Linear Algebra (II) 2022-2023

Instructor

Dr.Wuria Muhammad Ameen

ilo Mu.

Chapter 1: Linear transformations

1.1 Examples and elementary properties.

Definition 1.1.1:

Let *V* and *W* be two vector spaces over the same field *F*. A mapping $T:V \rightarrow W$ is called a linear transformation if it is satisfied the following axioms

- 1. $T(v_1+v_2) = T(v_1)+_W T(v_2)$, where $v_1, v_2 \in V$.
- 2. $T(\lambda v) = \lambda T(v)$, where $v \in V$ and $\lambda \in F$.

In a linear transformation T, if V=W, then T is called a linear operator on V

Theorem 1.1.2:

Let *V* and *W* be two vector spaces over the same field *F*. A mapping $T:V \rightarrow W$ is linear transformation if and only if

$$v_1, v_2 \in V \land \lambda, \mu \in F \rightarrow T (\lambda v_1 + \mu v_2) = \lambda T (v_1) + \mu T (v_2).$$

Example 1.1.3:

- i. Consider the vector spaces \Re^2 and \Re^3 over \Re , define
- 1. $T: \mathfrak{R}^2 \rightarrow \mathfrak{R}^3$ such that T(x, y) = (x+y, 3x-4y, 2y)
- 2. $T: \mathfrak{R}^2 \rightarrow \mathfrak{R}^3$ such that T(x, y) = (x-y, x+y-1, x)
- 3. $T: \Re^2 \rightarrow \Re^2$ such that T(x, y) = (xy, x)
- ii. Consider the vector spaces P_{n-1} , P_n and P_{n+1}

1.
$$T: P_n \rightarrow P_{n-1}$$
 such that $T(p(x)) = \frac{dp(x)}{dx}$

2.
$$T: P_n \rightarrow P_{n+1}$$
 such that

$$T(p(x)) = \int_{0}^{x} p(t)dt$$

Theorem 1.1.4:

Let $T: V \rightarrow W$ be a linear transformation, then

- 1. *T*(0)=0.
- 2. $u \in V \rightarrow T(-u) = -T(u)$,

Definition 1.1.5:

- 1. The linear operator $I_V: V \to V$ such that $I_V(v) = v$, $\forall v \in V$ is called the identity operator on *V*.
- 2. The linear transformation $0:V \rightarrow W$ such that 0(v)=0, $\forall v \in V$ is called the zero transformation.

Theorem 1.1.6:

Let $T,S:V \rightarrow W$ be two linear transformations such that V=span ({ $v_1,..., v_n$ }). If $T(v_i)=S(v_i), \forall i, 1 \le i \le n$, then T=S.

Exercise 1.1.7:

- i. Verify whether the following functions are linear transformations or not.
 - 1. $T: \Re^2 \rightarrow \Re^2$ such that T(x, y) = (x, -y).
 - 2. $T: C \rightarrow C$ such that $T(z) = \overline{z}$.
 - 3. $S: M_{n \times n} \rightarrow M_{n \times n}$ such that $S(A) = A + A^T$.
- ii. Let $T:V \rightarrow W$ be a linear transformation, $\{v_1, \dots, v_n\} \subseteq V$. If $\{T(v_1), \dots, T(v_n)\}$ is linearly independent, then so is $\{v_1, \dots, v_n\}$.

1.2Kernel and image of linear transformation

Definition 1.2.1:

Let $T:V \rightarrow W$ be a linear transformation, the kernel and the image of T is defined as follows

$$ker(T) = \{v \in V | T(v) = 0\}.$$

$$img(T) = \{w \in W | w = T(v), \text{ for some } v \in V\}.$$

Example 1.2.2:

Let $T: \Re^3 \rightarrow \Re^3$ be a mapping defined by T(x, y, z) = (x-y, z, y-x).

- 1. Show that *T* is a linear transformation.
- 2. Find ker(T) and img(T).

Solution:

Ker (*T*)={ $(x,x,0)|x \in \Re$ } and *img* (*T*)={ $(a,b,-a)|a,b \in \Re$ }.

Example 1.2.3:

Let $S: M_{n \times n} \to M_{n \times n}$ be a linear transformation such that $S(A) = A - A^T$. Find ker(T) and img(T).

Theorem 1.2.4:

For any linear transformation $T:V \rightarrow W$, ker(T) is a subspace of V and img(T) is a subspaces of W.

Theorem 1.2.5:

Any linear transformation $T:V \rightarrow W$ is 1-1 if and only if $ker(T) = \{0\}$.

Example 1.2.6:

Let $S: \Re^2 \to \Re^3$ and $T: \Re^3 \to \Re^2$ be linear transformation such that. Apply **Theorem 1.2.5** for each of the following

- 1. T(x,y,z)=(x+y,x-y).
- 2. S(x,y) = (x+y,x-y,x).

Exercise 1.2.7:

Let $T: V \rightarrow W$ be a linear transformation, prove or disprove

- 1. $Ker(T)=V \rightarrow W=\{0\}.$
- 2. $V=W \rightarrow Ker(T) \subseteq img(T)$.
- 3. $W=\{0\}\subseteq Ker(T)=V$.
- 4. $V=W \land img(T) \subseteq ker(T) \rightarrow T=0.$

1.3 Isomorphism and composition

Definition 1.3.1:

A linear transformation $T:V \rightarrow W$ is called isomorphism if T is 1-1 and onto. Two vector spaces are called isomorphic if there is an isomorphism between them. We use the notation $V \cong W$.

Example 1.3.2:

- 1. The identity linear transformation on V is isomorphism.
- 2. $S: M_{n \times n} \rightarrow M_{n \times n}$ such that $S(A) = A^T$ is an isomorphism.
- 3. The zero linear transformation $T:V \rightarrow W$ is not isomorphism.

Theorem 1.3.3:

Let $T:V \rightarrow W$ be a linear transformation for which *V* and *W* are finite dimensional. Then the following statements are equivalent

- 1. *T* is an isomorphism.
- 2. If $\{v_1,\ldots,v_n\}$ is a basis of V, then $\{T(v_1),\ldots,T(v_n)\}$ is a basis of W.
- 3. There exists a base $\{v_1, \dots, v_n\}$ of V, such that $\{T(v_1), \dots, T(v_n)\}$ is a basis of W.

Theorem 1.3.4:

Let V and W be two finite dimensional vector spaces. Then

 $V \cong W \leftrightarrow dim(V) = dim(W).$

Proof:

Let $V \cong W$, then \exists an isomorphism $T: V \rightarrow W$.

Suppose $\{r_1, \ldots, r_m\}$ be a base of V, then by **Theorem 1.3.3**, $\{T(r_1), \ldots, T(r_m)\}$ is a basis of W.

On the other hand, $T(r_i) \neq T(r_j)$, since *T* is 1-1, then dim(V) = dim(W).

Conversely, let $\{v_1,...,v_n\}$ and $\{w_1,...,w_n\}$ be basis for *V* and *W* respectively.

Define $T: V \rightarrow W$ as follows

1. $T(v_i) = w_i$.

2. For $v \in V$, we have $v = a_1v_1 + \ldots + a_nv_n$ then we define $T(v) = a_1 T(v_1) + \ldots + a_n T(v_n) = a_1 w_1 + \ldots + a_n w_n.$

Is *T* well defined?

$$v_i = v_j \rightarrow T(v_i) = T(v_j)$$

Otherwise $dim(V) \neq dim(W)$.

$$v = v^* \rightarrow v = a_1 v_1 + ... + a_n v_n = v^* \rightarrow T (v) = a_1 T(v_1) + ... + a_n T(v_n) = T(v^*).$$

To show that *T* is a linear transformation,
1. Let $v, v^* \in V$, then
 $v = b_1 v_1 + ... + b_n v_n$ and $v^* = c_1 v_1 + ... + c_n v_n.$
 $T (v + v^*) = T ((b_1 v_1 + ... + b_n v_n) + (c_1 v_1 + ... + c_n v_n))$
 $= T ((b_1 + c_1) v_1 + ... + (b_n + c_n) v_n)$

To show that *T* is a linear transformation,

1. Let $v, v^* \in V$, then

$$v = b_1 v_1 + \ldots + b_n v_n$$
 and $v^* = c_1 v_1 + \ldots + c_n v_n$.

$$T(v+v^{*})=T((b_{1}v_{1}+...+b_{n}v_{n})+(c_{1}v_{1}+...+c_{n}v_{n}))$$

$$=T((b_{1}+c_{1})v_{1}+...+(b_{n}+c_{n})v_{n})$$

=(b_{1}+c_{1})T(v_{1})+...+(b_{n}+c_{n})T(v_{n})
=(b_{1}T(v_{1})+...+b_{n}T(v_{n}))+(c_{1}T(v_{1})+...+c_{n}T(v_{n}))
=T(v)+T(v^{*})

2. Let $v \in V$ and λ be a scalar,

$$T (\lambda v) = T (\lambda (a_1v_1 + \ldots + a_nv_n)) = T (\lambda a_1v_1 + \ldots + \lambda a_nv_n) = \lambda a_1T (v_1) + \ldots + \lambda a_nT (v_n)$$
$$= \lambda (a_1T(v_1) + \ldots + a_nT(v_n)) = \lambda T (v).$$

For 1-1,

Let $T(v)=T(v^*)$

 $T(v)=T(v^*) \rightarrow v=v^*$ (Homework).

For onto,

Let $w \in W$

 $w \in W \rightarrow w = a_1w_1 + ... + a_nw_n = a_1T(v_1) + ... + a_nT(v_n) = T(a_1v_1 + ... + a_nv_n) = T(v)$, for some $v \in V$.

Example 1.3.5:

P₂ and the set of all symmetric matrices of order two are isomorphic.

Dimension Theorem:

Let $T:V \rightarrow W$ be all inear transformation for which ker(T) and img(T) are finite dimensional, then *V* is a finite dimensional and

$$dim (ker (T))+dim(img(T))=dim (V)$$

Proof:

Not required.

Theorem 1.3.6:

Let *V* and *W* be two finite dimensional vector spaces of the same order. A linear transformation $T:V \rightarrow W$ is isomorphism if *T* is either 1-1 or onto.

Exercise 1.3.7:

Let $T: \mathfrak{R}^3 \to \mathfrak{R}^3$ be a linear transformation such that T(x, y, z) = (x+y, y+z, x+z). Is *T* isomorphism?

Theorem 1.3.8:

Let $T: V \rightarrow W$ and $S: W \rightarrow Z$ be linear transformations, then

- 1. So T is a linear transformation, where So T is the composition function of T and S.
- 2. If *T* and *S* are isomorphism, then so is *S*o*T*.

Proof:

 $SoT(v_1+v_2) = S(T(v_1+v_2))$ (Definition of composition of functions)

$$= S(T(v_1)+T(v_2)) \quad (T \text{ is L.T.})$$
$$= S(T(v_1))+S(T(v_2)) \quad (S \text{ is L.T.})$$
$$= SoT(v_1)+SoT(v_2) \quad (Why?)$$

 $SoT(\lambda v) = S(T(\lambda v)) = S(\lambda T(v)) = \lambda S(T(v)) = \lambda SoT(v)$

2. S and T are bijective \rightarrow SoT is bijective.

Then form 1. and 2. SoT is isomorphism.

Definition 1.3.9:

Let V and W be vector spaces, $T:V \rightarrow W$ and $S:W \rightarrow V$ be linear transformations. We say that S is the inverse of T if

 $ToS = I_W$ and $SoT = I_V$.

The inverse of *T* is denoted by T^{-1} .

A linear transformation *T* is called invertible if it has the inverse.

Notice that if S is the inverse of T, then T is the inverse of S.

Exercise 1.3.10:

A linear transformation T has the inverse if and only if T is 1-1 and onto.

Example 1.3.11:

Verify whether the following transformation is invertible or not.

1. $T: \mathfrak{R}^3 \rightarrow \mathfrak{R}^3$ such that T(x, y, z) = (x+y, y+z, x+z)

(2	0	$0 \mid u - v + w \setminus$
0	-2	$0 \left -u - v + w \right $
\0	0	2 -u + v + w

2. $T: \mathfrak{R}^4 \to \mathfrak{R}^4$ such that T(x, y, z, w) = (x+y, y+z, z+w, x+w)

/1	1	0	0\
0	1	1	0
0	0	1	1
\backslash_1	0	0	1/

Exercise 1.3.12:

i. Find a linear transformation with the given properties and compute T(v):

1.
$$T: \mathfrak{R}^2 \to \mathfrak{R}^3; T(1,2)=(1,0,1), T(-1,0)=(0,1,1), v=(-3,2)$$

2. $T:P_2 \rightarrow P_3$, $T(x^2)=x^3$, T(x+1)=0, T(x-1)=x, $v=x^2+x+1$.

Remark:

Step 1: Show that $\{(1,2),(-1,0)\}$ is a base of \Re^2 .

Step 2: Write v = (-3,2) as a linear combination of (1,2) and (-1,0).

(-3,2)=1(1,2)+4(-1,0)

Step 3: Take *T* for Step 2,

T(-3,2)=T(1(1,2)+4(-1,0))

$$=1T(1,2)+4T(-1,0)$$

=1(1,0,1)+4(0,1,1)=(1,4,5).

ii. Verify whether the following linear transformations are isomorphism or not

- 1. $T: P_1 \rightarrow \Re^2$ such that T(p(x)) = (p(0), p(1)).
- 2. $T: V \rightarrow V, T(v) = \lambda v, \lambda$ is a nonzero scalar.
- 3. $T:P_2 \rightarrow P_2$ such that T(p(x))=p(x+1).

iii. Is the linear transformation *T* that is defined in **Exercise 1.3.12**, *i*. isomorphism?

1.4 Operations with linear transformations

Definition 1.4.1:

Let $T: V \rightarrow W$ and $S: V \rightarrow W$ be linear transformations. Define

1. The sum $(T \oplus S)$ of *T* and *S* as a function from *V* to *W* as follows

$$(T \oplus S)(v) = T(v) + S(v). \forall v_1, v_2 \in V.$$

2. The scalar product λT from *V* to *W* as follows:

 $(\lambda \odot T)(v) = \lambda T(v). \forall v \in V \text{ and } \lambda \in F.$

Theorem 1.4.2:

Let *V* and *W* be vector spaces over the same field *F*, then the collection of all linear transformations with the operations defined in **Definition 1.4.1** is a vector space denoted by Hom(V,W).

Proof:

Hom(*V*,*W*)={ $T|T:V \rightarrow W$ is a linear transformation}

We have to show that Hom(*V*,*W*) with the operations \oplus and \bigcirc is a vector space over the filed *F*.

For associativity $(T \oplus S) \oplus U = T \oplus (S \oplus U)$

 $(T \oplus S) \oplus U(v) = (T \oplus S)(v) \oplus U(v) = (T(v) \oplus S(v)) \oplus U(v) = T(v) \oplus (S(v) \oplus U(v)) = T(v) \oplus (S \oplus U(v))$

 $=T \oplus (S \oplus U)(v).$

For commutativity, homework

The zero transformation is the identity.

For any $T:V \rightarrow W$, $-T:V \rightarrow W$ is the inverse of *T*.

For $(\lambda + \mu) \odot T = (\lambda + \mu) \odot T$?

 $(\lambda+\mu)\odot T(v) = (\lambda+\mu)T(v) = \lambda T(v) + \mu T(v) = \lambda \odot T(v) + \mu \odot T(v).$

The others are homework.

Theorem 1.4.3:

Let V and W be two vector space such that dim(V)=m and dim(W)=n. Then dim(Hom(V,W))=mn.

Proof: Not required.

1.5 Matrix representation of a linear transformation

Definition 1.5.1:

Let $A_{m \times n}$ be a matrix. The matrix transformation $T_A: \mathfrak{R}^n \to \mathfrak{R}^m$ is defined by

 $T_A(X) = AX$, where $X \in \Re^n$.

Theorem 1.5.2:

For each matrix $A_{m \times n}$, the matrix transformation T_A defined in **Definition 1.5.1** is a linear transformation.

.een

Proof:

 $T_A(\lambda X + \mu Y) = A(\lambda X + \mu Y)$ (By **Definition 1.5.1**)

$$=A(\lambda X)+A(\mu Y)$$
 (Matrix property)

 $=\lambda AX + \mu AY$ (Matrix property)

$$=\lambda T_A(X) + \mu T_A(Y)$$

Example 1.5.3:

For each of the following matrices, find T_A

1.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

2. $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

Solution:

1.
$$T_A(X) = T_A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

2. $T_A(X) = T_A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ y \end{pmatrix}$

Exercise 1.5.4:

Find the matrix transformation of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Chapter 2: Eigenvalues and Digonalisation

2.1 Eigenvalues and similarity

Definition 2.1.1:

Let A be a square matrix of order n. A scalar λ (real or complex) is said to be an eigenvalue of A if,

 \exists a nonzero column vector *X* such that $AX=\lambda X$(2.1)

In this case, X is called an eigenvector of A corresponding to λ .

Definition 2.1.2:

Let λ be an eigenvalue of the matrix $A_{n \times n}$. The set of all eigenvectors defined in **Definition 2.1.1** is called the eigenspace associated to λ , i.e.

$$E_{\lambda}(A) = \{ X | AX = \lambda X \}.$$

Theorem 2.1.3:

For each λ , the set $E_{\lambda}(A)$ is a subspace of $(\mathfrak{R}^n \text{ or } C^n)$.

Remark 2.1.4:

The equation (2.1) is the same as the equation $(A - \lambda I_n)X = 0$.

Definition 2.1.5:

The determinant of the equation $A - \lambda I_n = 0$ is called the characteristic polynomial of the matrix $A_{n \times n}$, and denoted by $c_A(\lambda)$,

$$c_A(\lambda) = det(A - \lambda I_n)$$

Clearly, the eigenvalues of a matrix A is the roots (zeros) of the characteristic polynomial and vice versa.

Example 2.1.6:

Find the eigenvalues and the eigenspace of the following matrices

1.
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

2. $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{pmatrix}$

Solution:

$$p(\lambda)=|A-\lambda I_2|=\left|\begin{pmatrix}2&3\\1&4\end{pmatrix}-\lambda\begin{pmatrix}1&0\\0&1\end{pmatrix}\right|=\begin{vmatrix}2-\lambda&3\\1&4-\lambda\end{vmatrix}=\lambda^2-6\lambda+5.$$

The eigenvalues are $\lambda=5$ and $\lambda=1$.

For the eigenvector of λ =5, we apply

 $AX = \lambda X$, then

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} 2x + 3y \\ x + 4y \end{pmatrix} = \begin{pmatrix} 5x \\ 5y \end{pmatrix}$$

5.5.

Then, we obtain y=x.

So, the eigenvector of $\lambda = 5$ is $\begin{pmatrix} x \\ \chi \end{pmatrix}$

$$E_5\begin{pmatrix} 2 & 3\\ 1 & 4 \end{pmatrix} = \operatorname{span}\left\{\begin{pmatrix} 1\\ 1 \end{pmatrix}\right\}.$$

For the eigenvector of $\lambda = 1$,

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1 \begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} 2x + 3y \\ x + 4y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Then, we obtain $y = \frac{-x}{3}$.

So, the eigenvector of
$$\lambda = 5$$
 is $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$

$$E_1\begin{pmatrix} 2 & 3\\ 1 & 4 \end{pmatrix} = \operatorname{span}\left\{\begin{pmatrix} -3\\ 2 \end{pmatrix}\right\}.$$

Definition 2.1.7:

An eigenvalue λ is said to be of multiplicity *m* if it is repeated *m* times.

$$c_A(\lambda) = (x - \lambda)^m q(x)$$

Example 2.1.8:

$$A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & 11 \end{pmatrix}$$

 $\lambda = 1$ and $\lambda = -3$ (with multiplicity two) are the eigenvalues of *A*.

$$E_1(A) = \operatorname{span}\left\{ \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \right\} \text{ and } E_{-3}(A) = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix} \right\}.$$

Exercise 2.1.9:

Find the eigenvalues and the eigenspace of the following matrix.

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{pmatrix}$$

Theorem 2.1.10:

If λ is an eigenvalue of a matrix *A* with the nonzero eigenvector *X*, then λ^2 is an eigenvalue of the matrix A^2 with the same eigenvector *X*.

Proof:

$$|A^{2}-\lambda^{2}I| = |A^{2}-\lambda^{2}I^{2}| = |(A-\lambda I)(A+\lambda I)| = |A-\lambda I| |A+\lambda I| = 0. |A+\lambda I| = 0.$$

Then λ^2 is an eigenvalue of A^2 .

$$A^{2}X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda(\lambda X) = \lambda^{2}X.$$

Then *X* is the eigenvector of A^2 corresponding to λ^2 .

Exercise 2.1.11:

Regarding to **Theorem 2.1.10**, show that $\lambda^3 - 2\lambda + 3$ is an eigenvalue of the matrix $A^3 - 2A + 3I$.

Example 2.1.12:

For a triangular matrix $A=(a_{ij})$, the set of eigenvalues are the entries of the main diagonal.

Solution:

Let A be an upper triangular matrix of order n. Then,

$$c_A(\lambda) = |A - \lambda I_n| = \prod_{i=1}^n (a_{ii} - \lambda)$$

Then $\lambda = a_{ii}$, for all i = 1, ..., n.

Similarly, for the lower triangular matrix.

Example 2.1.13:

Prove that A and A^T have the same eigenvalues.

Solution:

Let *A* be a square matrix of order *n*. Then,

for A^T , the characteristic polynomial is given by,

$$c_{A^{T}}(\lambda) = |A^{T} - \lambda I_{n}| = |(A - \lambda I_{n})^{T}| = |A - \lambda I_{n}|.$$

Definition 2.1.14:

Let A and B be two square matrices of the same order, we say that A and B are similar if $B=P^{-1}AP$ or $B=PAP^{-1}$, for some invertible matrix P.

We use the expression $(A \sim B)$ for two similar matrices A and B.

Example 2.1.15:

Let
$$A = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$
. Show that $A \sim B$ if $B = \begin{pmatrix} -2 & 5 \\ -1 & 3 \end{pmatrix}$.

Solution:

We may select $P = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}$. Then

$$P^{-1}AP = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 5 \\ -1 & 3 \end{pmatrix}$$

Theorem 2.1.16:

Let $A \sim B$, then

1. $A^{-1} \sim B^{-1}$.

- 2. $\lambda A \sim \lambda B$.
- 3. $A^T \sim B^T$.

Proof:

- 1. $A \sim B \rightarrow \exists$ an invertible matrix *P* such that $B = P^{-1}AP$.
 - $\rightarrow \exists$ an invertible matrix *P* such that $B^{-1} = (P^{-1}AP)^{-1}$
 - $\rightarrow \exists$ an invertible matrix *P* such that $B^{-1} = P^{-1}A^{-1}(P^{-1})^{-1}$
 - $\rightarrow \exists$ an invertible matrix *P* such that $B^{-1} = P^{-1}A^{-1}P$.

Theorem 2.1.17:

Let A and B be two similar matrices, then

- 1. A and B have the same determinant.
- 2. *A* and *B* have the same trace.
- 3. A and B have the same characteristics polynomial.
- 4. *A* and *B* have the same eigenvalues.

Proof:

- 1. $|B| = |P^{-1}||A||P|$.
- 2. $trace(B) = trace(P^{-1}AP) = trace(AP^{-1}P) = trace(AI_n) = trace(A)$.
- 3. $c_B(\lambda) = |B \lambda I| = /P^{-1}AP \lambda I| = /P^{-1}AP \lambda P^{-1}P| = /P^{-1}AP P^{-1}\lambda P| = /P^{-1}(AP \lambda P) |= /P^{-1}||AP \lambda P| = /P^{-1}||A \lambda I|| / P| = = /A \lambda I| = c_A(\lambda).$

Theorem 2.1.18:

If $A \sim B$, then rank (A)=rank (B).

Remark 2.1.19:

- 1. The converse of all tasks that mentioned in **Theorem 2.1.17** need not be true.
- 2. The converse of **Theorem 2.1.18** need not be true.

Example 2.1.20:

The matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and I_2 are not similar, while,

- 1. $|A| = |I_2|$.
- 2. $trace(A) = trace(I_2)$.
- 3. $rank(A) = rank(I_2)$.
- 4. The eigenvalue of *A* is $\lambda = 1$ with multiplicity 2.

Theorem 2.1.21:

Let Ψ be the set of all square matrices of order *n*. Define a relation *R* as follows,

$$R = \{ (A,B) \in \Psi \times \Psi | A \sim B \}.$$

Then *R* is an equivalence relation on Ψ .

Exercise 2.1.22:

i. Find the eigenvalues and eigenspaces of the following matrices,

1.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$

2. $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$
3. $A = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$
ii. Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Is $A \sim B$?

2.2 Diagonalisation

Definition 2.2 1:

A real square matrix A of order n is said to be diagonalisable if it is similar to a diagonal matrix. That is,

 $P^{-1}AP$ is diagonalisable, for some invertible matrix P.

Theorem 2.2.2:

A square matrix A of order n is diagonalisable if and only if it has n linearly independent eigenvectors.

Proof:

Step 1: Let *A* be a diagonalisable matrix of order *n*,

Then

$$D = P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Step 2: We find *P* by finding each of its columns, $P=(X_1 X_2 ... X_n)$.

Step 3: From Step 1, we have *AP=PD*, then,

$$A(X_1 X_2 \dots X_n) = (X_1 X_2 \dots X_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$
$$\rightarrow (AX_1 AX_2 \dots AX_n) = (\lambda_1 X_1 \lambda_2 X_2 \dots \lambda_n X_n)$$
$$\rightarrow AX_i = \lambda_i X_i, i = 1, \dots, n.$$

5-201-

So, X_i , i=1,...,n are the eigenvectors of A corresponds to the eigenvalues λ_i , i=1,...,n respectively.

Previous result: A matrix *P* is invertible if and only if its columns are linearly independent.

Then X_i , i=1,...,n are linearly independent.

Conversely, if X_i , i=1,...,n are linearly independent, then $P=(X_1 X_2 ... X_n)$ is invertible, hence we obtain AP=PD, or equivalently, $D=P^{-1}AP$.

Diagonalisation Algorithm

Let *A* be a square matrix of order *n*,

- 1. Find the eigenvalues of *A*.
- 2. Find *n* eigenvectors if possible $X_1, ..., X_n$.
- 3. Select $P = [X_1 X_2 ... X_n]$
- 4. $P^{-1}AP$ is diagonal.

Example 2.2.3:

Determine whether the following matrices are diagonalisable or not

1.
$$A = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$$

2. $A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & 11 \end{pmatrix}$

Solution:

2:10 1. For $A = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ $\lambda = 0$ and $\lambda = 4$ are the eigenvalues of A. $E_0(A) = \operatorname{span}\left\{\binom{2}{1}\right\}$ and $E_4(A) = \operatorname{span}\left\{\binom{-2}{1}\right\}$. $X_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $X_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are linearly independent. Let $P = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$. Then $P^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$ Hence, $D = P^{-1}AP = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$ 2. For $A = \begin{pmatrix} 5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & 11 \end{pmatrix}$ $\lambda = 1$ and $\lambda = -3$ (with multiplicity two) are the eigenvalues of A. $E_1(A) = \operatorname{span}\left\{\begin{pmatrix}2\\1\\-1\end{pmatrix}\right\}$ and $E_{-3}(A) = \operatorname{span}\left\{\begin{pmatrix}-1\\1\\0\end{pmatrix}, \begin{pmatrix}-2\\0\\1\end{pmatrix}\right\}$. $X_{1} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix}, X_{2} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} \text{ and } X_{3} = \begin{pmatrix} -2\\0\\1 \end{pmatrix} \text{ are linearly independent.}$ Let $P = \begin{pmatrix} 2 & -1 & -2\\1 & 1 & 0\\-1 & 0 & 1 \end{pmatrix}.$ Then $P^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & -2 \\ 1 & 1 & 2 \end{pmatrix}$

Hence,

$$D = P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Example 2.2.4:

Consider the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & -2 \end{pmatrix}$$

 $\lambda=3$ and $\lambda=-1$ (with multiplicity two) are the eigenvalues of A.

$$E_{3}(A) = \operatorname{span}\left\{ \begin{pmatrix} 5\\6\\-1 \end{pmatrix} \right\} \text{ and } E_{-1}(A) = \operatorname{span}\left\{ \begin{pmatrix} -1\\2\\1 \end{pmatrix} \right\}.$$

Any other eigenvector X_3 of λ =-1 is linearly dependent with respect to X_2 . Then we cannot obtain an invertible matrix *P*. Hence *A* is not diagonalisable.

Theorem 2.2.5:

Let $\lambda_1, ..., \lambda_n$ be distinct eigenvalues of a square matrix. If $X_1, ..., X_n$ are the corresponding eigenvectors to $\lambda_1, ..., \lambda_n$, then $\{X_1, ..., X_n\}$ is a linearly independent set.

Proof:

We apply mathematical induction on *n*,

Step 1: n=1, clearly $\{X_1\}$ is linearly independent, since it is a nonzero vector.

Step 2: Suppose it is true for all numbers less than n.

Step 3: For *n*, let

$$\sum_{i=1}^{n} b_i X_i = 0 \dots (1),$$

Then,

$$\sum_{i=1}^{n} b_i A X_i = 0,$$

Since $AX_i = \lambda X_i$, for all i = 1, ..., n, then

$$\sum_{i=1}^{n} b_i \lambda_i X_i = 0 \dots (2),$$

Let's multiply (1) by λ_1 , then, we obtain

$$\sum_{i=1}^{n} b_i \lambda_1 X_i = 0 \dots (3),$$

Take (2)-(3), we obtain,

$$\sum_{i=2}^{n} b_i (\lambda_i - \lambda_1) X_i = 0 \dots (4),$$

From Step 2, we obtain, $b_i(\lambda_i - \lambda_1) = 0$, for all i=1,...,n. Since λ_i , are distinct, for all i=1,...,n. Then $b_i=0$, for all i=1,...,n.

Theorem 2.2.6:

A square matrix of order n with n distinct eigenvalues is diagonalisable.

Remark 2.2.7:

The converse of **Theorem 2.2.6** need not be true.

Theorem 2.2.8:

Let A be a square matrix of order n and

$$c_A(\lambda) = \prod_{i=1}^n (x - \lambda_i)^{m_i}$$

be the characteristic polynomial.

If $d_i = dim(E_{\lambda_i}(A))$.

Then the following statements are equivalent:

1. A is diagonalisable

$$\sum_{i=1}^n d_i = n \text{ , } \forall i = 1, \dots, n.$$

3. $d_i = m_i, \forall i$

Example 2.2.9:

Let

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 7 & 3 & 3 & 0 \\ 2 & 6 & 4 & 1 \end{pmatrix}.$$

Prove that *A* is not diagonalisable.

Exercise 2.2.10:

i. Show that

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

is a diagonalisable matrix

ii. Show that

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

is not a diagonalisable matrix.

- iii. Prove or disprove:
 - 1. The sum of two diagonalisable matrices is diagonalisable.
 - 2. If *A* is diagonalisable, then so is λA , $\lambda \neq 0$.

Chapter 3: Inner product spaces, Orthogonality

3.1 Inner product spaces (Definition and examples)

Definition 3.1.1:

Let *V* be a vector spaces over a field \Re . An inner product on *V* is a function that assigns a number $\langle u, v \rangle$ to every pairs $u, v \in V$ such that the following axioms are satisfied:

- 3. $\langle u, v \rangle = \langle v, u \rangle$. (symmetric property)
- 4. $\langle au+bw, v \rangle = a \langle u, v \rangle + b \langle w, v \rangle$, $\forall a, b \in (\Re \text{ or } C)$. (linear property)
- 5. $\langle u, u \rangle > 0$, $\forall u \neq 0$. (positive definite property)

A vector space V with an inner product \langle , \rangle is called an inner product space.

Clearly,

```
\langle au-bw, v \rangle = a \langle u, v \rangle - b \langle w, v \rangle.
```

Example 3.1.2:

1. Consider the vector space \Re over \Re . Define \langle , \rangle on \Re as follows

 $\langle x, y \rangle = x.y$ (The dot product)

2. Consider the vector space \Re^2 over \Re . Define \langle , \rangle on \Re as follows

 $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 \cdot x_2 + y_1 \cdot y_2$ (The dot product)

Example 3.1.3:

Consider the vector space \Re over \Re . Define \langle , \rangle as follows

 $\langle x, y \rangle = |x-y|.$

 $\langle x, y \rangle$ is not an inner product on \Re .

Example 3.1.4:

Let $a, b \in \Re$, define

 $C[a, b] = \{f | f \text{ is continuous on the closed interval } [a, b] \}.$

Define \langle , \rangle on C[*a*, *b*] as follows

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx$$

Then $\langle f, g \rangle$ is an inner product on C[*a*, *b*].

Example 3.1.5:

In \Re^3 and for every *u* and $v \in \Re^3$, If

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

 $\langle u, v \rangle = u^T A v$, where

102-201

Then $\langle u, v \rangle$ is an inner product.

Exercise 3.1.6:

- 5. According to **Example 3.1.2**, **Task 2.**, how can we define an inner product on the vector space \Re^n over \Re ? Explain your answer.
- 6. Determine whether the following (,) on the corresponding vector space is an inner product or not.

i. $V=P_3$ with $\langle p(x), q(x) \rangle = p(1)q(1)$

- ii. V=C (the set of complex numbers) with $\langle z, w \rangle = z\overline{w}$
- iii. $V=M_{2\times 2}$ with $\langle A,B\rangle = |AB|$

Theorem 3.1.7:

Let \langle , \rangle be an inner product on a vector space V. For any $u,v,w \in V$ and $a, b \in \Re$.

1.
$$\langle u.av+bw\rangle = a\langle u.v\rangle + b\langle u.w\rangle$$

- 2. $\langle au,v\rangle = a\langle u,v\rangle = \langle u,av\rangle$
- 3. $\langle u, 0 \rangle = 0 = \langle 0, u \rangle$
- 4. $\langle u, u \rangle = 0 \leftrightarrow u = 0$

Proof:

1. $\langle u, av+bw \rangle = \langle av+bw, u \rangle = a \langle v, u \rangle + b \langle w, u \rangle = a \langle u, v \rangle + b \langle u, w \rangle$.

- 2. $\langle au,v \rangle = \langle au+0w,v \rangle = a \langle u,v \rangle + 0 \langle w,v \rangle = a \langle u,v \rangle$. Similarly and by Task 1., we obtain $a \langle u,v \rangle = \langle u,av \rangle$
- 3. $\langle u,0\rangle = \langle u,0+0\rangle = \langle u,1(0)+1(0)\rangle = 1\langle u,0\rangle + 1\langle u,0\rangle = \langle u,0\rangle + \langle u,0\rangle$ $\langle u,0\rangle = \langle u,0\rangle + \langle u,0\rangle \rightarrow \langle u,0\rangle - \langle u,0\rangle = (\langle u,0\rangle + \langle u,0\rangle) - \langle u,0\rangle \rightarrow 0 = \langle u,0\rangle + 0$
- 4. $\langle u,u \rangle = 0 \rightarrow u = 0$ by **Definition 3.1.1**. For $u=0 \rightarrow \langle u,u \rangle = 0$

Example 3.1.8:

If u and v are vectors in an inner product space V, find

- 1. $\langle 2u-7v, 3u+5v \rangle$
- 2. $\langle 3u-4v, 5u+v \rangle$ (Homework)

Theorem 3.1.9:

In an inner product space V, for a vector $u \in V$, define,

$$W_u = \{v \in V | \langle u, v \rangle = 0\}.$$

Prove that W_u is a subspace of V.

Proof:

 $W_u \neq \phi$ (why?)

Let *a*,*b* be scalars and $v_1, v_2 \in W_u$.

 $\langle u, av_1+bv_2\rangle = a\langle u, v_1 \rangle + b\langle u, v_2\rangle = a(0) + b(0) = 0.$

3.2 Normed vector space

Definition 3.2.1

Let \langle , \rangle be an inner product on a vector space V.

1. The norm or the length of $u \in V$ is defined as follows

$$||u|| = \sqrt{\langle u, u \rangle}$$

2. The distance between two vectors u and v in V is defined as follows

Rendozia

The pair (V, ||.||) is called a normed vector space.

Example 3.2.2:

In Example 3.1.2, find

- 1. ||x|| and ||x-y||
- 2. ||(x, y)|| and $||(x_1, y_1), (x_2, y_2)||$

Example 3.2.3:

In Example 3.1.4, find

||f|| and ||f-g||

Theorem 3.2.4:

Show that $\langle u+v,u-v\rangle = ||u||^2 - ||v||^2$.

Proof:

$$||u||^{2} - ||v||^{2} = \langle u, u \rangle - \langle v, v \rangle = \langle u, u \rangle + \langle v, -v \rangle = \langle u + v, u - v \rangle.$$

Definition 3.2.5:

In an inner product space V, a vector $u \in V$ is called a unit vector if ||u||=1

Example 3.2.6:

Let *a*, *b*>0. In a vector space \Re^2 , define

$$\langle (x, y), (x_1, y_1) \rangle = \frac{xx_1}{a^2} + \frac{yy_1}{b^2}.$$

- 1. Prove that \langle , \rangle is an inner product on \Re^2 .(Homework)
- 2. Show that $||(x, y)||=1 \leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Theorem 3.2.7 (Schwarz Inequality):

In an inner product space V,

$$\langle u, v \rangle^2 \leq ||u||^2 ||v||^2$$

Proof:

$$u=0 \lor v=0 \rightarrow \langle u, v \rangle = 0 \land (||u||=0 \lor ||v||=0) \rightarrow 0 \le 0$$

Let $u \neq 0 \neq v$

 $0 \le ||xu+v||^2 = \langle xu+v, xu+v \rangle = x \langle u, xu+v \rangle + \langle v, xu+v \rangle$

```
=x(x\langle u,u\rangle+\langle u,v\rangle)+x\langle v,u\rangle+\langle v,v\rangle=\langle u,u\rangle x^{2}+\langle u,v\rangle 2x+\langle v,v\rangle
```

```
= ||u||^2 x^2 + 2\langle u, v \rangle x + ||v||^2 \rightarrow 4\langle u, v \rangle^2 \le 4||u||^2 ||v||^2 \rightarrow \langle u, v \rangle^2 \le ||u||^2 ||v||^2
```

Example 3.2.8:

Apply Schwarz Inequality in Example 3.1.4.

Theorem 3.2.9:

Let \langle , \rangle be an inner product over *V* and *u*, $v \in V$.

- 1. $||u|| \ge 0$.
- 2. $||u||=0 \leftrightarrow u=0$
- 3. $||\lambda u|| = |\lambda| ||u||$
- 4. $||u+v|| \le ||u|| + ||v||$ (triangle inequality)

Proof:

- 1. Straightforward.
- 2. Follows from Theorem 3.1.7, Task 4.
- 3. $||\lambda u||^2 = \langle \lambda u, \lambda u \rangle = \lambda^2 \langle u, u \rangle \rightarrow ||\lambda u|| = |\lambda| ||u||$

4.
$$||u+v||^{2} = \langle u+v,u+v \rangle = \langle u, u+v \rangle + \langle v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= ||u||^{2} + \langle u,v \rangle + ||v||^{2} = = ||u||^{2} + 2\langle u,v \rangle + ||v||^{2} \le ||u||^{2} + 2||u|| ||v|| + ||v||^{2} = (||u|| + ||v||)^{2}$$
$$||u+v||^{2} \le (||u|| + ||v||)^{2} \rightarrow ||u+v|| \le ||u|| + ||v||$$

Theorem 3.2.10:

If \langle , \rangle is an inner product on V and u_1, \dots, u_n is a spanning of V, then for each $v \in V$,

$$\langle v, u_i \rangle = 0, \forall i = 1, \dots, n \rightarrow v = 0.$$

Proof:

 $v=a_1u_1+\ldots+a_nu_n$, for some scalars a_i , $i=1,\ldots,n$.

 $\rightarrow \langle v, v \rangle = \langle v, a_1 u_1 + \ldots + a_n u_n \rangle \rightarrow \langle v, v \rangle = a_1 \langle v, u_1 \rangle + a_2 \langle v, u_2 \rangle + \ldots + a_n \langle v, u_n \rangle = a_1(0) + \ldots + a_n(0) = 0 \rightarrow v = 0.$

Theorem 3.2.11:

Let *V* be an inner product space *V* and *u*, *v* be vectors in *V*.

- 1. $d(u,v) \ge 0$.
- 2. $d(u,v)=0 \leftrightarrow u=v$
- 3. d(u,v)=d(v,u)
- 4. $d(u,v) \le d(u,w) + d(w,v)$

Proof:

- 1. Follows form Theorem 3.2.9, Task 1.
- 2. Follows form Theorem 3.2.9, Task 2.
- 3. $d(u,v) = ||u-v|| = \sqrt{\langle u v, u v \rangle} = \sqrt{\langle u, u \rangle 2\langle u, v \rangle + \langle v, v \rangle}$ $d(v,u) = ||v-u|| = \sqrt{\langle v u, v u \rangle} = \sqrt{\langle v, v \rangle 2\langle u, v \rangle + \langle u, u \rangle}$
- 4. $d(u,v) = ||u-v|| = ||(u-w) + (w-v)|| \le ||u-w|| + ||w-v|| \le d(u,w) + d(w,v)$

Exercise 3.2.12:

i. In an inner product space *V*, for $u, v \in V$, prove each of the following 1. $||u+v||^2 = ||u||^2 + 2\langle u, v \rangle + ||v||^2$ 2. $||u-v||^2 = ||u||^2 - 2\langle u, v \rangle + ||v||^2$ 3. $\langle u, v \rangle = 0.25(||u+v||^2 - ||u-v||^2)$

In an inner product space V, let ||u||=1, ||v||=2 and $||w||=\sqrt{3}$, $\langle u,v \rangle =-1$, $\langle u,w \rangle =0$ and $\langle v,w \rangle =3$. Compute

- 1. $\langle v+w, 2u-v \rangle$
- 2. $\langle u$ -2v-w,3w- $v \rangle$
- iii. Let $T:V \to V$ be an isomorphism of the inner product space V. Show that $\langle u,v \rangle^* = \langle T(u), T(v) \rangle$ is an inner product space on V.

3.3 Orthogonality

Definition 3.3.1:

Let V be an inner product space and $u, v \in V$. We say that u and v are orthogonal if

 $\langle u,v\rangle = 0$

Definition 3.3.2:

Let V be an inner product space. A set $\{u_1, \dots, u_n\}$ of vectors in V is called orthogonal if

- 1. $u_i \neq 0, \forall i=1,...,n$
- 2. The set of vectors is pairwise orthogonal, that is $\langle u_i, u_j \rangle$ is orthogonal $\forall i \neq j$.

Additionally, if $||u_i||=1$, $\forall i$, then the set $\{u_1, \ldots, u_n\}$ of vectors is called orthonormal.

Example 3.3.3:

- 1. (-1,3) and (3,1) are orthogonal with respect to **Example 3.1.2**, **Task 2**.
- 2. sinx and cosx are orthogonal in C[$-\pi,\pi$].
- 3. (5,2,-3) and (4,-1,6) are orthogonal with respect to Exercise 3.1.6, Task 1.

Theorem 3.3.4 (The Pythagorean Theorem):

If $\{u_1, \ldots, u_n\}$ is an orthogonal set of vectors, then

$$\left\|\sum_{i=1}^{n} u_{i}\right\|^{2} = \sum_{i=1}^{n} \|u_{i}\|^{2}.$$

Proof:

$$||u_{1}+...+u_{n}||^{2} = \langle u_{1}+...+u_{n}, u_{1}+...+u_{n}\rangle = \langle u_{1}, u_{1}\rangle + \langle u_{2}, u_{2}\rangle + ...+ \langle u_{n}, u_{n}\rangle + \sum_{i \neq j} \langle u_{i}, u_{j}\rangle$$
$$= ||u_{1}||^{2} + ...+ ||u_{n}||^{2} + 0 = ||u_{1}||^{2} + ...+ ||u_{n}||^{2}$$

Theorem 3.3.5:

Let $\{u_1, \ldots, u_n\}$ be orthogonal set of vectors, then

- i. $\{\lambda_1 u_1, \dots, \lambda_n u_n\}$ is orthogonal for every $\lambda_i \neq 0$.
- ii. $\{\hat{u}_1, \dots, \hat{u}_n\}$ is orthonormal.

Proof:

i.

- 1. For each i=1,..,n, $u_i \neq 0 \rightarrow \lambda u_i \neq 0$.
- 2. $\langle \lambda u_i, \lambda u_j \rangle = \lambda \langle u_i, u_j \rangle = \lambda(0) = 0.$
- ii. Homework.

Theorem 3.3.6:

Every orthogonal set of vectors is linearly independent.

Example 3.3.7:

In **Example 3.1.5**, prove that

$$\left\{ \begin{pmatrix} 2\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\2 \end{pmatrix} \right\}$$

Whith

is an orthogonal basis of \Re^3 , where

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise 3.3.8:

1. In an inner product space V, prove or disprove:

i. $u, v \in V$ are orthogonal $\leftrightarrow ||u+v|| = ||u-v||$.

- ii. $\{u,v\}$ is an orthogonal set $\leftrightarrow ||u|| = ||v||$.
- 2. In Example 3.1.5, Verify whether

$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-6\\1 \end{pmatrix} \right\}$$

is an orthogonal basis of \Re^3 or not, where

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

3.4 Orthogonal projections

Definition 3.4.1:

Let W be a subspace of an inner product space V. The orthogonal complement W^{\perp} of W is defined as follows

$$W^{\perp} = \{ v \in V | u \in W \rightarrow \langle u, v \rangle = 0 \}$$

Theorem 3.4.2:

In an inner product space V, the orthogonal complement W^{\perp} of a subspace W of V is a subspace of V.

Proof:

 $u \in W \rightarrow \langle u, 0 \rangle = 0 \rightarrow 0 \in W^{\perp}.$

Let $v_1, v_2 \in W^{\perp}$, *a*,*b* be scalars and $u \in W$.

$$\langle u, av_1+bv_2\rangle = \langle u, av_1\rangle + \langle u, bv_2\rangle = a \langle u, v_1\rangle + b \langle u, v_2\rangle = a(0) + b(0) = 0 \rightarrow av_1 + bv_2 \in W^{\perp}$$

Exercise 3.4.2:

Let U and W be a subspace of a vector space V. Define

 $U \oplus W = \{u + w | u \in U \land w \in W\}$

Show that $U \oplus W$ is a subspace of *V*.

Definition 3.4.3:

A vector space V is called a direct sum of subspaces U and W if

1.
$$U \cap W = \{0\}$$

2. $V = U \oplus W$.

Exercise 3.4.4:

Let V be a finite dimensional direct sum vector space of subspaces U and W. Then

$$dim(V) = dim(U) + dim(W)$$

Theorem 3.4.5:

Let *W* be a finite dimensional subspace of an inner product space *V*, then $V=W\oplus W^{\perp}$.

Proof:

We will apply **Definition 3.4.3**,

- 1. Let $v \in W \cap W^{\perp}$. Since $\langle v, v \rangle = 0$, then v = 0.
- 2. Clearly, $W \oplus W^{\perp} \subseteq V$.

Let $v \in V \rightarrow v=0+v$. According to **Theorem 3.1.7**, **Task 3**, $\langle v, 0 \rangle = 0$, then $v \in W^{\perp}$.

Theorem 3.4.6:

Let *V* be an inner product space, *U* be the orthogonal complement of *W*. Define a function $T:V \rightarrow V$ as follows

$$T(v)=u$$
, where $v=u+w$, $u \in U$, $w \in W$.

Then

- 1. T is a linear operator on V. (T is called the projection on U with kernel W)
- 2. img(T)=U
- 3. ker(T)=W