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Chapter 1: Linear transformations 

1.1  Examples and elementary properties. 

Definition 1.1.1: 

Let V and W be two vector spaces over the same field F. A mapping T:VW is called a linear 

transformation if it is satisfied the following axioms 

1. T (v1+v2)= T (v1)+WT (v2), where v1,v2V.  

2. T (v)=T (v), where vV and F. 

In a linear transformation T, if V=W, then T is called a linear operator on V.  

Theorem 1.1.2:  

Let V and W be two vector spaces over the same field F. A mapping T:VW is linear 

transformation if and only if  

v1,v2V  ,FT (v1+v2)=T (v1)+T (v2). 

Example 1.1.3: 

i. Consider the vector spaces 
2
 and 

3
 over , define 

1. T: 
2


3
 such that T (x, y)=(x+y, 3x-4y, 2y) 

2. T: 
2


3
 such that T (x, y)=(x-y, x+y-1, x) 

3. T: 
2


2
 such that T (x, y)=(xy, x) 

ii. Consider the vector spaces Pn-1, Pn and Pn+1 

1. T:PnPn-1 such that T ( p (x))=
𝑑𝑝(𝑥)

𝑑𝑥
 

2. T:PnPn+1 such that 

𝑇(𝑝(𝑥)) = ∫ 𝑝(𝑡)𝑑𝑡

𝑥

0
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Theorem 1.1.4:  

Let T:VW be a linear transformation, then 

1. T (0)=0. 

2. uVT (-u)=-T(u),  

Definition 1.1.5: 

1. The linear operator IV:VV such that IV(v)=v, vV is called the identity operator 

on V. 

2. The linear transformation 0:VW such that 0(v)=0, vV is called the zero 

transformation. 

Theorem 1.1.6: 

Let T,S:VW be two linear transformations such that V=span ({v1,…, vn}).                            

If T(vi)=S(vi), i, 1in, then T=S. 

Exercise 1.1.7: 

i. Verify whether the following functions are linear transformations or not. 

1. T:
2


2
 such that T (x, y)=(x,-y). 

2. T:CC such that T(z)=𝑧̅. 

3. S:Mnn Mnn  such that S (A)=A+A
T
. 

ii. Let T:VW be a linear transformation, {v1,…,vn}V. If {T (v1),…,T (vn)} is 

linearly independent, then so is {v1,…,vn}.  

1.2 Kernel and image of linear transformation 

Definition 1.2.1: 

Let T:VW be a linear transformation, the kernel and the image of T is defined as 

follows 

ker(T)={vV|T(v)=0}. 

img(T)={wW| w=T(v), for some vV}. 
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Example 1.2.2: 

Let T:
3


3
 be a mapping defined by T(x, y, z)=(x-y, z, y-x). 

1. Show that T is a linear transformation. 

2. Find ker(T) and img(T).  

Solution: 

Ker (T)={(x,x,0)|x} and img (T)={(a,b,-a)|a,b}. 

Example 1.2.3: 

Let S:Mnn Mnn be a linear transformation such that S(A)=A-A
T
. Find ker(T) and img(T). 

Theorem 1.2.4: 

For any linear transformation T:VW, ker(T) is a subspace of V and img(T) is a subspaces of 

W. 

Theorem 1.2.5: 

Any linear transformation T:VW is 1-1 if and only if ker(T)={0}. 

Example 1.2.6: 

Let S:
2


3
 and T:

3


2
 be linear transformation such that. Apply Theorem 1.2.5 for 

each of the following 

1. T (x,y,z)=(x+y,x-y). 

2. S (x,y)=(x+y,x-y,x). 

Exercise 1.2.7: 

Let T:VW be a linear transformation, prove or disprove 

1. Ker(T)=VW={0}.            

2. V=W Ker(T)img(T). 

3. W={0} Ker(T)=V.   

4. V=W  img(T)ker(T)T=0. 
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1.3 Isomorphism and composition 

Definition 1.3.1: 

   A linear transformation T:VW is called isomorphism if T is 1-1 and onto. Two vector 

spaces are called isomorphic if there is an isomorphism between them. We use the notation 

V≅W. 

Example 1.3.2: 

1. The identity linear transformation on V is isomorphism. 

2. S:Mnn Mnn  such that S (A)= A
T
 is an isomorphism. 

3. The zero linear transformation T:VW is not isomorphism. 

Theorem 1.3.3: 

  Let T:VW be a linear transformation for which V and W are finite dimensional. Then the 

following statements are equivalent 

1. T is an isomorphism. 

2. If  {v1,…,vn} is a basis of V, then {T(v1),…, T(vn)} is a basis of W. 

3. There exists a base {v1,…,vn} of V, such that {T(v1),…, T(vn)} is a basis of W. 

Theorem 1.3.4: 

Let V and W be two finite dimensional vector spaces. Then  

V≅W  dim(V)=dim(W). 

Proof: 

Let V≅W, then  an isomorphism T:VW.  

Suppose {r1,…,rm} be a base of V, then by Theorem 1.3.3, {T(r1),…, T(rm)} is a basis of W. 

On the other hand, T (ri)T(rj), since T is 1-1, then dim(V)=dim(W). 

Conversely, let {v1,…,vn} and {w1,…,wn} be basis for V and W respectively. 

Define T:VW as follows 

1. T (vi)=wi. 
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2. For vV, we have v=a1v1+…+anvn then we define 

T (v)= a1T(v1)+…+anT(vn)=a1w1+…+anwn. 

Is T well defined? 

vi=vjT (vi)=T (vj). 

Otherwise dim (V)dim (W). 

v=v
*
 v= a1v1+…+anvn=v

*
T (v)= a1T(v1)+…+anT(vn)=T(v

*
). 

To show that T is a linear transformation, 

1. Let v, v
*
V, then  

v=b1v1+…+bnvn and v
*
=c1v1+…+cnvn.  

T (v+v
*
)=T ((b1v1+…+bnvn)+(c1v1+…+cnvn)) 

         =T ((b1+c1)v1+…+(bn+cn)vn) 

 =(b1+c1)T(v1)+…+ (bn+cn)T(vn) 

           =(b1T(v1)+…+bnT(vn))+ (c1T(v1)+…+cnT(vn)) 

        =T (v)+T (v
*
) 

2. Let vV and  be a scalar, 

T (v)=T ((a1v1+…+anvn))=T (a1v1+…+anvn)= a1T (v1)+…+ anT (vn) 

                                             =( a1T(v1)+…+anT(vn))=T (v). 

For 1-1,  

Let T (v)=T (v
*
) 

T (v)=T (v
*
) v=v

*
 (Homework). 

For onto,  

Let wW 

wWw=a1w1+…+anwn=a1T(v1)+…+anT(vn)=T(a1v1+…+anvn)= T (v), for some vV. 
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Example 1.3.5: 

P2 and the set of all symmetric matrices of order two are isomorphic. 

Dimension Theorem: 

Let T:VW be al linear transformation for which ker(T) and img(T) are finite dimensional, 

then V is a finite dimensional and  

dim (ker (T))+dim(img(T))=dim (V) 

Proof: 

Not required. 

Theorem 1.3.6: 

Let V and W be two finite dimensional vector spaces of the same order. A linear 

transformation T:VW is isomorphism if T is either 1-1 or onto. 

Exercise 1.3.7: 

Let T:
3


3
 be a linear transformation such that T(x, y, z)=(x+y,y+z,x+z).                             

Is T isomorphism? 

Theorem 1.3.8: 

Let T:VW and S:WZ be linear transformations, then 

1. ST is a linear transformation, where ST is the composition function of T and S. 

2. If T and S are isomorphism, then so is ST. 

Proof: 

 ST (v1+v2)= S(T (v1+v2)) (Definition of composition of functions) 

                    = S(T (v1)+T (v2))    (T is L.T.) 

                    = S(T (v1))+S (T (v2))    (S is L.T.) 

                   = ST (v1)+ST (v2)    (Why?) 

ST (v)=S(T (v))= S(T (v))= S(T (v))=ST (v) 
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2. S and T are bijective ST is bijective.  

Then form 1. and 2. ST is isomorphism. 

Definition 1.3.9: 

Let V and W be vector spaces, T:VW and S:WV be linear transformations. We say that     

S is the inverse of T if 

TS=IW and ST=IV. 

The inverse of T is denoted by T 
-1

.  

A linear transformation T is called invertible if it has the inverse. 

Notice that if S is the inverse of T, then T is the inverse of S.  

Exercise 1.3.10: 

A linear transformation T has the inverse if and only if T is 1-1 and onto.  

Example 1.3.11: 

Verify whether the following transformation is invertible or not. 

1. T:
3


3
 such that T (x, y, z)=(x+y,y+z, x+z) 

(
2 0 0
0 −2 0
0 0 2

|
𝑢 − 𝑣 + 𝑤

−𝑢 − 𝑣 + 𝑤
−𝑢 + 𝑣 + 𝑤

) 

2. T:
4


4
 such that T (x, y, z,w)=(x+y,y+z, z+w,x+w) 

(

1 1 0 0
0 1 1 0
0
1

0
0

1
0

1
1

) 

Exercise 1.3.12: 

i. Find a linear transformation with the given properties and compute T(v): 

1. T:
2


3
; T(1,2)=(1,0,1), T(-1,0)=(0,1,1), v=(-3,2) 

2. T:P2P3, T (x
2
)=x

3
, T (x+1)=0, T (x-1)=x, v=x

2
+x+1. 
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Remark:  

Step 1: Show that {(1,2),(-1,0)} is a base of 
2
. 

Step 2: Write v=(-3,2) as a linear combination of (1,2) and (-1,0). 

(-3,2)=1(1,2)+4(-1,0) 

Step 3: Take T for Step 2, 

T (-3,2)=T(1(1,2)+4(-1,0)) 

              =1T (1,2)+4T(-1,0) 

              =1(1,0,1)+4(0,1,1)=(1,4,5). 

            ii. Verify whether the following linear transformations are isomorphism or not 

1. T:P1
2
 such that T (p(x))=(p(0), p(1)). 

2. T:VV, T(v)=v,  is a nonzero scalar. 

3. T:P2P2 such that T (p(x))=p (x+1). 

iii. Is the linear transformation T that is defined in Exercise 1.3.12, i. isomorphism?   

1.4 Operations with linear transformations 

Definition 1.4.1: 

Let T:VW and S:VW be linear transformations. Define 

1. The sum (TS) of T and S as a function from V to W as follows   

(TS)(v)= T(v)+S (v).  v1,v2V. 

 

2. The scalar product T from V to W as follows:  

(⊙T)(v)=T(v).  vV and F. 

Theorem 1.4.2: 

   Let V and W be vector spaces over the same field F, then the collection of all linear 

transformations with the operations defined in Definition 1.4.1 is a vector space denoted by 

Hom(V,W).   
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Proof: 

Hom(V,W)={T|T:VW is a linear transformation} 

We have to show that Hom(V,W) with the operations  and ⊙ is a vector space over the filed 

F.  

For associativity (TS)U=T(SU) 

 (TS)U(v)= (TS)(v)U(v)= (T(v)S(v)) U(v)= T(v)(S(v) U(v))= T(v)(S U(v)) 

=T(SU)(v). 

For commutativity, homework 

The zero transformation is the identity. 

For any T:VW, -T:VW is the inverse of T. 

For (+)⊙T=(+)⊙T ? 

(+)⊙T(v)= (+)T(v)= T(v)+T(v)= ⊙T(v)+ ⊙T(v). 

The others are homework. 

Theorem 1.4.3: 

Let V and W be two vector space such that dim(V)=m and dim(W)=n. Then 

dim(Hom(V,W))=mn. 

Proof: Not required. 
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1.5 Matrix representation of a linear transformation 

Definition 1.5.1: 

Let Amn be a matrix. The matrix transformation TA:
n


m
 is defined by 

TA(X)=AX, where X
n
. 

Theorem 1.5.2: 

   For each matrix Amn, the matrix transformation TA defined in Definition 1.5.1 is a linear 

transformation. 

Proof: 

TA(X+Y)=A(X+Y)   (By Definition 1.5.1) 

                   =A(X)+A(Y) (Matrix property) 

       =AX+AY (Matrix property)   

                  =TA(X)+TA(Y) 

Example 1.5.3: 

For each of the following matrices, find TA 

1. A=[
0 1
1 0

] 

2. A=[
2 0
0 1

] 

Solution: 

1. TA(X)=TA((
𝑥
𝑦))= [

0 1
1 0

] (
𝑥
𝑦)=(

𝑦
𝑥

) 

2. TA(X)=TA((
𝑥
𝑦))= [

2 0
0 1

] (
𝑥
𝑦)=(

2𝑥
𝑦

) 

Exercise 1.5.4: 

Find the matrix transformation of the matrix A=[
1 1
0 1

].  
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Chapter 2: Eigenvalues and Digonalisation 

2.1 Eigenvalues and similarity 

Definition 2.1.1: 

Let A be a square matrix of order n. A scalar  (real or complex) is said to be an eigenvalue 

of A if, 

 a nonzero column vector X such that AX=X. …(2.1) 

In this case, X is called an eigenvector of A corresponding to . 

Definition 2.1.2: 

Let  be an eigenvalue of the matrix Ann. The set of all eigenvectors defined in        

Definition 2.1.1 is called the eigenspace associated to , i.e. 

E(A)={ X| AX=X}. 

Theorem 2.1.3: 

  For each , the set E(A) is a subspace of (
n
 or C

n
). 

Remark 2.1.4: 

The equation (2.1) is the same as the equation (A-In)X=0. 

Definition 2.1.5: 

The determinant of the equation A-In=0 is called the characteristic polynomial of the matrix 

Ann, and denoted by cA(), 

cA()=det(A-In) 

Clearly, the eigenvalues of a matrix A is the roots (zeros) of the characteristic polynomial and 

vice versa. 

Example 2.1.6: 

Find the eigenvalues and the eigenspace of the following matrices 
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1. 𝐴 = (
2 3
1 4

) 

2. 𝐴 = (
1 −2 3
2 6 −6
1 2 −1

) 

Solution: 

p ()=|A-I2|= |(
2 3
1 4

) −  𝜆 (
1 0
0 1

)|= |
2 − 𝜆 3

1 4 − 𝜆
|=2

-6+5. 

The eigenvalues are =5 and =1. 

For the eigenvector of =5, we apply 

AX=X, then 

(
2 3
1 4

) (
𝑥
𝑦) = 5 (

𝑥
𝑦) ⟶ (

2𝑥 + 3𝑦
𝑥 + 4𝑦

) = (
5𝑥
5𝑦

) 

Then, we obtain y=x. 

So, the eigenvector of =5 is (
𝑥
𝑥

) 

E5((
2 3
1 4

))=span{(
1
1

)}.   

For the eigenvector of =1, 

(
2 3
1 4

) (
𝑥
𝑦) = 1 (

𝑥
𝑦) ⟶ (

2𝑥 + 3𝑦
𝑥 + 4𝑦

) = (
𝑥
𝑦) 

Then, we obtain y=
−𝑥

3
. 

So, the eigenvector of =5 is (
−3
1

) 

E1((
2 3
1 4

))=span{(
−3
2

)}.   

Definition 2.1.7: 

An eigenvalue  is said to be of multiplicity m if it is repeated m times. 

cA ()=(x-)
m
q(x) 
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Example 2.1.8: 

𝐴 = (
5 8 16
4 1 8

−4 −4 11
) 

=1 and =-3 (with multiplicity two) are the eigenvalues of A. 

 E1(A)=span{(
2
1

−1
)} and E-3(A)=span{(

−1
1
0

) , (
−2
0
1

)}. 

Exercise 2.1.9: 

Find the eigenvalues and the eigenspace of the following matrix. 

𝐴 = (
1 −2 3
2 6 −6
1 2 −1

) 

Theorem 2.1.10: 

If  is an eigenvalue of a matrix A with the nonzero eigenvector X, then 
2
 is an eigenvalue of 

the matrix A
2
 with the same eigenvector X. 

Proof: 

|A
2
-

2
I|=|A

2
-

2
I
2
|=|(A-I)(A+I)|= |A-I| |A+I|=0. |A+I|=0. 

Then 
2
 is an eigenvalue of A

2
. 

A
2
X= A(AX)=A(X)=(AX)=(X)=

2
X. 

Then X is the eigenvector of A
2
 corresponding to 

2
. 

Exercise 2.1.11: 

Regarding to Theorem 2.1.10, show that 
3
-2+3 is an eigenvalue of the matrix A

3
-2A+3I.  

Example 2.1.12: 

For a triangular matrix A=(aij), the set of eigenvalues are the entries of the main diagonal. 

Solution: 

Let A be an upper triangular matrix of order n. Then, 
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𝑐𝐴(𝜆) = |𝐴 − 𝜆𝐼𝑛| = ∏(𝑎𝑖𝑖 − 𝜆)

𝑛

𝑖=1

 

Then =aii, for all i=1,…,n. 

Similarly, for the lower triangular matrix. 

Example 2.1.13: 

Prove that A and A
T
 have the same eigenvalues. 

Solution: 

Let A be a square matrix of order n. Then, 

for A
T
, the characteristic polynomial is given by,  

𝑐𝐴𝑇(𝜆)=|A
T
-In|=|(A-In)

T
|=|A-In|. 

Definition 2.1.14: 

Let A and B be two square matrices of the same order, we say that A and B are similar            

if B=P
 -1

AP or B=P
 
AP

-1
, for some invertible matrix P. 

We use the expression (AB) for two similar matrices A and B. 

Example 2.1.15: 

Let 𝐴 = (
2 1

−1 −1
). Show that AB if 𝐵 = (

−2 5
−1 3

). 

Solution: 

We may select P=(
−1 3
1 −2

). Then  

P
-1

AP=(
2 3
1 1

) (
2 1

−1 −1
) (

−1 3
1 −2

)=(
1 −1
1 0

) (
−1 3
1 −2

) = (
−2 5
−1 3

) 

Theorem 2.1.16: 

Let AB, then 

1. A
-1
B

-1
. 
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2. AB. 

3. A
T
B

T
. 

Proof: 

1. AB an invertible matrix P such that B=P
-1

AP. 

        an invertible matrix P such that B
-1

=(P
-1

AP)
-1

 

        an invertible matrix P such that B
-1

=P
-1

A
-1

(P
-1

)
-1 

       an invertible matrix P such that B
-1

=P
-1

A
-1

P. 

Theorem 2.1.17: 

   Let A and B be two similar matrices, then  

1. A and B have the same determinant. 

2. A and B have the same trace. 

3. A and B have the same characteristics polynomial. 

4. A and B have the same eigenvalues. 

Proof: 

1. |B|=|P
-1

||A||P|. 

2. trace(B)= trace(P
-1

AP) = trace(AP
-1

P) = trace(AIn) = trace(A). 

3. cB()=|B-I|=|P
-1

AP-I|=|P
-1

AP-P
-1

P|=|P
-1

AP-P
-1
P|=|P

-1
(AP-P) |=|P

-1
| |AP-P|                     

             =|P
-1

| |(A-I)P|=|P
-1

| |A-I| | P|==|A-I |=cA(). 

 

Theorem 2.1.18: 

If AB, then rank (A)=rank (B).  

Remark 2.1.19:  

1. The converse of all tasks that mentioned in Theorem 2.1.17 need not be true. 

2. The converse of Theorem 2.1.18 need not be true.    

Example 2.1.20: 

The matrix 𝐴 = (
1 2
0 1

) and I2 are not similar, while, 
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1. |A|=|I2|. 

2. trace(A)= trace(I2). 

3. rank(A)= rank(I2). 

4. The eigenvalue of A is =1 with multiplicity 2. 

 Theorem 2.1.21: 

Let  be the set of all square matrices of order n. Define a relation R as follows, 

R={(A,B)|AB}. 

Then R is an equivalence relation on . 

Exercise 2.1.22: 

i. Find the eigenvalues and eigenspaces of the following matrices, 

1. 𝐴 = (
1 2
3 2

) 

2. 𝐴 = (
2 1 1
0 1 0
1 −1 2

) 

3. 𝐴 = (
cos𝑥 sin𝑥

−sin𝑥 cos𝑥
) 

ii. Let 𝐴 = (
1 2
2 1

) and 𝐵 = (
1 1

−1 1
). Is AB? 

 

2.2 Diagonalisation 

Definition 2.2 1: 

A real square matrix A of order n is said to be diagonalisable if it is similar to a diagonal 

matrix. That is,  

P
-1

AP is diagonalisable, for some invertible matrix P. 

Theorem 2.2.2: 

A square matrix A of order n is diagonalisable if and only if it has n linearly independent 

eigenvectors. 
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Proof: 

Step 1: Let A be a diagonalisable matrix of order n, 

Then  

𝐷 = 𝑃−1𝐴𝑃 = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮
0

⋮
⋯

⋮
0

⋮
𝜆𝑛

) 

Step 2: We find P by finding each of its columns, P=(X1 X2 …Xn). 

Step 3: From Step 1, we have AP=PD, then, 

A(X1 X2 …Xn)= (X1 X2 …Xn) (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮
0

⋮
⋯

⋮
0

⋮
𝜆𝑛

) 

(AX1 AX2 … AXn)=(1X1 2X2 … nXn) 

AXi=iXi, i=1,…,n. 

So, Xi, i=1,…,n are the eigenvectors of A corresponds to the eigenvalues I, i=1,…,n 

respectively. 

Previous result: A matrix P is invertible if and only if its columns are linearly independent. 

Then Xi, i=1,…,n are linearly independent. 

Conversely, if Xi, i=1,…,n are linearly independent, then P=(X1 X2 …Xn) is invertible, hence 

we obtain AP=PD, or equivalently, D=P
-1

AP.  

Diagonalisation Algorithm 

Let A be a square matrix of order n, 

1. Find the eigenvalues of A. 

2. Find n eigenvectors if possible X1, …, Xn. 

3.  Select P=[ X1 X2 … Xn] 

4. P
-1

AP is diagonal. 
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Example 2.2.3: 

Determine whether the following matrices are diagonalisable or not 

1. 𝐴 = (
2 −4

−1 2
) 

2. 𝐴 = (
5 8 16
4 1 8

−4 −4 11
) 

Solution: 

1. For 𝐴 = (
2 −4

−1 2
) 

=0 and =4 are the eigenvalues of A. 

E0(A)=span{(
2
1

)} and E4(A)=span{(
−2
1

)}. 

X1=(
2
1

) and X2=(
−2
1

) are linearly independent. 

Let P=(
2 −2
1 1

). 

Then P
-1

=
1

4
(

1 2
−1 2

) 

Hence, D=P
-1

AP=(
0 0
0 4

) 

2. For 𝐴 = (
5 8 16
4 1 8

−4 −4 11
) 

=1 and =-3 (with multiplicity two) are the eigenvalues of A. 

 E1(A)=span{(
2
1

−1
)} and E-3(A)=span{(

−1
1
0

) , (
−2
0
1

)}. 

X1=(
2
1

−1
), X2= (

−1
1
0

) and X3= (
−2
0
1

) are linearly independent. 

Let P=(
2 −1 −2
1 1 0

−1 0 1
). 

 Then P
-1

=(
1 1 2

−1 0 −2
1 1 3

) 

Hence,  

D=P
-1

AP=(
1 0 0
0 −3 0
0 0 −3

) 
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Example 2.2.4: 

Consider the matrix 

𝐴 = (
2 1 1
2 1 −2

−1 0 −2
) 

=3 and =-1 (with multiplicity two) are the eigenvalues of A. 

 E3(A)=span{(
5
6

−1
)} and E-1(A)=span{(

−1
2
1

)}. 

Any other eigenvector X3 of =-1 is linearly dependent with respect to X2. Then we 

cannot obtain an invertible matrix P. Hence A is not diagonalisable.  

Theorem 2.2.5: 

Let 1,…,n be distinct eigenvalues of a square matrix. If X1, …,Xn are the corresponding      

eigenvectors to 1,…,n, then {X1, …,Xn} is a linearly independent set.  

Proof: 

We apply mathematical induction on n, 

Step 1: n=1, clearly {X1} is linearly independent, since it is a nonzero vector. 

Step 2: Suppose it is true for all numbers less than n. 

Step 3: For n, let  

∑ 𝑏𝑖𝑋𝑖 = 0

𝑛

𝑖=1

… (1), 

Then, 

∑ 𝑏𝑖𝐴𝑋𝑖 = 0

𝑛

𝑖=1

, 

Since AXi=Xi, for all i=1,..,n., then 

∑ 𝑏𝑖𝜆𝑖𝑋𝑖 = 0

𝑛

𝑖=1

… (2), 

Let’s multiply (1) by 1, then, we obtain 

∑ 𝑏𝑖𝜆1𝑋𝑖 = 0 … (3),

𝑛

𝑖=1
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Take (2)-(3), we obtain, 

∑ 𝑏𝑖(𝜆𝑖 − 𝜆1)𝑋𝑖 = 0 … (4),

𝑛

𝑖=2

 

From Step 2, we obtain, 

bi(i-1)=0, for all i=1,…,n. 

Since i, are distinct, for all i=1,…,n. 

Then bi=0, for all i=1,…,n. 

Theorem 2.2.6: 

A square matrix of order n with n distinct eigenvalues is diagonalisable. 

Remark 2.2.7: 

The converse of Theorem 2.2.6 need not be true. 

Theorem 2.2.8: 

Let A be a square matrix of order n and  

𝑐𝐴(λ) = ∏(𝑥 − λ𝑖)
𝑚𝑖

𝑛

𝑖=1

 

be the characteristic polynomial. 

If di=dim(𝐸λ𝑖
(𝐴)). 

Then the following statements are equivalent: 

1. A is diagonalisable 

2.  

∑ 𝑑𝑖 = 𝑛

𝑛

𝑖=1

, ∀𝑖 = 1, … , 𝑛. 

3. di=mi, i 

Example 2.2.9: 

Let 
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𝐴 = (

2 0 0 0
4 2 0 0
7
2

3
6

3 0
4 1

). 

Prove that A is not diagonalisable. 

Exercise 2.2.10: 

i.  Show that 

𝐴 = (
1 0 1
0 1 0
0 0 2

) 

is a diagonalisable matrix 

 

ii.   Show that 

𝐴 = (
1 1 0
0 1 0
0 0 2

) 

is not a diagonalisable matrix. 

iii. Prove or disprove:  

1. The sum of two diagonalisable matrices is diagonalisable. 

2. If A is diagonalisable, then so is A, 0. 
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Chapter 3: Inner product spaces, Orthogonality 

 3.1 Inner product spaces (Definition and examples) 

Definition 3.1.1: 

Let V be a vector spaces over a field . An inner product on V is a function that assigns a 

number u, v to every pairs u,vV such that the following axioms are satisfied: 

3. u, v=v, u. (symmetric property) 

4. au+bw, v=au, v+bw, v, a, b( or C). (linear property) 

5. u,u>0, u0. (positive definite property) 

A vector space V with an inner product  ,  is called an inner product space. 

Clearly,  

au-bw, v=au, v-bw, v. 

Example 3.1.2: 

1. Consider the vector space  over . Define  ,  on  as follows 

x, y=xy (The dot product) 

2. Consider the vector space 2 over . Define  ,  on  as follows 

(x1,y1), (x2,y2)=x1x2+ y1y2 (The dot product) 

Example 3.1.3: 

Consider the vector space  over . Define  ,  as follows 

x, y=|x-y|. 

x, y is not an inner product on . 

Example 3.1.4: 

Let a, b, define 

C[a, b]={ f | f is continuous on the closed interval [a, b]}.  



 

24 
 

Define  ,  on C[a, b] as follows 

𝑓, 𝑔 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎

 

Then 𝑓, 𝑔 is an inner product on C[a, b]. 

Example 3.1.5: 

In 
3
 and for every u and v

3
, If 

u,v=u
T
Av, where 

𝐴 = (
2 0 1
0 1 0
1 0 2

). 

Then u,v is an inner product. 

Exercise 3.1.6:  

5. According to Example 3.1.2, Task 2., how can we define an inner product on the 

vector space 
n
 over ? Explain your answer. 

6. Determine whether the following  ,  on the corresponding vector space is an inner 

product or not. 

i. V=P3 with p(x), q(x)=p(1)q(1) 

ii. V=C (the set of complex numbers) with z, w=z�̅� 

iii. V=M22 with A,B=|AB| 

Theorem 3.1.7: 

Let  ,  be an inner product on a vector space V. For any u,v,wV and a, b. 

1. u,av+bw=au,v+bu,w 

2. au,v=au,v=u,av 

3. u,0=0=0,u 

4. u,u=0u=0 

Proof: 

1. u,av+bw=av+bw,u=av,u+bw,u= au,v+bu,w. 
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2. au,v=au+0w,v=au,v+0w,v=au,v. 

Similarly and by Task 1., we obtain au,v=u,av 

3. u,0=u,0+0=u,1(0)+1(0)=1u,0+1u,0=u,0+u,0 

u,0=u,0+u,0u,0-u,0=(u,0+u,0)-u,00=u,0+0 

4. u,u=0u=0 by Definition 3.1.1. 

For u=0u,u=0  

Example 3.1.8: 

If u and v are vectors in an inner product space V, find 

1. 2u-7v,3u+5v 

2. 3u-4v,5u+v (Homework) 

Theorem 3.1.9: 

In an inner product space V, for a vector uV, define, 

Wu={vV|u, v=0}. 

Prove that Wu is a subspace of V. 

Proof: 

Wu (why?) 

Let a,b be scalars and v1,v2Wu. 

u, av1+bv2=au,v1 +bu,v2=a(0)+b(0)=0. 

3.2  Normed vector space 

Definition 3.2.1 

Let  ,  be an inner product on a vector space V.  

1. The norm or the length of uV is defined as follows 

||u||=√𝑢, 𝑢 

2. The distance between two vectors u and v in V is defined as follows 
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d(u,v)=||v-u|| 

The pair (V, ||||) is called a normed vector space.   

Example 3.2.2: 

      In Example 3.1.2, find 

1. ||x|| and ||x-y|| 

2. ||(x, y)|| and ||(x1,y1),(x2,y2)|| 

Example 3.2.3: 

In Example 3.1.4, find 

||f|| and ||f-g|| 

Theorem 3.2.4: 

Show that u+v,u-v=||u||
2
-||v||

2
. 

Proof: 

||u||
2
-||v||

2
=u,u-v,v=u,u+v,-v=u+v,u-v. 

Definition 3.2.5: 

In an inner product space V, a vector uV is called a unit vector if ||u||=1 

Example 3.2.6: 

Let a, b>0. In a vector space 
2
, define 

(x, y), (x1,y1)=
𝑥𝑥1

𝑎2
+

𝑦𝑦1

𝑏2
. 

1. Prove that  ,  is an inner product on 
2
.(Homework) 

2. Show that ||(x, y)||=1  
𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 

Theorem 3.2.7 (Schwarz Inequality): 

      In an inner product space V, 

u, v
2
||u||

2
||v||

2
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Proof: 

u=0  v=0u, v=0  (||u||=0  ||v||=0)00 

Let u0v 

0|| xu+v ||
2
=xu+v, xu+v=xu, xu+v+v, xu+v 

=x(xu,u+u,v)+xv, u+ v, v=u,ux
2
+u,v2x+v,v 

=||u||
2
x

2
+2u,vx+||v||

2
4u,v

2
4||u||

2
||v||

2
u,v

2
||u||

2
||v||

2
 

Example 3.2.8: 

Apply Schwarz Inequality in Example 3.1.4. 

Theorem 3.2.9: 

Let  ,  be an inner product over V and u, vV. 

1. ||u||0. 

2. ||u||=0u=0 

3. ||u||=|| ||u|| 

4. ||u+v||||u||+||v|| (triangle inequality) 

Proof: 

1. Straightforward. 

2. Follows from Theorem 3.1.7, Task 4. 

3. ||u||
2
=u,u=

2
u,u||u||=|| ||u||  

4. ||u+v||
2
=u+v,u+v=u, u+v+v, u+v=u, u+u, v+v, u+v, v 

          =||u||
2
+u,v+u,v+||v||

2
==||u||

2
+2u,v+||v||

2
||u||

2
+2||u|| ||v||+||v||

2
=(||u||+||v||)

2
 

           ||u+v||
2
(||u||+||v||)

2
 ||u+v||||u||+||v|| 

             

Theorem 3.2.10: 

If  ,  is an inner product on V and u1,…,un is a spanning of V, then for each vV,  

v,ui=0, i=1,…, nv=0. 
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Proof: 

v=a1u1+…+anun, for some scalars ai, i=1,…,n. 

v,v=v,a1u1+…+anunv,v=a1v,u1+a2v,u2+…+ anv,un=a1(0)+…+ an(0)=0v=0. 

Theorem 3.2.11: 

Let V be an inner product space V and u, v be vectors in V.  

1. d(u,v)0. 

2. d(u,v)=0u=v 

3. d(u,v)=d(v,u) 

4. d(u,v) d(u,w)+ d(w,v) 

Proof: 

1. Follows form Theorem 3.2.9, Task 1. 

2. Follows form Theorem 3.2.9, Task 2. 

3. d(u,v)= ||u-v||=√𝑢 − 𝑣, 𝑢 − 𝑣=√𝑢, 𝑢 − 2𝑢, 𝑣 + 𝑣, 𝑣 

d(v,u)= ||v-u||=√𝑣 − 𝑢, 𝑣 − 𝑢=√𝑣, 𝑣 − 2𝑢, 𝑣 + 𝑢, 𝑢 

4. d(u,v)= ||u-v||=||(u-w)+(w-v)|| ||u-w||+||w-v|| d(u,w)+ d(w,v) 

Exercise 3.2.12: 

i. In an inner product space V, for u,vV, prove each of the following 

1. ||u+v||
2
=||u||

2
+2u,v+||v||

2
 

2. ||u-v||
2
=||u||

2
-2u,v+||v||

2
 

3. u,v=0.25(||u+v||
2
-||u-v||

2
) 

ii. In an inner product space V, let ||u||=1, ||v||=2 and ||w||=√3, u,v=-1, 

u,w=0 and v,w=3. Compute 

1. v+w,2u-v 

2. u-2v-w,3w-v 

iii. Let T:VV be an isomorphism of the inner product space V.                 

Show that u,v
*
=T(u), T(v) is an inner product space on V.  

 

 



 

29 
 

3.3  Orthogonality 

Definition 3.3.1: 

Let V be an inner product space and u, vV. We say that u and v are orthogonal if  

u,v=0 

 Definition 3.3.2: 

Let V be an inner product space. A set {u1,…,un} of vectors in V is called orthogonal if 

1. ui0, i=1,…,n 

2. The set of vectors is pairwise orthogonal, that is ui,uj is orthogonal ij. 

Additionally, if ||ui||=1, i, then the set {u1,…,un} of vectors is called orthonormal.   

Example 3.3.3: 

1. (-1,3) and (3,1) are orthogonal with respect to Example 3.1.2, Task 2.  

2. sinx and cosx are orthogonal in C[-,]. 

3. (5,2,-3) and (4,-1,6) are orthogonal with respect to Exercise 3.1.6, Task 1.  

Theorem 3.3.4 (The Pythagorean Theorem): 

If {u1,…,un} is an orthogonal set of vectors, then 

‖∑ 𝑢𝑖

𝑛

𝑖=1

‖

2

= ∑‖𝑢𝑖‖2

𝑛

𝑖=1

. 

Proof: 

||u1+…+un||
2
=u1+…+un,u1+…+un=u1,u1+u2,u2+…+un,un+∑ 𝑢𝑖, 𝑢𝑗𝑖≠𝑗  

                                                         =||u1||
2
+…+||un||

2
+0=||u1||

2
+…+||un||

2
 

Theorem 3.3.5: 

Let {u1,…, un} be orthogonal set of vectors, then  

i. {1u1,…, nun} is orthogonal for every i0. 

ii. {�̂�1, … , �̂�𝑛} is orthonormal. 
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Proof: 

i.  

1. For each i=1,..,n, ui0ui0. 

2. ui,uj=ui,uj=(0)=0. 

ii. Homework. 

Theorem 3.3.6: 

Every orthogonal set of vectors is linearly independent. 

Example 3.3.7: 

In Example 3.1.5, prove that 

{(
2

−1
0

) , (
0
1
1

) , (
0

−1
2

)} 

is an orthogonal basis of 
3
, where  

𝐴 = (
1 1 0
1 2 0
0 0 1

) 

Exercise 3.3.8: 

1. In an inner product space V, prove or disprove: 

i. u,vV are orthogonal||u+v||=||u-v||. 

ii. {u,v} is an orthogonal set||u||=||v||. 

2. In Example 3.1.5, Verify whether  

{(
1
1
1

) , (
−1
0
1

) , (
1

−6
1

)} 

is an orthogonal basis of 
3
or not, where  

𝐴 = (
2 0 1
0 1 0
1 0 2

). 
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3.4  Orthogonal projections 

Definition 3.4.1: 

Let W be a subspace of an inner product space V. The orthogonal complement W

 of W is 

defined as follows 

W

={vV|uWu, v=0} 

Theorem 3.4.2: 

In an inner product space V, the orthogonal complement W

 of a subspace W of V is a 

subspace of V. 

Proof: 

uWu, 0=00W

. 

Let v1,v2 W

, a,b be scalars and uW. 

u, av1+bv2=u,av1+u,bv2=au, v1+bu,v2=a(0)+b(0)=0av1+bv2W

. 

Exercise 3.4.2: 

Let U and W be a subspace of a vector space V. Define 

UW={u+w|uU  wW} 

Show that UW is a subspace of V. 

Definition 3.4.3: 

A vector space V is called a direct sum of subspaces U and W if 

1. UW={0} 

2. V= UW. 

Exercise 3.4.4: 

Let V be a finite dimensional direct sum vector space of subspaces U and W. Then 

dim (V)=dim(U)+dim(W). 
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Theorem 3.4.5: 

Let W be a finite dimensional subspace of an inner product space V, then V=WW

. 

Proof: 

We will apply Definition 3.4.3, 

1. Let v WW

. Since v,v=0,  then v=0. 

2. Clearly, WW

V. 

Let vVv=0+v. According to Theorem 3.1.7, Task 3, v,0=0, then v W

. 

Theorem 3.4.6: 

Let V be an inner product space, U be the orthogonal complement of W. Define a function 

T:VV as follows  

T (v)=u, where v=u+w, uU, wW. 

Then  

1. T is a linear operator on V. (T is called the projection on U with kernel W) 

2. img(T)=U 

3. ker(T)=W 

 

 

 

 

 


