Linear Algebra (II) 2022-2023

Instructor

Dr.Wuria Muhammad Ameen

Chapter 1: Linear transformations

1.1 Examples and elementary properties.

Definition 1.1.1:

Let V and W be two vector spaces over the same field F. A mapping $T: V \rightarrow W$ is called a linear transformation if it is satisfied the following axioms

1. $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+w T\left(v_{2}\right)$, where $v_{1}, v_{2} \in V$.
2. $T(\lambda v)=\lambda T(v)$, where $v \in V$ and $\lambda \in F$.

In a linear transformation T, if $V=W$, then T is called a linear operator on V.

Theorem 1.1.2:

Let V and W be two vector spaces over the same field F. A mapping $T: V \rightarrow W$ is linear transformation if and only if

$$
v_{1}, v_{2} \in V \wedge \lambda, \mu \in F \rightarrow T\left(\lambda v_{1}+\mu v_{2}\right)=\lambda T\left(v_{1}\right)+\mu T\left(v_{2}\right) .
$$

Example 1.1.3:

i. Consider the vector spaces \mathfrak{R}^{2} and \mathfrak{R}^{3} over \mathfrak{R}, define

1. $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ such that $T(x, y)=(x+y, 3 x-4 y, 2 y)$
2. $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ such that $T(x, y)=(x-y, x+y-1, x)$
3. $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ such that $T(x, y)=(x y, x)$
ii. Consider the vector spaces $\mathrm{P}_{n-1}, \mathrm{P}_{n}$ and P_{n+1}
4. $T: \mathrm{P}_{n} \rightarrow \mathrm{P}_{n-1}$ such that $T(p(x))=\frac{d p(x)}{d x}$
5. $T: \mathrm{P}_{n} \rightarrow \mathrm{P}_{n+1}$ such that

$$
T(p(x))=\int_{0}^{x} p(t) d t
$$

Theorem 1.1.4:

Let $T: V \rightarrow W$ be a linear transformation, then

1. $T(0)=0$.
2. $u \in V \rightarrow T(-u)=-T(u)$,

Definition 1.1.5:

1. The linear operator $I_{V}: V \rightarrow V$ such that $I_{V}(v)=v, \forall v \in V$ is called the identity operator on V.
2. The linear transformation $0: V \rightarrow W$ such that $0(v)=0, \forall v \in V$ is called the zero transformation.

Theorem 1.1.6:

Let $T, S: V \rightarrow W$ be two linear transformations such that $V=\operatorname{span} \quad\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$. If $T\left(v_{\mathrm{i}}\right)=S\left(v_{i}\right), \forall i, 1 \leq i \leq n$, then $T=S$.

Exercise 1.1.7:

i. Verify whether the following functions are linear transformations or not.

1. $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ such that $T(x, y)=(x,-y)$.
2. $T: C \rightarrow C$ such that $T(z)=\bar{z}$.
3. $S: \mathrm{M}_{n \times n} \rightarrow \mathrm{M}_{n \times n}$ such that $S(A)=A+A^{T}$.
ii. Let $T: V \rightarrow W$ be a linear transformation, $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq V$. If $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent, then so is $\left\{v_{1}, \ldots, v_{n}\right\}$.

1.2Kernel and image of linear transformation

Definition 1.2.1:

Let $T: V \rightarrow W$ be a linear transformation, the kernel and the image of T is defined as follows

$$
\begin{gathered}
\operatorname{ker}(T)=\{v \in V \mid T(v)=0\} . \\
\operatorname{img}(T)=\{w \in W \mid w=T(v), \text { for some } v \in V\} .
\end{gathered}
$$

Example 1.2.2:

Let $T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3}$ be a mapping defined by $T(x, y, z)=(x-y, z, y-x)$.

1. Show that T is a linear transformation.
2. Find $\operatorname{ker}(T)$ and $\operatorname{img}(T)$.

Solution:

$\operatorname{Ker}(T)=\{(x, x, 0) \mid x \in \mathfrak{R}\}$ and $\operatorname{img}(T)=\{(a, b,-a) \mid a, b \in \mathfrak{R}\}$.

Example 1.2.3:

Let $S: \mathrm{M}_{n \times n} \rightarrow \mathrm{M}_{n \times n}$ be a linear transformation such that $S(A)=A-A^{T}$. Find $\operatorname{ker}(T)$ and $\operatorname{img}(T)$.

Theorem 1.2.4:

For any linear transformation $T: V \rightarrow W, \operatorname{ker}(T)$ is a subspace of V and $\operatorname{img}(T)$ is a subspaces of W.

Theorem 1.2.5:

Any linear transformation $T: V \rightarrow W$ is 1-1 if and only if $\operatorname{ker}(T)=\{0\}$.

Example 1.2.6:

Let $S: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ and $T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{2}$ be linear transformation such that. Apply Theorem 1.2.5 for each of the following

1. $T(x, y, z)=(x+y, x-y)$.
2. $S(x, y)=(x+y, x-y, x)$.

Exercise 1.2.7:

Let $T: V \rightarrow W$ be a linear transformation, prove or disprove

1. $\operatorname{Ker}(T)=V \rightarrow W=\{0\}$.
2. $V=W \rightarrow \operatorname{Ker}(T) \subseteq i m g(T)$.
3. $W=\{0\} \subseteq \operatorname{Ker}(T)=V$.
4. $V=W \wedge \operatorname{img}(T) \subseteq k e r(T) \rightarrow T=0$.

1.3 Isomorphism and composition

Definition 1.3.1:

A linear transformation $T: V \rightarrow W$ is called isomorphism if T is 1-1 and onto. Two vector spaces are called isomorphic if there is an isomorphism between them. We use the notation $V \cong W$.

Example 1.3.2:

1. The identity linear transformation on V is isomorphism.
2. $S: \mathrm{M}_{n \times n} \rightarrow \mathrm{M}_{n \times n}$ such that $S(A)=A^{T}$ is an isomorphism.
3. The zero linear transformation $T: V \rightarrow W$ is not isomorphism.

Theorem 1.3.3:

Let $T: V \rightarrow W$ be a linear transformation for which V and W are finite dimensional. Then the following statements are equivalent

1. T is an isomorphism.
2. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W.
3. There exists a base $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, such that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W.

Theorem 1.3.4:

Let V and W be two finite dimensional vector spaces. Then

$$
V \cong W \leftrightarrow \operatorname{dim}(V)=\operatorname{dim}(W) .
$$

Proof:

Let $V \cong W$, then \exists an isomorphism $T: V \rightarrow W$.

Suppose $\left\{r_{1}, \ldots, r_{m}\right\}$ be a base of V, then by Theorem 1.3.3, $\left\{T\left(r_{1}\right), \ldots, T\left(r_{m}\right)\right\}$ is a basis of W.

On the other hand, $T\left(r_{i}\right) \neq T\left(r_{j}\right)$, since T is 1-1, then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
Conversely, let $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be basis for V and W respectively.
Define $T: V \rightarrow W$ as follows

1. $T\left(v_{i}\right)=w_{i}$.
2. For $v \in V$, we have $v=a_{1} v_{1}+\ldots+a_{n} v_{n}$ then we define

$$
T(v)=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=a_{1} w_{1}+\ldots+a_{n} w_{n} .
$$

Is T well defined?
$v_{i}=v_{j} \rightarrow T\left(v_{i}\right)=T\left(v_{j}\right)$.

Otherwise $\operatorname{dim}(V) \neq \operatorname{dim}(W)$.
$v=v^{*} \rightarrow v=a_{1} v_{1}+\ldots+a_{n} v_{n}=v^{*} \rightarrow T(v)=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=T\left(v^{*}\right)$.
To show that T is a linear transformation,

1. Let $v, v^{*} \in V$, then
$v=b_{1} v_{1}+\ldots+b_{n} v_{n}$ and $v^{*}=c_{1} v_{1}+\ldots+c_{n} v_{n}$.
$T\left(v+v^{*}\right)=T\left(\left(b_{1} v_{1}+\ldots+b_{n} v_{n}\right)+\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)\right)$

$$
\begin{aligned}
& =T\left(\left(b_{1}+c_{1}\right) v_{1}+\ldots+\left(b_{n}+c_{n}\right) v_{n}\right) \\
& =\left(b_{1}+c_{1}\right) T\left(v_{1}\right)+\ldots+\left(b_{n}+c_{n}\right) T\left(v_{n}\right) \\
& =\left(b_{1} T\left(v_{1}\right)+\ldots+b_{n} T\left(v_{n}\right)\right)+\left(c_{1} T\left(v_{1}\right)+\ldots+c_{n} T\left(v_{n}\right)\right) \\
& =T(v)+T\left(v^{*}\right)
\end{aligned}
$$

2. Let $v \in V$ and λ be a scalar,

$$
\begin{aligned}
T(\lambda v)=T\left(\lambda\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)\right) & =T\left(\lambda a_{1} v_{1}+\ldots+\lambda a_{n} v_{n}\right)=\lambda a_{1} T\left(v_{1}\right)+\ldots+\lambda a_{n} T\left(v_{n}\right) \\
& =\lambda\left(a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)\right)=\lambda T(v) .
\end{aligned}
$$

For 1-1,

Let $T(v)=T\left(v^{*}\right)$
$T(v)=T\left(v^{*}\right) \rightarrow v=v^{*}$ (Homework).
For onto,

Let $w \in W$
$w \in W \rightarrow w=a_{1} w_{1}+\ldots+a_{n} w_{n}=a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=T(v)$, for some $v \in V$.

Example 1.3.5:

P_{2} and the set of all symmetric matrices of order two are isomorphic.

Dimension Theorem:

Let $T: V \rightarrow W$ be al linear transformation for which $\operatorname{ker}(T)$ and $\operatorname{img}(T)$ are finite dimensional, then V is a finite dimensional and

$$
\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{img}(T))=\operatorname{dim}(V)
$$

Proof:

Not required.

Theorem 1.3.6:

Let V and W be two finite dimensional vector spaces of the same order. A linear transformation $T: V \rightarrow W$ is isomorphism if T is either 1-1 or onto.

Exercise 1.3.7:

Let $T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3}$ be a linear transformation such that $T(x, y, z)=(x+y, y+z, x+z)$. Is T isomorphism?

Theorem 1.3.8:

Let $T: V \rightarrow W$ and $S: W \rightarrow \mathrm{Z}$ be linear transformations, then

1. So T is a linear transformation, where $S o T$ is the composition function of T and S.
2. If T and S are isomorphism, then so is $S o T$.

Proof:

So $T\left(v_{1}+v_{2}\right)=S\left(T\left(v_{1}+v_{2}\right)\right)$ (Definition of composition of functions)

$$
\begin{aligned}
& =S\left(T\left(v_{1}\right)+T\left(v_{2}\right)\right) \quad(T \text { is L.T. }) \\
& =S\left(T\left(v_{1}\right)\right)+S\left(T\left(v_{2}\right)\right) \quad(S \text { is L.T. }) \\
& =S \mathrm{o} T\left(v_{1}\right)+S \mathrm{So} T\left(v_{2}\right) \quad(\text { Why? })
\end{aligned}
$$

$S \mathrm{o} T(\lambda v)=S(T(\lambda v))=S(\lambda T(v))=\lambda S(T(v))=\lambda S \mathrm{o} T(v)$
2. S and T are bijective $\rightarrow S o T$ is bijective.

Then form 1. and 2. So T is isomorphism.

Definition 1.3.9:

Let V and W be vector spaces, $T: V \rightarrow W$ and $S: W \rightarrow V$ be linear transformations. We say that S is the inverse of T if

$$
T \mathrm{O} S=I_{W} \text { and } S \mathrm{o} T=I_{V} .
$$

The inverse of T is denoted by T^{-1}.

A linear transformation T is called invertible if it has the inverse.
Notice that if S is the inverse of T, then T is the inverse of S.

Exercise 1.3.10:

A linear transformation T has the inverse if and only if T is $1-1$ and onto.

Example 1.3.11:

Verify whether the following transformation is invertible or not.

1. $T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3}$ such that $T(x, y, z)=(x+y, y+z, x+z)$

$$
\left(\begin{array}{ccc|c}
2 & 0 & 0 & u-v+w \\
0 & -2 & 0 & -u-v+w \\
0 & 0 & 2 & -u+v+w
\end{array}\right)
$$

2. $T: \mathfrak{R}^{4} \rightarrow \mathfrak{R}^{4}$ such that $T(x, y, z, w)=(x+y, y+z, z+w, x+w)$

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Exercise 1.3.12:

i. Find a linear transformation with the given properties and compute $T(v)$:

1. $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3} ; T(1,2)=(1,0,1), T(-1,0)=(0,1,1), v=(-3,2)$
2. $T: \mathrm{P}_{2} \rightarrow \mathrm{P}_{3}, T\left(x^{2}\right)=x^{3}, T(x+1)=0, T(x-1)=x, v=x^{2}+x+1$.

Remark:
Step 1: Show that $\{(1,2),(-1,0)\}$ is a base of \mathfrak{R}^{2}.

Step 2: Write $v=(-3,2)$ as a linear combination of $(1,2)$ and $(-1,0)$.
$(-3,2)=1(1,2)+4(-1,0)$

Step 3: Take T for Step 2,
$T(-3,2)=T(1(1,2)+4(-1,0))$

$$
=1 T(1,2)+4 T(-1,0)
$$

$$
=1(1,0,1)+4(0,1,1)=(1,4,5) .
$$

ii. Verify whether the following linear transformations are isomorphism or not

1. $T: \mathrm{P}_{1} \rightarrow \mathfrak{R}^{2}$ such that $T(p(x))=(p(0), p(1))$.
2. $T: V \rightarrow V, T(v)=\lambda v, \lambda$ is a nonzero scalar.
3. $T: \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}$ such that $T(p(x))=p(x+1)$.
iii. Is the linear transformation T that is defined in Exercise 1.3.12, i. isomorphism?

1.4 Operations with linear transformations

Definition 1.4.1:

Let $T: V \rightarrow W$ and $S: V \rightarrow W$ be linear transformations. Define

1. The sum $(T \oplus S)$ of T and S as a function from V to W as follows

$$
(T \oplus S)(v)=T(v)+S(v) . \forall v_{1}, v_{2} \in V .
$$

2. The scalar product λT from V to W as follows:

$$
(\lambda \odot T)(v)=\lambda T(v) . \forall v \in V \text { and } \lambda \in F \text {. }
$$

Theorem 1.4.2:

Let V and W be vector spaces over the same field F, then the collection of all linear transformations with the operations defined in Definition 1.4.1 is a vector space denoted by $\operatorname{Hom}(V, W)$.

Proof:

$\operatorname{Hom}(V, W)=\{T \mid T: V \rightarrow W$ is a linear transformation $\}$

We have to show that $\operatorname{Hom}(V, W)$ with the operations \oplus and \odot is a vector space over the filed F.

For associativity $(T \oplus S) \oplus U=T \oplus(S \oplus U)$
$(T \oplus S) \oplus U(v)=(T \oplus S)(v) \oplus U(v)=(T(v) \oplus S(v)) \oplus U(v)=T(v) \oplus(S(v) \oplus U(v))=T(v) \oplus(S \oplus U(v))$
$=T \oplus(S \oplus U)(v)$.

For commutativity, homework

The zero transformation is the identity.

For any $T: V \rightarrow W,-T: V \rightarrow W$ is the inverse of T.

For $(\lambda+\mu) \odot T=(\lambda+\mu) \odot T$?
$(\lambda+\mu) \odot T(v)=(\lambda+\mu) T(v)=\lambda T(v)+\mu T(v)=\lambda \odot T(v)+\mu \odot T(v)$.

The others are homework.

Theorem 1.4.3:

Let V and W be two vector space such that $\operatorname{dim}(V)=m$ and $\operatorname{dim}(W)=n$. Then $\operatorname{dim}(\operatorname{Hom}(V, W))=m n$.

Proof: Not required.

1.5 Matrix representation of a linear transformation

Definition 1.5.1:

Let $A_{m \times n}$ be a matrix. The matrix transformation $T_{A}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}$ is defined by

$$
T_{A}(X)=A X, \text { where } X \in \mathfrak{R}^{n}
$$

Theorem 1.5.2:

For each matrix $A_{m \times n}$, the matrix transformation T_{A} defined in Definition 1.5.1 is a linear transformation.

Proof:

$T_{A}(\lambda X+\mu Y)=A(\lambda X+\mu Y) \quad$ (By Definition 1.5.1)

$$
\begin{aligned}
& =A(\lambda X)+A(\mu Y)(\text { Matrix property }) \\
& =\lambda A X+\mu A Y(\text { Matrix property }) \\
& =\lambda T_{A}(X)+\mu T_{A}(Y)
\end{aligned}
$$

Example 1.5.3:

For each of the following matrices, find T_{A}

1. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
2. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Solution:

1. $T_{A}(X)=T_{A}\left(\binom{x}{y}\right)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\binom{x}{y}=\binom{y}{x}$
2. $\left.T_{A}(X)=T_{A}\binom{x}{y}\right)=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\binom{x}{y}=\binom{2 x}{y}$

Exercise 1.5.4:

Find the matrix transformation of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Chapter 2: Eigenvalues and Digonalisation

2.1 Eigenvalues and similarity

Definition 2.1.1:

Let A be a square matrix of order n. A scalar λ (real or complex) is said to be an eigenvalue of A if,
\exists a nonzero column vector X such that $A X=\lambda X$. ...(2.1)

In this case, X is called an eigenvector of A corresponding to λ.

Definition 2.1.2:

Let λ be an eigenvalue of the matrix $A_{n \times n}$. The set of all eigenvectors defined in Definition 2.1.1 is called the eigenspace associated to λ, i.e.

$$
E_{\lambda}(A)=\{X \mid A X=\lambda X\} .
$$

Theorem 2.1.3:

For each λ, the set $E_{\lambda}(A)$ is a subspace of $\left(\mathfrak{R}^{n}\right.$ or $\left.C^{n}\right)$.

Remark 2.1.4:

The equation (2.1) is the same as the equation $\left(A-\lambda I_{n}\right) X=0$.

Definition 2.1.5:

The determinant of the equation $A-\lambda I_{n}=0$ is called the characteristic polynomial of the matrix $A_{n \times n}$, and denoted by $c_{A}(\lambda)$,

$$
c_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

Clearly, the eigenvalues of a matrix A is the roots (zeros) of the characteristic polynomial and vice versa.

Example 2.1.6:

Find the eigenvalues and the eigenspace of the following matrices

1. $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$
2. $A=\left(\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right)$

Solution:

$p(\lambda)=\left|A-\lambda I_{2}\right|=\left|\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=\left|\begin{array}{cc}2-\lambda & 3 \\ 1 & 4-\lambda\end{array}\right|=\lambda^{2}-6 \lambda+5$.
The eigenvalues are $\lambda=5$ and $\lambda=1$.

For the eigenvector of $\lambda=5$, we apply
$A X=\lambda X$, then

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)\binom{x}{y}=5\binom{x}{y} \rightarrow\binom{2 x+3 y}{x+4 y}=\binom{5 x}{5 y}
$$

Then, we obtain $y=x$.
So, the eigenvector of $\lambda=5$ is $\binom{x}{x}$

$$
E_{5}\left(\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)\right)=\operatorname{span}\left\{\binom{1}{1}\right\} .
$$

For the eigenvector of $\lambda=1$,

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)\binom{x}{y}=1\binom{x}{y} \rightarrow\binom{2 x+3 y}{x+4 y}=\binom{x}{y}
$$

Then, we obtain $y=\frac{-x}{3}$.
So, the eigenvector of $\lambda=5$ is $\binom{-3}{1}$
$E_{1}\left(\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)\right)=\operatorname{span}\left\{\binom{-3}{2}\right\}$.

Definition 2.1.7:

An eigenvalue λ is said to be of multiplicity m if it is repeated m times.

$$
c_{A}(\lambda)=(x-\lambda)^{m} q(x)
$$

Example 2.1.8:

$$
A=\left(\begin{array}{ccc}
5 & 8 & 16 \\
4 & 1 & 8 \\
-4 & -4 & 11
\end{array}\right)
$$

$\lambda=1$ and $\lambda=-3$ (with multiplicity two) are the eigenvalues of A.

$$
E_{1}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)\right\} \text { and } E_{-3}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)\right\} .
$$

Exercise 2.1.9:

Find the eigenvalues and the eigenspace of the following matrix.

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 6 & -6 \\
1 & 2 & -1
\end{array}\right)
$$

Theorem 2.1.10:

If λ is an eigenvalue of a matrix A with the nonzero eigenvector X, then λ^{2} is an eigenvalue of the matrix A^{2} with the same eigenvector X.

Proof:

$\left|A^{2}-\lambda^{2} I\right|=\left|A^{2}-\lambda^{2} I^{2}\right|=|(A-\lambda I)(A+\lambda I)|=|A-\lambda I||A+\lambda I|=0 .|A+\lambda I|=0$.
Then λ^{2} is an eigenvalue of A^{2}.
$A^{2} X=A(A X)=A(\lambda X)=\lambda(A X)=\lambda(\lambda X)=\lambda^{2} X$.
Then X is the eigenvector of A^{2} corresponding to λ^{2}.

Exercise 2.1.11:

Regarding to Theorem 2.1.10, show that $\lambda^{3}-2 \lambda+3$ is an eigenvalue of the matrix $A^{3}-2 A+3 I$.

Example 2.1.12:

For a triangular matrix $A=\left(a_{i j}\right)$, the set of eigenvalues are the entries of the main diagonal.

Solution:

Let A be an upper triangular matrix of order n. Then,

$$
c_{A}(\lambda)=\left|A-\lambda I_{n}\right|=\prod_{i=1}^{n}\left(a_{i i}-\lambda\right)
$$

Then $\lambda=a_{i i}$, for all $i=1, \ldots, n$.
Similarly, for the lower triangular matrix.

Example 2.1.13:

Prove that A and A^{T} have the same eigenvalues.

Solution:

Let A be a square matrix of order n. Then, for A^{T}, the characteristic polynomial is given by,

$$
c_{A^{T}}(\lambda)=\left|A^{T}-\lambda I_{n}\right|=\left|\left(A-\lambda I_{n}\right)^{T}\right|=\left|A-\lambda I_{n}\right| .
$$

Definition 2.1.14:

Let A and B be two square matrices of the same order, we say that A and B are similar if $B=P^{-1} A P$ or $B=P A P^{-1}$, for some invertible matrix P.

We use the expression $(A \sim B)$ for two similar matrices A and B.

Example 2.1.15:

$$
\text { Let } A=\left(\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right) \text {. Show that } A \sim B \text { if } B=\left(\begin{array}{ll}
-2 & 5 \\
-1 & 3
\end{array}\right) \text {. }
$$

Solution:

We may select $P=\left(\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right)$. Then
$P^{-1} A P=\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ -1 & -1\end{array}\right)\left(\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right)=\left(\begin{array}{ll}-2 & 5 \\ -1 & 3\end{array}\right)$

Theorem 2.1.16:

Let $A \sim B$, then

1. $A^{-1} \sim B^{-1}$.
2. $\lambda A \sim \lambda B$.
3. $A^{T} \sim B^{T}$.

Proof:

1. $A \sim B \rightarrow \exists$ an invertible matrix P such that $B=P^{-1} A P$.
$\rightarrow \exists$ an invertible matrix P such that $B^{-1}=\left(P^{-1} A P\right)^{-1}$
$\rightarrow \exists$ an invertible matrix P such that $B^{-1}=P^{-1} A^{-1}\left(P^{-1}\right)^{-1}$
$\rightarrow \exists$ an invertible matrix P such that $B^{-1}=P^{-1} A^{-1} P$.

Theorem 2.1.17:

Let A and B be two similar matrices, then

1. A and B have the same determinant.
2. A and B have the same trace.
3. A and B have the same characteristics polynomial.
4. A and B have the same eigenvalues.

Proof:

1. $|B|=\left|P^{-1}\right||A||P|$.
2. $\operatorname{trace}(B)=\operatorname{trace}\left(P^{-1} A P\right)=\operatorname{trace}\left(A P^{-1} P\right)=\operatorname{trace}\left(A I_{n}\right)=\operatorname{trace}(A)$.
3. $c_{B}(\lambda)=|B-\lambda I|=\left|P^{-1} A P-\lambda I\right|=\left|P^{-1} A P-\lambda P^{-1} P\right|=\left|P^{-1} A P-P^{-1} \lambda P\right|=\left|P^{-1}(A P-\lambda P)\right|=\left|P^{-1}\right||A P-\lambda P|$ $=\left|P^{-1}\right||(A-\lambda I) P|=\left|P^{-1}\right||A-\lambda I||P|==|A-\lambda I|=c_{A}(\lambda)$.

Theorem 2.1.18:

If $A \sim B$, then $\operatorname{rank}(A)=\operatorname{rank}(B)$.

Remark 2.1.19:

1. The converse of all tasks that mentioned in Theorem 2.1.17 need not be true.
2. The converse of Theorem 2.1.18 need not be true.

Example 2.1.20:

The matrix $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and I_{2} are not similar, while,

1. $|A|=\left|I_{2}\right|$.
2. $\operatorname{trace}(A)=\operatorname{trace}\left(I_{2}\right)$.
3. $\operatorname{rank}(A)=\operatorname{rank}\left(I_{2}\right)$.
4. The eigenvalue of A is $\lambda=1$ with multiplicity 2 .

Theorem 2.1.21:

Let Ψ be the set of all square matrices of order n. Define a relation R as follows,

$$
R=\{(A, B) \in \Psi \times \Psi \mid A \sim B\} .
$$

Then R is an equivalence relation on Ψ.

Exercise 2.1.22:

i. Find the eigenvalues and eigenspaces of the following matrices,

1. $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$
2. $A=\left(\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right)$
3. $A=\left(\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right)$
ii. Let $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$. Is $A \sim B$?

2.2 Diagonalisation

Definition 2.2 1:

A real square matrix A of order n is said to be diagonalisable if it is similar to a diagonal matrix. That is,

$$
P^{-1} A P \text { is diagonalisable, for some invertible matrix } P \text {. }
$$

Theorem 2.2.2:

A square matrix A of order n is diagonalisable if and only if it has n linearly independent eigenvectors.

Proof:

Step 1: Let A be a diagonalisable matrix of order n,

Then

$$
D=P^{-1} A P=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

Step 2: We find P by finding each of its columns, $P=\left(X_{1} X_{2} \ldots X_{n}\right)$.

Step 3: From Step 1, we have $A P=P D$, then,

$$
\begin{gathered}
A\left(X_{1} X_{2} \ldots X_{n}\right)=\left(X_{1} X_{2} \ldots X_{n}\right)\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right) \\
\rightarrow\left(A X_{1} A X_{2} \ldots A X_{n}\right)=\left(\lambda_{1} X_{1} \lambda_{2} X_{2} \ldots \lambda_{n} X_{n}\right) \\
\rightarrow A X_{i}=\lambda_{i} X_{i}, i=1, \ldots, n .
\end{gathered}
$$

So, $X_{i}, i=1, \ldots, n$ are the eigenvectors of A corresponds to the eigenvalues $\lambda_{I}, i=1, \ldots, n$ respectively.

Previous result: A matrix P is invertible if and only if its columns are linearly independent.

Then $X_{i}, i=1, \ldots, n$ are linearly independent.

Conversely, if $X_{i}, i=1, \ldots, n$ are linearly independent, then $P=\left(X_{1} X_{2} \ldots X_{n}\right)$ is invertible, hence we obtain $A P=P D$, or equivalently, $D=P^{-1} A P$.

Diagonalisation Algorithm

Let A be a square matrix of order n,

1. Find the eigenvalues of A.
2. Find n eigenvectors if possible X_{1}, \ldots, X_{n}.
3. Select $P=\left[\begin{array}{llll}X_{1} & X_{2} & \ldots & X_{n}\end{array}\right]$
4. $P^{-1} A P$ is diagonal.

Example 2.2.3:

Determine whether the following matrices are diagonalisable or not

1. $A=\left(\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right)$
2. $A=\left(\begin{array}{ccc}5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & 11\end{array}\right)$

Solution:

1. For $A=\left(\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right)$
$\lambda=0$ and $\lambda=4$ are the eigenvalues of A.
$E_{0}(A)=\operatorname{span}\left\{\binom{2}{1}\right\}$ and $E_{4}(A)=\operatorname{span}\left\{\binom{-2}{1}\right\}$.
$X_{1}=\binom{2}{1}$ and $X_{2}=\binom{-2}{1}$ are linearly independent.
Let $P=\left(\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right)$.
Then $P^{-1}=\frac{1}{4}\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right)$
Hence, $D=P^{-1} A P=\left(\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right)$
2. For $A=\left(\begin{array}{ccc}5 & 8 & 16 \\ 4 & 1 & 8 \\ -4 & -4 & 11\end{array}\right)$
$\lambda=1$ and $\lambda=-3$ (with multiplicity two) are the eigenvalues of A.
$E_{1}(A)=\operatorname{span}\left\{\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)\right\}$ and $E_{-3}(A)=\operatorname{span}\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)\right\}$.
$X_{1}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right), X_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $X_{3}=\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$ are linearly independent.
Let $P=\left(\begin{array}{ccc}2 & -1 & -2 \\ 1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$.
Then $P^{-1}=\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 0 & -2 \\ 1 & 1 & 3\end{array}\right)$
Hence,
$D=P^{-1} A P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3\end{array}\right)$

Example 2.2.4:

Consider the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & 1 \\
2 & 1 & -2 \\
-1 & 0 & -2
\end{array}\right)
$$

$\lambda=3$ and $\lambda=-1$ (with multiplicity two) are the eigenvalues of A.

$$
E_{3}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
5 \\
6 \\
-1
\end{array}\right)\right\} \text { and } E_{-1}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)\right\} .
$$

Any other eigenvector X_{3} of $\lambda=-1$ is linearly dependent with respect to X_{2}. Then we cannot obtain an invertible matrix P. Hence A is not diagonalisable.

Theorem 2.2.5:

Let $\lambda_{1}, \ldots, \lambda_{n}$ be distinct eigenvalues of a square matrix. If X_{1}, \ldots, X_{n} are the corresponding eigenvectors to $\lambda_{1}, \ldots, \lambda_{n}$, then $\left\{X_{1}, \ldots, X_{n}\right\}$ is a linearly independent set.

Proof:

We apply mathematical induction on n,

Step 1: $n=1$, clearly $\left\{X_{1}\right\}$ is linearly independent, since it is a nonzero vector.
Step 2: Suppose it is true for all numbers less than n.
Step 3: For n, let

$$
\sum_{i=1}^{n} b_{i} X_{i}=0 \ldots(1)
$$

Then,

$$
\sum_{i=1}^{n} b_{i} A X_{i}=0
$$

Since $A X_{i}=\lambda X_{i}$, for all $i_{=} 1, . ., n$. , then

$$
\sum_{i=1}^{n} b_{i} \lambda_{i} X_{i}=0 \ldots \text { (2) }
$$

Let's multiply (1) by λ_{1}, then, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i} \lambda_{1} X_{i}=0 . \tag{3}
\end{equation*}
$$

Take (2)-(3), we obtain,

$$
\begin{equation*}
\sum_{i=2}^{n} b_{i}\left(\lambda_{i}-\lambda_{1}\right) X_{i}=0 \tag{4}
\end{equation*}
$$

From Step 2, we obtain,
$b_{\mathrm{i}}\left(\lambda_{i}-\lambda_{1}\right)=0$, for all $i=1, \ldots, n$.
Since λ_{i}, are distinct, for all $i=1, \ldots, n$.
Then $b_{i}=0$, for all $i=1, \ldots, n$.

Theorem 2.2.6:

A square matrix of order n with n distinct eigenvalues is diagonalisable.

Remark 2.2.7:

The converse of Theorem 2.2.6 need not be true.

Theorem 2.2.8:

Let A be a square matrix of order n and

$$
c_{A}(\lambda)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)^{m_{i}}
$$

be the characteristic polynomial.
If $d_{i}=\operatorname{dim}\left(E_{\lambda_{i}}(A)\right)$.

Then the following statements are equivalent:

1. A is diagonalisable
2.

$$
\sum_{i=1}^{n} d_{i}=n, \forall i=1, \ldots, n
$$

3. $d_{i}=m_{i}, \forall i$

Example 2.2.9:

Let

$$
A=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
4 & 2 & 0 & 0 \\
7 & 3 & 3 & 0 \\
2 & 6 & 4 & 1
\end{array}\right)
$$

Prove that A is not diagonalisable.

Exercise 2.2.10:

i. Show that

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

is a diagonalisable matrix
ii. Show that

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

is not a diagonalisable matrix.
iii. Prove or disprove:

1. The sum of two diagonalisable matrices is diagonalisable.
2. If A is diagonalisable, then so is $\lambda A, \lambda \neq 0$.

Chapter 3: Inner product spaces, Orthogonality

3.1 Inner product spaces (Definition and examples)

Definition 3.1.1:

Let V be a vector spaces over a field \mathfrak{R}. An inner product on V is a function that assigns a number $\langle u, v\rangle$ to every pairs $u, v \in V$ such that the following axioms are satisfied:
3. $\langle u, v\rangle=\langle v, u\rangle$. (symmetric property)
4. $\langle a u+b w, v\rangle=a\langle u, v\rangle+b\langle w, v\rangle, \forall a, b \in(\mathfrak{R}$ or $C)$. (linear property)
5. $\langle u, u\rangle>0, \forall u \neq 0$. (positive definite property)

A vector space V with an inner product \langle,$\rangle is called an inner product space.$
Clearly,
$\langle a u-b w, v\rangle=a\langle u, v\rangle-b\langle w, v\rangle$.

Example 3.1.2:

1. Consider the vector space \mathfrak{R} over \mathfrak{R}. Define \langle,$\rangle on \mathfrak{R}$ as follows

$$
\langle x, y\rangle=x . y \text { (The dot product) }
$$

2. Consider the vector space \mathfrak{R}^{2} over \mathfrak{R}. Define \langle,$\rangle on \mathfrak{R}$ as follows

$$
\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=x_{1} \cdot x_{2}+y_{1} \cdot y_{2} \text { (The dot product) }
$$

Example 3.1.3:

Consider the vector space \mathfrak{R} over \mathfrak{R}. Define \langle,$\rangle as follows$

$$
\langle x, y\rangle=|x-y| .
$$

$\langle x, y\rangle$ is not an inner product on \mathfrak{R}.

Example 3.1.4:

Let $a, b \in \mathfrak{R}$, define
$\mathrm{C}[a, b]=\{f \mid f$ is continuous on the closed interval $[a, b]\}$.

Define \langle,$\rangle on \mathrm{C}[a, b]$ as follows

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Then $\langle f, g\rangle$ is an inner product on $\mathrm{C}[a, b]$.

Example 3.1.5:

In \mathfrak{R}^{3} and for every u and $v \in \mathfrak{R}^{3}$, If

$$
\begin{aligned}
& \langle u, v\rangle=u^{T} A v, \text { where } \\
& A=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

Then $\langle u, v\rangle$ is an inner product.

Exercise 3.1.6:

5. According to Example 3.1.2, Task 2., how can we define an inner product on the vector space \mathfrak{R}^{n} over \mathfrak{R} ? Explain your answer.
6. Determine whether the following \langle,$\rangle on the corresponding vector space is an inner$ product or not.
i. $\quad V=\mathrm{P}_{3}$ with $\langle p(x), q(x)\rangle=p(1) q(1)$
ii. $\quad V=C$ (the set of complex numbers) with $\langle z, w\rangle=z \bar{w}$
iii. $\quad V=M_{2 \times 2}$ with $\langle A, B\rangle=|A B|$

Theorem 3.1.7:

Let \langle,$\rangle be an inner product on a vector space V$. For any $u, v, w \in V$ and $a, b \in \mathfrak{R}$.

1. $\langle u, a v+b w\rangle=a\langle u, v\rangle+b\langle u, w\rangle$
2. $\langle a u, v\rangle=a\langle u, v\rangle=\langle u, a v\rangle$
3. $\langle u, 0\rangle=0=\langle 0, u\rangle$
4. $\langle u, u\rangle=0 \leftrightarrow u=0$

Proof:

1. $\langle u, a v+b w\rangle=\langle a v+b w, u\rangle=a\langle v, u\rangle+b\langle w, u\rangle=a\langle u, v\rangle+b\langle u, w\rangle$.
2. $\langle a u, v\rangle=\langle a u+0 w, v\rangle=a\langle u, v\rangle+0\langle w, v\rangle=a\langle u, v\rangle$.

Similarly and by Task 1., we obtain $a\langle u, v\rangle=\langle u, a v\rangle$
3. $\langle u, 0\rangle=\langle u, 0+0\rangle=\langle u, 1(0)+1(0)\rangle=1\langle u, 0\rangle+1\langle u, 0\rangle=\langle u, 0\rangle+\langle u, 0\rangle$
$\langle u, 0\rangle=\langle u, 0\rangle+\langle u, 0\rangle \rightarrow\langle u, 0\rangle-\langle u, 0\rangle=(\langle u, 0\rangle+\langle u, 0\rangle)-\langle u, 0\rangle \rightarrow 0=\langle u, 0\rangle+0$
4. $\langle u, u\rangle=0 \rightarrow u=0$ by Definition 3.1.1.

For $u=0 \rightarrow\langle u, u\rangle=0$

Example 3.1.8:

If u and v are vectors in an inner product space V, find

1. $\langle 2 u-7 v, 3 u+5 v\rangle$
2. $\langle 3 u-4 v, 5 u+v\rangle$ (Homework)

Theorem 3.1.9:

In an inner product space V, for a vector $u \in V$, define,

$$
W_{u}=\{v \in V \mid\langle u, v\rangle=0\} .
$$

Prove that W_{u} is a subspace of V.

Proof:

$W_{u} \neq \phi$ (why?)

Let a, b be scalars and $\nu_{1}, v_{2} \in W_{u}$.
$\left\langle u, a v_{1}+b v_{2}\right\rangle=a\left\langle u, v_{1}\right\rangle+b\left\langle u, v_{2}\right\rangle=a(0)+b(0)=0$.

3.2 Normed vector space

Definition 3.2.1

Let \langle,$\rangle be an inner product on a vector space V$.

1. The norm or the length of $u \in V$ is defined as follows

$$
\|u\|=\sqrt{\langle u, u\rangle}
$$

2. The distance between two vectors u and v in V is defined as follows

$$
d(u, v)=\|v-u\|
$$

The pair $(V,\|\|$.$) is called a normed vector space.$

Example 3.2.2:

In Example 3.1.2, find

1. $\|x\|$ and $\|x-y\|$
2. $\|(x, y)\|$ and $\left\|\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\|$

Example 3.2.3:

In Example 3.1.4, find
$\|f\|$ and $\|f-g\|$

Theorem 3.2.4:

Show that $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}$.

Proof:

$\|u\|^{2}-\|v\|^{2}=\langle u, u\rangle-\langle v, v\rangle=\langle u, u\rangle+\langle v,-v\rangle=\langle u+\nu, u-v\rangle$.

Definition 3.2.5:

In an inner product space V, a vector $u \in V$ is called a unit vector if $\|u\|=1$

Example 3.2.6:

Let $a, b>0$. In a vector space \mathfrak{R}^{2}, define
$\left\langle(x, y),\left(x_{1}, y_{1}\right)\right\rangle=\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}$.

1. Prove that \langle,$\rangle is an inner product on \mathfrak{R}^{2}$.(Homework)
2. Show that $\|(x, y)\|=1 \leftrightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Theorem 3.2.7 (Schwarz Inequality):

In an inner product space V,

$$
\langle u, v\rangle^{2} \leq\|u\|^{2}\|v\|^{2}
$$

Proof:

$u=0 \vee v=0 \rightarrow\langle u, v\rangle=0 \wedge(\|u\|=0 \vee\|v\|=0) \rightarrow 0 \leq 0$

Let $u \neq 0 \neq v$
$0 \leq\|x u+v\|^{2}=\langle x u+v, x u+v\rangle=x\langle u, x u+v\rangle+\langle v, x u+v\rangle$
$=x(x\langle u, u\rangle+\langle u, v\rangle)+x\langle v, u\rangle+\langle v, v\rangle=\langle u, u\rangle x^{2}+\langle u, v\rangle 2 x+\langle v, v\rangle$
$=\|u\|^{2} x^{2}+2\langle u, v\rangle x+\|v\|^{2} \rightarrow 4\langle u, v\rangle^{2} \leq 4\|u\|^{2}\|v\|^{2} \rightarrow\langle u, v\rangle^{2} \leq\|u\|^{2}\|v\|^{2}$

Example 3.2.8:

Apply Schwarz Inequality in Example 3.1.4.

Theorem 3.2.9:

Let \langle,$\rangle be an inner product over V$ and $u, v \in V$.

1. $\|u\| \geq 0$.
2. $\|u\|=0 \leftrightarrow u=0$
3. $\|\lambda u\|=|\lambda|\|u\|$
4. $\|u+v\| \leq\|u\|+\|v\|$ ((riangle inequality)

Proof:

1. Straightforward.
2. Follows from Theorem 3.1.7, Task 4.
3. $\|\lambda u\|^{2}=\langle\lambda u, \lambda u\rangle=\lambda^{2}\langle u, u\rangle \rightarrow\|\lambda u\|=|\lambda|\|u\|$
4. $\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle u, u+v\rangle+\langle v, u+v\rangle=\langle u, u\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle$
$=\|u\|^{2}+\langle u, v\rangle+\langle u, v\rangle+\|v\|^{2}==\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2} \leq\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}=(\|u\|+\|v\|)^{2}$
$\|u+v\|^{2} \leq(\|u\|+\|v\|)^{2} \rightarrow\|u+v\| \leq\|u\|+\|v\|$

Theorem 3.2.10:

If \langle,$\rangle is an inner product on V$ and u_{1}, \ldots, u_{n} is a spanning of V, then for each $v \in V$,

$$
\left\langle v, u_{i}\right\rangle=0, \forall i=1, \ldots, n \rightarrow v=0 .
$$

Proof:

$v=a_{1} u_{1}+\ldots+a_{n} u_{n}$, for some scalars $a_{i}, i=1, \ldots, n$.
$\rightarrow\langle v, v\rangle=\left\langle v, a_{1} u_{1}+\ldots+a_{n} u_{n}\right\rangle \rightarrow\langle v, v\rangle=a_{1}\left\langle v, u_{1}\right\rangle+a_{2}\left\langle v, u_{2}\right\rangle+\ldots+a_{n}\left\langle v, u_{n}\right\rangle=a_{1}(0)+\ldots+a_{n}(0)=0 \rightarrow v=0$.

Theorem 3.2.11:

Let V be an inner product space V and u, v be vectors in V.

1. $d(u, v) \geq 0$.
2. $d(u, v)=0 \leftrightarrow u=v$
3. $d(u, v)=d(v, u)$
4. $d(u, v) \leq d(u, w)+d(w, v)$

Proof:

1. Follows form Theorem 3.2.9, Task 1.
2. Follows form Theorem 3.2.9, Task 2.
3. $d(u, v)=\|u-v\|=\sqrt{\langle u-v, u-v\rangle}=\sqrt{\langle u, u\rangle-2\langle u, v\rangle+\langle v, v\rangle}$ $d(v, u)=\|v-u\|=\sqrt{\langle v-u, v-u\rangle}=\sqrt{\langle v, v\rangle-2\langle u, v\rangle+\langle u, u\rangle}$
4. $\quad d(u, v)=\|u-v\|=\|(u-w)+(w-v)\| \leq\|u-w\|+\|w-v\| \leq d(u, w)+d(w, v)$

Exercise 3.2.12:

i. In an inner product space V, for $u, v \in V$, prove each of the following

1. $\|u+v\|^{2}=\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}$
2. $\|u-v\|^{2}=\|u\|^{2}-2\langle u, v\rangle+\|v\|^{2}$
3. $\langle u, v\rangle=0.25\left(\|u+v\|^{2}-\|u-v\|^{2}\right)$
ii. In an inner product space V, let $\|u\|=1,\|v\|=2$ and $\|w\|=\sqrt{3},\langle u, v\rangle=-1$, $\langle u, w\rangle=0$ and $\langle v, w\rangle=3$. Compute
4. $\langle v+w, 2 u-v\rangle$
5. $\langle u-2 v-w, 3 w-v\rangle$
iii. Let $T: V \rightarrow V$ be an isomorphism of the inner product space V. Show that $\langle u, v\rangle^{*}=\langle T(u), T(v)\rangle$ is an inner product space on V.

3.3 Orthogonality

Definition 3.3.1:

Let V be an inner product space and $u, v \in V$. We say that u and v are orthogonal if

$$
\langle u, v\rangle=0
$$

Definition 3.3.2:

Let V be an inner product space. A set $\left\{u_{1}, \ldots, u_{n}\right\}$ of vectors in V is called orthogonal if

1. $u_{\mathrm{i}} \neq 0, \forall i=1, \ldots, n$
2. The set of vectors is pairwise orthogonal, that is $\left\langle u_{i}, u_{j}\right\rangle$ is orthogonal $\forall i \neq j$.

Additionally, if $\left\|u_{i}\right\|=1, \forall i$, then the set $\left\{u_{1}, \ldots, u_{n}\right\}$ of vectors is called orthonormal.

Example 3.3.3:

1. $(-1,3)$ and $(3,1)$ are orthogonal with respect to Example 3.1.2, Task 2.
2. $\sin x$ and $\cos x$ are orthogonal in $C[-\pi, \pi]$.
3. $(5,2,-3)$ and $(4,-1,6)$ are orthogonal with respect to Exercise 3.1.6, Task 1.

Theorem 3.3.4 (The Pythagorean Theorem):

If $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthogonal set of vectors, then

$$
\left\|\sum_{i=1}^{n} u_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|u_{i}\right\|^{2} .
$$

Proof:

$$
\begin{aligned}
\left\|u_{1}+\ldots+u_{n}\right\|^{2}=\left\langle u_{1}+\ldots+u_{n}, u_{1}+\ldots+u_{n}\right\rangle & =\left\langle u_{1}, u_{1}\right\rangle+\left\langle u_{2}, u_{2}\right\rangle+\ldots+\left\langle u_{n}, u_{n}\right\rangle+\sum_{i \neq j}\left\langle u_{i}, u_{j}\right\rangle \\
& =\left\|u_{1}\right\|^{2}+\ldots+\left\|u_{n}\right\|^{2}+0=\left\|u_{1}\right\|^{2}+\ldots+\left\|u_{n}\right\|^{2}
\end{aligned}
$$

Theorem 3.3.5:

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be orthogonal set of vectors, then
i. $\quad\left\{\lambda_{1} u_{1}, \ldots, \lambda_{n} u_{n}\right\}$ is orthogonal for every $\lambda_{i} \neq 0$.
ii. $\left\{\hat{u}_{1}, \ldots, \hat{u}_{n}\right\}$ is orthonormal.

Proof:

i.

1. For each $i=1, . ., n, u_{i} \neq 0 \rightarrow \lambda u_{i} \neq 0$.
2. $\left\langle\lambda u_{i}, \lambda u_{j}\right\rangle=\lambda\left\langle u_{i}, u_{j}\right\rangle=\lambda(0)=0$.
ii. Homework.

Theorem 3.3.6:

Every orthogonal set of vectors is linearly independent.

Example 3.3.7:

In Example 3.1.5, prove that

$$
\left\{\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)\right\}
$$

is an orthogonal basis of \mathfrak{R}^{3}, where

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Exercise 3.3.8:

1. In an inner product space V, prove or disprove:
i. $\quad u, v \in V$ are orthogonal $\leftrightarrow\|u+v\|=\|u-v\|$.
ii. $\quad\{u, v\}$ is an orthogonal set $\leftrightarrow\|u\|=\|v\|$.
2. In Example 3.1.5, Verify whether

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-6 \\
1
\end{array}\right)\right\}
$$

is an orthogonal basis of \mathfrak{R}^{3} or not, where

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

3.4 Orthogonal projections

Definition 3.4.1:

Let W be a subspace of an inner product space V. The orthogonal complement W^{\perp} of W is defined as follows

$$
W^{\perp}=\{v \in V \mid u \in W \rightarrow\langle u, v\rangle=0\}
$$

Theorem 3.4.2:

In an inner product space V, the orthogonal complement W^{\perp} of a subspace W of V is a subspace of V.

Proof:

$u \in W \rightarrow\langle u, 0\rangle=0 \rightarrow 0 \in W^{\perp}$.
Let $v_{1}, v_{2} \in W^{\perp}, a, b$ be scalars and $u \in W$.
$\left\langle u, a v_{1}+b v_{2}\right\rangle=\left\langle u, a v_{1}\right\rangle+\left\langle u, b v_{2}\right\rangle=a\left\langle u, v_{1}\right\rangle+b\left\langle u, v_{2}\right\rangle=a(0)+b(0)=0 \rightarrow a v_{1}+b v_{2} \in W^{\perp}$.

Exercise 3.4.2:

Let U and W be a subspace of a vector space V. Define

$$
U \oplus W=\{u+w \mid u \in U \wedge w \in W\}
$$

Show that $U \oplus W$ is a subspace of V.

Definition 3.4.3:

A vector space V is called a direct sum of subspaces U and W if

1. $U \cap W=\{0\}$
2. $V=U \oplus W$.

Exercise 3.4.4:

Let V be a finite dimensional direct sum vector space of subspaces U and W. Then

$$
\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W) .
$$

Theorem 3.4.5:

Let W be a finite dimensional subspace of an inner product space V, then $V=W \oplus W^{\perp}$.

Proof:

We will apply Definition 3.4.3,

1. Let $v \in W \cap W^{\perp}$. Since $\langle v, v\rangle=0$, then $v=0$.
2. Clearly, $W \oplus W^{\perp} \subseteq V$.

Let $v \in V \rightarrow v=0+v$. According to Theorem 3.1.7, Task 3, $\langle v, 0\rangle=0$, then $v \in W^{\perp}$.

Theorem 3.4.6:

Let V be an inner product space, U be the orthogonal complement of W. Define a function $T: V \rightarrow V$ as follows

$$
T(v)=u \text {, where } v=u+w, u \in U, w \in W \text {. }
$$

Then

1. $\quad T$ is a linear operator on V. (T is called the projection on U with kernel W)
2. $\operatorname{img}(T)=U$
3. $\operatorname{ker}(T)=W$
