be aninner product on a vector space V. For any u,v,weV and a, beR.

1. (u,av+bw)=alu,v)+b{u,w)
2. (au,v)=a(u,v)=(u,av)

3. (u,0)=0=(0,u)
4

. (U,u)=0<>u=0
Proof:
1. (u,av+bw)=(av+bw,u)=alv,u)+b{w,u)= au,v)+b{u,w).
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2. (au,v)=(au+0w,v)=a(u,v)+0{w,v)=au,v).
Similarly and by Task 1., we obtain a(u,v)=(u,av)
3. (u,0)=(u,0+0)=(u,1(0)+1(0))=1(u,0)+1(u,0)=(u,0)+<u,0)
(U,0Y=(u,0)+(u,0y—>(u,0y-(u,0)=((u,0)+(uU,0))~(U,0)—>0=(u,0)+0
4. (u,uy=0—u=0 by Definition 3.1.1.

For u=0—(u,u)=0
Example 3.1.8:
If uand v are vectors in an inner product space V, find

1. (2u-7v,3u+5v)
2. (3u-4v,5u+v) (Homework)

Theorem 3.1.9:
In an inner product space V, for a vector ueV, define,
W, ={veV[u, v)=0}.

Prove that W, is a subspace of V.
Proof:
Wy=d (why?)
Let a,b be scalars and vq,voeW,,.
(u, avi+bvy)=au,v; y+b{u,v,)=a(0)+b(0)=0.

3.2 Normed vector space
Definition 3.2.1

Let (, ) be an inner product on a vector space V.

1. The norm or the length of ueV is defined as follows

[Jul[=y/ (. wy

2. The distance between two vectors u and v in V is defined as follows
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d(u,v)=|v-ull
The pair (V, |.]|) is called a normed vector space.
Example 3.2.2:
In Example 3.1.2, find

1. [Ixl[-and {}x-yli
2. [I(x y)ll and [I(x1,y1), (x2,y2)ll

Example 3.2.3:
In Example 3.1.4, find
[Ifll and [If-gl|
Theorem 3.2.4:
Show that (u+v,u-v)=|Jul*|V|[*-
Proof:
U=V, u)=(V V) =(U U+, V)=V, U-V).
Definition 3.2.5:
In an inner product space V, a vector ueV is called a unit vector if ||u||=1
Example 3.2.6:

Let a, b>0. Ina vector space R?, define

(X y)s (X1,Y1)>:% + %.

1. Prove that (, ) is an inner product on R.(Homework)
_ x* | y?
2. Show that ||(x, y)||I=1 <> Pl 1
Theorem 3.2.7 (Schwarz Inequality):
In an inner product space V,

21 RII1
(u, vy“<[uliFivl
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Proof:

u=0 v v=0—(u, v)=0 A (J|u||=0 v ||v||=0)—0<0

Let u=0=v

0<|| XU+V [P=(Xu+V, XU+HV)=X(U, XUHV)+H(V, XU+V)

=X(XCU, UYH(U VY )+XCV, UYH( Y, VY=(U, UYXEH(U, V) 2XH(V, V)
=ullBx+2¢u vV AU *<AfulIP—>(u,vy*<|Jul P v
Example 3.2.8:

Apply Schwarz Inequality in Example 3.1.4.

Theorem 3.2.9:

Let (, ) be an inner product over V and u, veV.

1. ||u|[>0.

2. ||u||=0<>u=0

3. [ull=[A] fjull

4. ||u+v||<|Jul[+|[v]|] (triangle inequality)
Proof

1. Straightforward.

2. Follows from Theorem 3.1.7, Task 4.

3. [Pulf=(uuuy=25u,uy—>fRul=[] [lull

4. (lu+VIF=CUV,UHV)=(U, UV, UHV)=(U, UYHU, VYV, UV, V)
=[ull*+(uvy+uvyHIVIE=={lullP+2¢u v +HVIE<]ulP+2llull VI IVIE=(ul+ viD?

2 2
[[u+viF<(ull+ V) = flu+vii<liul[+v]

Theorem 3.2.10:
If (, ) is an inner product on V and uj,...,u, is a spanning of V, then for each veV,
(v,up=0, Vi=1,..., n—>v=0.
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Proof:

v=a,Ui+...+anun, for some scalars a;, i=1,...,n.
—{(V,V)=(V,a1Us+...FanUn)—>V,V)=a(V,us)+axV,ux)+...+ an(V,upy=as(0)+...+ a,(0)=0—v=0.
Theorem 3.2.11:

Let V be an inner product space V and u, v be vectors in V.

1. d(u,v)>0.

2. d(u,v)=0>u=v

3. d(u,v)=d(v,u)

4. d(u,v)<d(u,w)+ d(w,v)

Proof:

1. Follows form Theorem 3.2.9, Task 1.
2. Follows form Theorem 3.2.9, Task 2.

3. d(uv)= ||u-v||:\/(u —v,u— v)=\/(u, u)y — 2{u, v) + (v, v)

d(v,u)= ||v-u||:\/(v —U,v— u):\/(v, vy — 2(u, v) + (u,u)

4. d(u,v)=[lu-v]|=[I(u-w)+(w-v)||< [[u-wi[+{jw-v]|< d(u,w)+ d(w,v)
Exercise 3.2.12:

i. In an inner product space V, for u,veV, prove each of the following
L fju+vIP={lulP+2¢u,v)+v]
2. Jlu-viP=ulP-2¢u vy +vI?
3. (u,v)=0.25(||u+V|[*-[Ju-v|]’)
ii. In an inner product space V, let |ul[=1, |v]|=2 and |w||=v3, (u,v)=-1,
(u,w)=0 and (v,w)=3. Compute
1. (v+w,2u-v)
2. {u-2v-w,3w-v)
iii. Let T:V—>V be an isomorphism of the inner product space V.

Show that (u,v) =(T(u), T(v)) is an inner product space on V.
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3.3 Orthogonality
Definition 3.3.1:
Let V be an inner product space and u, veV. We say that u and v are orthogonal if
(u,v)=0
Definition 3.3.2:
Let V be an inner product space. A set {u,...,u,} of vectors in V is called orthogonal if

1. u=0, Vizl,...,n

2. The set of vectors is pairwise orthogonal, that is (u;,u;) is orthogonal Vi=j.
Additionally, if ||uj||=1, Vi, then the set {us,...,un} of vectors is called orthonormal.

Example 3.3.3:

1. (-1,3) and (3,1) are orthogonal with respect to Example 3.1.2, Task 2.
2. sinx and cosx are orthogonal in C[-x,=].
3. (5,2,-3) and (4,-1,6) are orthogonal with respect to Exercise 3.1.6, Task 1.

Theorem 3.3.4 (The Pythagorean Theorem):
If {us,...,un} is an orthogonal set of vectors, then

n 2 n
Dl =l
i=1

i=1

Proof:

Uzt Un|P=(Ust . AUn,Ug AU =(Us, U (U, Up)F A+ (Un, Un)+ D0 (U, 1))
=l Hlunll*+0=lu[*+....+jual*

Theorem 3.3.5:

Let {uy,..., uy} be orthogonal set of vectors, then

I {\1Us,..., Anun} is orthogonal for every A;=0.

ii. {1, ..., 1, } is orthonormal.
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Proof:
i.
1. For each i=1,..,n, u0—>Au;=O0.
2. (Aui,Aup=A{u;,u;y=A(0)=0.

ii. Homework.
Theorem 3.3.6:
Every orthogonal set of vectors is linearly independent.
Example 3.3.7:

In Example 3.1.5, prove that
is an orthogonal basis of R*, where

Exercise 3.3.8:

1. Inan inner product space V, prove or disprove:
i u,veV are orthogonal<>||u+v||=||u-v]|.
ii. {u,v} is an orthogonal set<>||u||=||v||.

2. In Example 3.1.5, Verify whether

G

is an orthogonal basis of 9%:%or not, where

2 0 1
A= <O 1 0).
1 0 2
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3.4 Orthogonal projections
Definition 3.4.1:

Let W be a subspace of an inner product space V. The orthogonal complement W* of W is

defined as follows
WH={veV|ue W—>(u, v)=0}
Theorem 3.4.2:

In an inner product space V, the orthogonal complement W*- of a subspace W.of V is a

subspace of V.

Proof:

ueW—(u, 0)=0—->0eW".

Let va,voe W, a,b be scalars and ueW.

(u, avi+hv,)=(u,avy)+u,bvo)=a(u, vi)+b(u,v,)=a(0)+b(0)=0—av,+bv,e W".

Exercise 3.4.2:

Let U and W be a subspace of a vector space V. Define
UeW={u+wjueU A weW}

Show that U®W is a subspace of V.

Definition 3.4.3:

A vector space V is called a direct sum of subspaces U and W if

1. U~W={0}
2. V=U®W.

Exercise 3.4.4:
Let V be a finite dimensional direct sum vector space of subspaces U and W. Then

dim (V)=dim(U)+dim(W).
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Theorem 3.4.5:

Let W be a finite dimensional subspace of an inner product space V, then V=W@OW-".
Proof:

We will apply Definition 3.4.3,

1. Letve WnW-". Since (v,v)=0, then v=0.
2. Clearly, WW V.
Let veV—v=0+v. According to Theorem 3.1.7, Task 3, (v,0)=0, then ve W-.

Theorem 3.4.6:

Let V be an inner product space, U be the orthogonal complement of W. Define a function

T:V—YV as follows
T (v)=u, where v=u+w, ueU, weW.
Then

1. Tisalinear operator on V. (T is called the projection on U with kernel W)
2. img(T)=U
3. ker(T)=w
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