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Chapter 0: Introduction
Definition 0.1:

In mathematics, a linear combination is an expression constructed from a set of terms

by multiplying each term by a constant and adding the results.
For example, from the set V={vi,...Vq},
n
z C,V;
i=1
is a linear combination V.

Definition 0.2:

- Linear algebra is the study of linear combinations.
- It is the study of vector spaces, lines and planes, and some mappings that are
required to perform the linear transformations. It includes vectors, matrices and

linear functions.

- Itis the study of linear sets of equations and its transformation properties.
Chapter 1: Algebraic structures and Vectors
1.1 Algebraic structure

Definition 1.1.1:

Let M=¢. A binary operation on the set M is a mapping * from MxM to M. In other
words if the following implication holds

a, beM—*((a,b))eM
or
a, beM—a*beM (common)

In this case, the pair (M,*) is called an algebraic structure. Notice that an algebraic

structure can be a set with one, two or more binary operations.



Examples 1.1.2:

. The standard addition + is a binary operation on N.
. The standard multiplication e is a binary operation on Z.
. The standard subtraction — is not a binary operation on N.

1
2
3
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5
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8

The standard division / is not a binary operation on R.

. The standard division / is a binary operation on R\{0}.
. The union is a binary operation on Power (X), for a set X.
. The intersection is a binary operation on Power (X), for a set X.

. The difference is a binary operation on Power (X), for a set X.

Definition 1.1.3:

1.

Let * be a binary operation on the set M,

* is called associative on M, if the following implication holds

a, b, ceM—(a*b)*c=a*(b*c)

* is called commutative on M, if the following implication holds

a, beM—axb=Db*a

eeM is called the identity of M with respect to *, if the following implication
holds

aeM—axe=a=e*a

For aeM, the element a*eM is called the inverse of M with respect to #, if the
following implication holds

a*a l=alxa=e

Definition 1.1.4:

Let * and o be two binary operations on the set M, we say that

1.

2.

3.

o is distributed on * from the left hand side, if the following implication holds
a, b, ceM—ao(b*c)= (aob)*(aoc)

o is distributed on * from the right hand side, if the following implication holds
a, b, ceM— (b*c)oa=(boa)*(coa)

o is distributed on *, if it is distributed from left and right hand sides.



Examples 1.1.5:

The standard addition + is associative and commutative on Z.

The standard subtraction is neither associative nor commutative on Z, since
2,3,4e Z—>2-(3-4)=3#-5=(2-3)-4

¢ is the identity element of Power (X) with respect to L. While X is the identity
element of Power (X) with respect to N.

In the algebraic structure (Power (X),u), ¢ is the only element that has inverse.
While in (Power (X),n), X is the only element that has inverse.

The standard multiplication e is distributed on the standard addition + in R.

Remark 1.1.6:

Henceforth, we write ab instead of aeb.

Example 1.1.7:

Consider R. Define * on R as follows

a*b=a+bh+1

Exercise 1.1.8:

Consider R. Define * on R as follows a*b:aTb

1.
2.
3.

Verify whether = is associative or commutative.
Does R have the identity element?

Does any aeR have the inverse?

Definition 1.1.9:

Let F#¢ and +¢, e be two binary operations on F. A triple (F,+¢,eg) is called a field if

the following conditions hold

1.
2.

+g is associative on F.

F has the identity element with respect to +g, we use 0 to this identity element.
Any element of aeF has the inverse with respect to +g. The inverse of any

element aeF is denoted by -ra.



+£ is commutative on F.
e is associative on F\{0}.

F\{0} has the identity element with respect to g, we use e to this identity element.

N o &

Any element of F\{0} has the inverse with respect to eg. The inverse of any
element aeF\{0} is denoted by a ™.
8. epis commutative on F\{0}.

9. erisdistributed on +g.

Example 1.1.10:
1. (Q,+e)is afield.
2. (R,+,9)is afield.
3. (Z,+,9) is not a field.
1.2 Vectors
Definition 1.2.1:
A vector is a quantity that has both magnitude and direction.
Vectors describe the movement of an object with respect to another point.

Velocity, acceleration and force are some examples of vectors.

Speed is the time rate at which an object is moving along a path, while velocity is
the rate and direction of an object’s movement.
Acceleration is the rate of change of the velocity of an object with respect to time.

A force is an influence that can change the motion of an object.

In R?, any vector can be written as v=(Vx,Vy), Where vy and vy are real numbers.
V= r (magnitude)= [vZ + v2

. . _ -1 V_y
Direction (6)=tan (vx)

Notice that (r, 0) is the polar representation of v.



Example 1.2.2:

The vector v=(1,v3) has magnitude r= /12 + (v3)*=2 and direction O:tan'l(?)zg or

6=n+Z. According to the position of v, 6=Z.
So (2, Z) is the polar representation of v.

On the other hand, for a point in polar coordinate (2, g),
x:rcos(g):Z(%):l and y=r sin(g):Z(\/Z—g): V3.

Hence (1,/3) is the Cartesian representation of (2, = ).

Definition 1.2.3:

1- For any vector v, the -¥ is the vector with the same magnitude and opposite
direction.
2- The zero or the null vector is a vector that has a zero magnitude and no direction

and denoted by 0.
Pulling a rope from its two ends with equal force but in opposite directions is an

example of null force (zero vector).
Definition 1.2.4:

Let v=(vx,vy) and w=(wx,w,) be two vectors in R? and ¢ (scalar)eR. The vector addition

and the scalar multiplication of vectors are defined as follows

1. U+W=(Vx+Hwy, vy, +Wy). (vector addition)

2. cv=(cvx,Cvy). (scalar multiplication)
Definition 1.2.5:
A vector v=(Vy, vy) is called a unit vector if [v|=1.
The standard unit vectors in R? are i=(1,0) and j=(0,1).

Any vector can be written as v= vyi+ vj.



Proposition 1.2.6:

—

— — L -
For any vector v, the vector w=—is a unit vector.

g
Remark 1.2.7:
We may define vectors in R" as follows

v=(V,...,Vn), Where vieR, for all i.

In this case, [9|=_ X1, V2.



Chapter 2: Matrix Theory
2.1 Basic definitions
Definition 2.1.1:

A matrix A is a rectangular array of numbers arranged into rows and columns.

a;, e Ay
A=| : :
aml cee amn

- m is the number of rows and n is the number of columns.

mxn

- The object a;; is the entry of the matrix A, located in i-th row and j-th column.

- Ais called an mxn matrix or A is a matrix of dimension (order) mxn.
Definition 2.1.2:
A matrix of the dimension

1. 1xnis called a row vector.

2. mx1is called a column vector.
According to Definition 2.1.2, any vector ¥ in R" can be considered as a 1xn matrix
]_7’:(]71 vn)’

or an nx1 matrix

Definition 2.1.3:
Let A be a matrix of dimension mxn, A is said to be

1. Square, if m=n.
2. Zero matrix “0”, if a;;=0, for all i, j.

Notice that 0 matrix can be of any dimension.



Definition 2.1.4:

Let A be a square matrix of dimension n,

1.
2.

The set of entries a;;, is called the main diagonal of A.
The sum Y*; a;; is called the trace of the matrix A, and is denoted by trac(A).
A'is called a diagonal matrix if
i#j—a;;=0
A is called identity matrix, if

_{1 ifi=j
YT ifi+j

Usually, identity matrix of order n is denoted by I,. Notice that, the identity

matrix can be defined by the Kronecker delta function §;;.

Definition 2.1.5:

Let A be an mxn matrix, the transpose of A is the matrix generated by interchanging

the rows and columns of the matrix A and denoted by A'. Clearly A" is a matrix of

dimension nxm matrix.

a;; is an entry in Aoay; is an entry in AT,

Example 2.1.6:

2 5
(2 0 -3 T_
Let A= (5 3 4), then A —< 0 \/§>

Exercise 2.1.7:

Let A be a square matrix of order n, then

trac (A")=trac(A).

2.2 Matrix operations
2.2.1 Addition of matrices

Definition 2.2.1.1;

Let A=(a;j)mxn and B=(b;;)mxn be two matrices of dimension mxn, then the sum of A and

B is given by
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A+B=(a;+b;;)
This means that A+B=(c;;), where ¢;; = a;; + by;.

Example 2.2.1.2:

5 2 -4 4 0 2

(2 -1 1 (-7 1 0

Let A= 1 0 7 and B= 9 9 3
8 4 6 4 -1 11

Exercise 2.2.1.3:
Prove that, for any matrix A of dimension mxn,

1. A+0=A=0+A, where 0 is the mxn zero dimensional matrix.
2. (AT = A.

Theorem 2.2.1.4:
Let A, B and C be matrices of order mxn, then

A+B is a matrix of order mxn.
A+(B+C)=(A+B)+C.
A+B=B+A

(A+B)'=AT +B"

o &~ N e

trac(A+B)=trac(A)+trac(B), where m=n.

2.2.2 Multiplication of matrices by a scalar

Definition 2.2.2.1;

Let A=(a;j)m.n and A be a scalar, then the multiplication AA is a matrix of dimension

mxn and is given by

AA =(Aa;j)m.n
It is easy to verify that AA=AA.
Example 2.2.2.2:

Let A be the matrix given in Example 2.2.1.2 and A=2.

11



Remark 2.2.2.3:

From Definition 2.2.1.1 and Definition 2.2.2.1, we may define the subtraction of two

matrices of the same order (dimension).
Definition 2.2.2.4:

Let A=(a;j)mxn and B=(b;;)mxn be two matrices of dimension mxn, then the subtraction

of A and B is denoted by A-B and is given by

A-B=A+(-B)
Exercise 2.2.2.5:
Let A and B be matrices of the same order and AeR, then

AA=AL

A(A+B)=ALA+AB

Let A be a matrix of order mxn, then, A-A=0.
(AA)'=AAT

A0=0=0A.

trac(AA)=Atrac(A).

o g &~ L N F

2.2.3 Multiplication of two matrices
Definition 2.2.3.1:

Let A=(a;j)mn and B=(b;j)n.« be two matrices. The multiplication of A and B is a matrix

C=AB of order mxk such that

Example 2.2.3.2:

A:(i _41 so)and B:<1 0 2 5)

12



Theorem 2.2.3.3:
Let A, B and C be matrices of order kxl, Ixm and mxn respectively, then

1. A(BC)=(AB)C.
2. MAB)=(AA)B=A(AB).
3. (AB)'=B'A".

Theorem 2.2.3.4:
Let A and B be square matrices of the same order, then
trac(AB)= trac(BA).
Theorem 2.2.3.5:
Let A=(a;;), B=(b;j) and C=(c;;) be conformable matrices, then

1. C(A+B)= CA+CB.
2. (A+B)C=AC+BC.

Theorem 2.2.3.6:

Let A be a square matrix of order n, then
Al=A=IA.

Exercise 2.2.3.7:

Give an example to show that AB#BA, even A and B are square matrices of the same

order.

Remark 2.2.3.8:

Let A be a matrix and n be a positive integer,
A'=AA...4

=

n-times

13



2.3 Determinant of matrix

- Determinant of square matrix of order two

Definition 2.3.1:

a, a
LetA = (all 12). The determinant of A is defined as follows
21 Q22
|A|=det (A)=ay1az; — ajza;34
Example 2.3.2:
LetA = (:i é)

- Determinant of square matrix of order n, n>2.
Definition 2.3.3:

Let A=(a;;) be a square matrix of order n, n>2

1. The minor matrix of A is the matrix M=(m;;) such that m;; is the

determinant of the remaining matrix after eliminating the i-th row
and the j-th column form the original matrix.

2. The cofactor matrix of A is the matrix C=(c;;), where ¢;j=(-1)"'m;.
Definition 2.3.4:

Let A=(a;) be a square matrix of order n, n>2. The determinant of A is defined as

follows,

n

14| = Z a;j Cjj

j=1

Notice that the above formula can be applied for square matrices of order 2 as well.

Example 2.3.5:
2 -3 1
Let A= (5 -1 0)
4 7 3

14



Exercise 2.3.6:

Find the determinant of the matrix

-1 4 0
1. A=< 8 4 2)
-3 1 5

3 2 -1 6

[0 5 2 2
2. A9 g 1 -4

4 -2 1 7
Theorem 2.3.7 (Properties of determinant of a matrix)

Let A and B be square matrices of order n, then

1. |ABI=|A||B.

2. |In=1.

3. The sign of the determinant changes under the row interchange.

4. The sign of the determinant changes under the column interchange.

5. If all the elements of a row (or column) are zeros, then the value of the
determinant is zero.

6. |AA[=A"|A].

7. Determinant is a linear function of a row or a column.

8. If two rows (columns) are identical, then |A|=0.

9. |AI=IAT.

10. Is |A+B|=|A[+|B|?

Definition 2.3.8:

A square matrix A is said to be non-singular if |Al£0. Otherwise it is called singular.
2.4 Invertible matrix

Definition 2.4.1:

Let A be a non-singular matrix of order n, a non-singular square matrix B of order n is

called the inverse of A if

AB=1,=BA

15



If such a matrix B exists satisfies the above formula, then we say that A is an invertible
matrix of order n. Notice that, if B is the inverse of A, then A is the inverse of B as well.

We use the notation A to the inverse of a matrix A.
Definition 2.4.2:

Let A be a square matrix of order n, The adjoint of the matrix A, denoted by adj(A) is
the transpose of the cofactor matrix of A. That means,

adj(A)=C’
Theorem 2.4.3:

Let A be a non-singular matrix of order n, the inverse of A can be find from the

following formula:

A—l—iad'(A)
a1
Example 2.4.4:

2 -3 1
Let A= (5 -1 0)

4 7 3

Theorem 2.4.5:

Suppose that A is an invertible matrix of order n. Prove the following
1. |A'1|:ﬁ
2. (Ahy'=A
3. (AB)'=B?'A*
4. (AT)—lz(A—l)T

5. (\A)'=3 A’

n

6. (AM)"=A" where A™ = Ai

16



1.5 Some types of square matrix
Definition 2.5.1:
Let A=(a;;) be a square matrix of order n, A is said to be

Symmetric, if AT=A.
Skew symmetric if AT=-A.
Upper triangular if &;=0, for all i>].

Lower triangular if a;=0, for all i<j.

A N A

Triangular, if it is upper triangular or lower triangular or both.

1.6 Rank of matrix
Definition 2.6.1:

Let A be an mxn matrix (possibly m=n). The rank of A is the order of the nonzero
determinant of highest order that may be formed from the elements of a matrix by

selecting arbitrarily an equal number of rows and columns.
Example 2.6.2:
2 -3 1 -4 2 -3 6 —4
LetA:< 5 -2 3 2 >and B:< 5 -2 15 2 >
-4 6 -2 8 -4 6 -—-12 9
1.7 Row echelon form matrix

Definition 2.7.1:

The leading entry in each entire row of a matrix is considered as the first nonzero

entry in that row.
Definition 2.7.2:

A matrix is said to be in row echelon form ref (echelon form), if

1. Each leading entry is in a column to the right of the leading entry in the previous

row.

2. Rows with all zero elements, if any, are below rows having nonzero elements.

17



Example 2.7.3:

The following matrices are in ref

1 5 4 10 -2 3 1 2 0
AZ(O 1 —3), BZ(O 010 >, C:<0 1 2)
0 0 1 0O 0 0 1 0 0 O

- Pivot position and pivot column
Definition 2.7.4:

A pivot position in a matrix is the location of a leading entry in the ref of a matrix. A

pivot column is a column that contains a pivot position.
Definition 2.7.5:

A matrix is said to be in reduced row echelon form rref (canonical form), if

1. The matrix satisfies conditions for a ref.

2. The leading entry in each row is the only nonzero entry in its column.

Example 2.7.6:

The following matrices are in rref.

1 0 O 1 0 0 O 1 0 O
A= (0 1 O>, B= <O 0 1 0), C= <0 1 0)

0 0 1 0 0 0 1 0 0 O
Exercise 2.7.7

Transform the following matrices to ref

4 3 -1 2
1. A=<3 3 -2 6)

5 1 1 -2
5 6 3
(-4 0 1
2.B5| 77 3 >
2 4 -3

18



Chapter 3: System of Linear Equations

3.1 Basic definitions

Definition 3.1.1:

A system of m linear equations in n unknown can be defined as follows,
aqg1xXq + -+ A Xy = bl
Ap1X1 + -+ Qup Xy = by

where a;; and b;are scalars in F.

A solution of system (3.1) is a vector (s;---s,)eF" which satisfies all m equations

simultaneously.
a;181+ -+ aySn=bq
Gps$1+ -+ QS = b
Definition 3.1.2:

The Linear System (3.1) is called homogeneous, if bj=0, for all i. Otherwise is called

nonhomogeneous.
Definition 3.1.3:
Two linear systems
a;1x1+ -+ ax, = by
Gss + -+ ot = b
and
c11X1 + -+ ayx, =d,
Gy + ot G = di

are called equivalent if they both have exactly the same solutions.

19



Definition 3.1.4: (Row Elementary Operations-REO)

The following operations on a system of linear equations are called row elementary

operations.

Type I: Interchange the rows r; and ry.

Type I1: Multiply the row r; by a nonzero scalar A.
Type I11: Replace the row r; by the row Ar+r;, i=k.
Theorem 3.1.5:

For a linear system, if we apply at least (one or more) elementary operations of REO,

then we obtain an equivalent system to the original one.
2.2 Representing linear systems with matrices

System (3.1) can be written as

Or, in matrix equation, as

AX=B ... (3.2)
where,
aiq o Aqp
A:( : Do ) is called the coefficients matrix.
aml cee amn

X1
X:< : ) is called the column matrix of unknowns (variables).
xn

b,
B= < : ) is called the column matrix of constants.
b

Clearly, any solution of (3.2) is a solution of (3.1) and vice versa.

20



Theorem 3.2.1:

In Definition 3.1.1, if F is infinite and System (3.1) has more than one solution, then

there is infinite number of solutions.
Proof:

Let X; and X, be two distinct solutions of (3.2). Then X =X;+A(X1-Xz), AcF is also a
solution of (3.2).

Definition 3.2.2:

The Augmented matrix of the system (3.2) is defined by

<a11 o Qg b1>
An1 ° Aqp bm

Definition 3.2.3:
A linear equation (hyperplane)
axq+-+a,x,=hb..33)

is said to be degenerate, if a;=0, for all i. Otherwise is called a non-degenerate linear

equation.
Remark 3.2.4:
Let System (3.1) contains a degenerate equation,

1. If b0, then the system has no solution.
2. If b=0, then the degenerate equation may be deleted from the system without
changing the solution of the system.

Definition 3.2.5:

For a non-degenerate equation, the leading unknown (variable) is the variable with
the first non-zero coefficient (entry).

21



Definition 3.2.6:

A matrix A is said to be row equivalent to a matrix B, if B can be obtained by a finite

sequence of REO.
Theorem 3.2.7:
Any matrix is a row equivalent to a matrix in ref.
Proof: Not required.
Theorem 3.2.8:
Any matrix is a row equivalent to a unique matrix in rref.
Proof: Not required.
Theorem 3.2.9:

Let AX=B and CX=D be two linear systems of the same number of equations and
unknowns. If the augmented matrix [A:B] and [C:D] are row equivalents, then both

systems are equivalents.
3.3 Solving linear systems
Definition 3.3.1:

In a system of ref, an unknown x; is called a basic variable if it corresponds to a pivot

column i. Otherwise x; is called a free variable.
Example 3.3.2:

The solution of the following system

2x—y+z=1
x+y—-2z=4

is defined by

+

Wl W| =
o~

”QJI\IOJIM
(o ]
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Definition 3.3.3:
The Linear System (3.1) is said be

1. Consistent, if it has a solution (either unique or infinite number of solutions).

2. Inconsistent, if it has no solution.
Theorem 3.3.4:

Consider a system of ref with m equations and n unknowns. Let r be the number of

nonzero rows. (Clearly r<m)

1. The system is inconsistent, if among the nonzero rows, there is a row for which
all entries are zero except the entry of the last column.
That means, a row like (0 0 ... 0|b), b=0.
2. If r<n, then the system is consistent
2.1 If r<n, then the system has infinite number of solutions.
2.2 If r=n, the system has unique a solution.
3.4 Solving system of linear equations
3.4.1 Gaussian elimination method

Gaussian elimination is a method for solving matrix equation (3.2). The steps are

1. Compose the augmented matrix

2. Perform elementary row operations to put the augmented matrix into the upper
triangular form.

3. Use backwards substitution to find the values of the unknowns.

Example 3.4.1.1

Solve the following system by using Gaussian elimination method

1.
2x—3y+4z=-3
S5x+2y—-z=5
6x —2y+3z=2

xX+2y—z=2

2x+5y—-3z=1
x+4y—-3z=3

23


https://mathworld.wolfram.com/MatrixEquation.html
https://mathworld.wolfram.com/ElementaryRowandColumnOperations.html
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https://mathworld.wolfram.com/UpperTriangularMatrix.html
https://mathworld.wolfram.com/UpperTriangularMatrix.html

—2x+3y+3z=-9
3x—4y+z=5
—5x+7y+2z=-14

3.4.2 Gauss-Jordan elimination

We may use Gauss-Jordan elimination for solving linear system (3.1). In
fact we do the same steps as we have done in Gaussian elimination method as

well as we continue until the augmented matrix becomes in reduced row
echelon form.

Example 3.4.2.1:

Solve the following system (Use Gauss-Jordan elimination)

2x+3y+z=1
x+5y—4z=-12
4x—y+2z=9

Remark 3.4.2.2:

We may use Gauss-Jordan elimination to find the inverse of matrices.

Example 3.4.2.3:

Use Gauss-Jordan elimination to find the inverse of the following matrices

1. A= (‘23 i)

1 3 1
2. B = <—1 -2 1>
3 7 -1

Exercise:

A system AX=B, where A is a square matrix of order n has a unique solution if and only
if Ais invertible.

24



3.4 Homogeneous linear system of equations

A homogeneous linear system of m equations and n unknowns can be defined as

follows,
ag1Xq + -+ Xy = 0

AQp1X1+ -+ appXx, =0

In fact, System (3.4) has always {x;=0,..., X,=0} as a solution called the zero or

trivial solution.
Theorem 3.5.1:
In the ref of System (3.4), let k be the number of nonzero rows.

1. If k<n, then the system has a nontrivial solution.

2. If k=n, then the system has a unique solution.
Corollary 3.5.2:
Consider a homogeneous linear system of equations

AX=0, where A is an mxn matrix.
If m<n, then the system has a nontrivial solution.
Remark 3.5.3:
Let A be a square system in the following homogeneous linear system,
AX=0.

If |A|=0, then the system has a nontrivial solution. Is the converse true? Explain your

answer.
Definition 3.6.7:

For a nonhomogeneous system AX=B, the system AX=0 is called its associated

homogenous system.

25



Theorem 3.6.8:
Let x, be a particular solution of AX=B.

1. If xp is a solution of the associated homogeneous system, then Xy+xn is a solution
of AX=B.
2. If u is a solution of AX=B, then there exists a solution x, of the associated

homogeneous system such that u=x,+X.
Exercise 3.6.9:
For each of the following, if it is possible give an example. Otherwise explain why?

1. An inconsistent system with an associated homogeneous system that has
infinitely many solutions.
2. An inconsistent system with an associated homogeneous system that has a unique

(trivial) solution.
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Chapter 4: Vector space (Linear space)
4.1 Basic definitions
Remark:
Let A and p be scalars in a field F.
- Axioms of vector addition ()
Let ¥, w and Z be vectors in a set V and @ be an operation

1. Closure property
2. Associative property

3. Commutative property

5. The existence of the additive inverse
O (-7 =0=(-7) DY
- Axioms of vector multiplication by a scalar (©)

Let ¥ and w be vectors in V and an operation ©

6.
A O veV

7.

AO@OW)=QAO0Y)BAOW)
8.

A+wWOT=AL0Y) D EOY)
9,

AOMOY) =AW OV

10.

10v=v=v01



Definition 4.1.2:

A vector space (linear space) V over a field F consists of a set of vectors V and
scalars in F such that the axioms of vector addition and axioms of vector
multiplication by a scalar holds.

Example 4.1.3:
Let V={¥[¥ is a vector in R*} and F=R. Then V is vector space over R.

Example 4.1.4:

Let V={¥|v is a vector in R"} and F=R. Then V is vector space over R.

Example 4.1.5:

Let Po={p(X)| p(X)=a,x? + a;x + ay, a;€R} be the set of all polynomials of degree
less than or equal to 2 together with the zero polynomial.

Then V=P, is vector space over the field F=R under the addition of polynomials

and standard multiplication.
More generally, let

Pr={p(X)| p(X)=X", a;x’, a;eR} be the set of all polynomials of degree less than or

to n together with the zero polynomial.
Then V=P, is vector space over the field F=R.
Example 4.1.6:
Let M be the set of all matrices of order mxn with real coefficients.

Then M is a vector space under the matrix addition and the matrix multiplication

by scalars.
Example 4.1.7:
Let A% and R*={f|[f:A—>R is a mapping}.
Define + on R” such that

(f+g)p0=f (x)+g (x)
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and the scalar multiplication is the standard multiplication of R.
Then R” is a vector space over R.
Theorem 4.1.8:

Let V be a vector space over a field F, then

The additive identity 0is unique.
The additive inverse —v of ¥ is unique.
0v=0. (0 is the zero in F, while 0 is the zero vector).

(-1)p=-7.

W npoE

Theorem 4.1.9 (Cancellation law)
Let ¥, w and Z be vectors in a vector space V over a filed F, then
V+HW=U+Z>W=Z

4.2 Linear combination and span

o Linear combination
Definition 4.2.1:

Let V be a vector space over a field F and vy, ... , v,, be a set of vectors in V. A

vector weV is said to be a linear combination of vectors vy, ... , v, if

d scalars Aq, ... , A, in F (N0t necessary to be distinct) such that

Example 4.2.2:

Consider the vector space R? over the field R and v; =(-1,3) and v,=(4,1). Check

whether (10, 9) is a linear combination of A or not.
Example 4.2.3:

Consider the vector space R® over the field R and let A={(0,2,4), (3,5,1), (3,7,5)}.

Check whether (1,2,-1) is a linear combination of A or not.
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- Span
Definition 4.2.4:

Let V be a vector space, a subset S={v,, ..., U, }<V is said to span (generate) V, if the

following implication holds:
veV—-7v is a linear combination the set S.

Example 4.2.5: In the vector space R” over the field R, the set
1 0 0 0
_J)|O 1 0 0
S=1lo)\o)\1) 10
0 0 0 1

spans the vector space R* over R.
Generally, for the vector space R" over the field R, the set

s ={@1,0,..,0),(0,1,...,0),...,(0,0, .., 1)}
spans the vector space R" over R.
Example 4.2.6:
In the vector space P3 over the field R, the set

S ={x3,x%,x,1}

spans Ps.
Proposition 4.2.7:

Let S={v,, ..., U,} be a span of a vector space V. For any weV, the set

S1={w, V1, ..., U, } Spans V.
Proposition 4.2.8:

Let S={v4, ..., U} be a span of a vector space V. If ¥, €S is a linear combination of some

of the other v;'s. Then S\{w;} spans V.

Example 4.2.9:
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In the vector space R® over the field R, the set

1\ /0\ /0
S = {(0) (1) , (0)} spans the vector space R® over R.
1 1 1

Example 4.2.10:

In the vector space R® over the field R, the set

=~ )

does not span the vector space R® over R.
Example 4.2.11:
In the vector space P over R,

1. The set {1+x+x% 1+2x+3x% 1+5x+8x%} spans Ps.
2. The set {1+2x, -1+x+2x?3-4x*} does not span Ps.

Exercise 4.2.12:

In the vector space P, over R, let p1(X)=2x°-x+5, pa(X)=x’+4x-1 and ps(x)=-3x?-2x. Check

whether q (x)=x?-2x+3 is a linear combination of ps, p, and p.

4.3 Subspace
Definition 4.3.1:

Let V be a vector space over a field F. A nonempty subset WV is said to be a
subspace of V over the field F if W is a vector space with the same vector addition

and vector scalar multiplication of V over the field F.

Clearly, any vector space has at least two subspaces, W={0} and W=V.
W={0} is called the trivial subspace.
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Theorem 4.3.2:

Let V be a vector space over a field F. A subset WV is a subspace of V over the field

F if and only if

—

1. OeW.
2. UveW-ou+veW

3. VeW ALeFAVeW
Proposition 4.3.3:

Let V be a vector space over a field F. A nonempty subset WcV is a subspace of V

over the field F if and only if the following implication holds
U, VeW AN, peF-ANU + pveW
Example 4.3.4:

Consider the vector space R" over the field R. The set of all hyperplanes passes

through the origin is a subspace of R".
Example 4.3.5:

In the vector space R? over R, Check whether the following subsets of R? is a

subspace or not.

1. W={(x, y)eRxy=0}.
2. W={(x, y)eR?x+y=0}.

Example 4.3.6:
Let M be a square matrix of order n,

1. The set of all upper (lower) triangular matrices is a subspace of M.
2. The set of all symmetric matrices is a subspace of M.

Theorem 4.3.7:

The solution set of the linear homogeneous system in n unknowns is a subspace of

F" (where F is the field of scalars).
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Theorem 4.3.8:
Let M and N be two subspaces of the vector space V.

1. Show that MnN is a subspace of V.
2. Is MUN a subspace of V? If so, prove it. Otherwise explain by giving a

counterexample.
Theorem 4.3.9:

Let W be a subspace of V and M be a subspace of W. Then M is a subspace of V. So
the property of subspace is transitive.

Theorem 4.3.10:
Let V be a vector space and ¢=AcV. Define the set

Span(A)={¥|v is a linear combination of members of A}.
Then

1. Span (A) is a subspace of V called a subspace generated by A.
2. Span (A) is the smallest subspace of V containing A.

E0)

Example 4.3.8: In R, let

Find the span(A).

Solution:

1 1 1
X = a(Sa—14b+60), y= a(-a+9b+5c), z= E(?a-b-4c)

=206
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Example 4.3.9: In R, let

Find the Span (A)



Solution:

Span (A)={(a,b,c)|a-7b+c=0}

Example 4.3.10: In R®, let

RHEEG)

Find the Span (A)

Solution:
1 1 1

x = —(5a-14b+6c+35t), y=—(-a+9b+5¢c-38t), z =——(7a-b-4c+18t), u=t
31 31 31

4.4 Linear dependence and independence

Let V be a vector space over a field F and v, ..., ¥, be vectors in V. We say that
V4, ..., U, are linearly independent if the following implication holds: For any set of

scalars Ag,..., An
Y1 AU = 054,;=0
Otherwise, vy, ..., U, is called linearly dependent.

A subset L={v,, ..., U,} is said to be linearly independent if the vectors v, ..., U,

are linearly independent

An infinite set L of vectors is linearly dependent or independent according to whether

there do or do not exist vectors v, ..., U, in S that are linearly dependent.
Proposition 4.4.1:
Let V be a vector space over a field F and L={v4, ..., U, }cV.

1. If ¥;=0, for some i, then L is linearly dependent.
2. Ifv; = cv,, for some 1<i, k<n and ceF, then L is linearly dependent.
3. Two vectors v, and v, are linearly dependent if one of them is a multiple of the

other.
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4. If a set L of vectors is linearly independent, then any subset of L is linearly
independent. Alternatively, if L contains a linearly dependent subset, then L is

linearly dependent.
Example 4.4.2:

In the vector space R® over the field R, the set

0 1 1
A= {(2)(—3)( 1 )I is linearly independent.
3 2 -1

Example 4.4.3:

In the vector space R® over the field R, the set

2 0 1
A= {( 1 )( 3 )( 4 )} is linearly independent.
-1 -2 -2

Example 4.4.4:

In the vector space R® over the field R, the set

-4 1 -2
A= {( 2 ) (—2), (—2)} is linearly dependent.
3 -1 1

Solution:
X=-t, y=-2t, z=t.
Theorem 4.4.5:

Let V be a vector space over e field F. The vectors vy,..., U in V are linearly

dependent if and only if some ; is a linear combination of the others.
Theorem 4.4.6:

In a vector space V over a filed F, if A={v,,..., ¥,,} is a linearly independent set, then

any vectors has a unique linear combination representation.
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Fundamental result in linear algebra
Theorem 4.4.7:

In a vector space V over a field F, if S={¥;,..., ¥} is a span of V and A={wj,..., W,}

is a linearly independent set, then t<s.
Proof:

For the set A, consider

Since S is a span of V, then

From (1) and (2), we obtain

j=1 i=1
s t
Z ai]-x]- 1_7)1 =0
i=1 \j=1

Then, we obtain
Z a;jxj =0,fori=1,..,s
j=1

In other words, we obtain

aj1XxX1 + Aq12Xy + -+ A Xy = 0
az1X1 + Az2X- + -+ Ay X = 0

A1 X1+ AgXy + -+ agx; =0

The matrix homogeneous system of the above system is written as follows
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a;; a;z " Qu *1 0
a1 Az Q2 —(0

As1 Qg1 -+ Qg / ooy \ Xy 0
This matrix coefficient of the homogeneous system is of order sxt.
According to Corollary 3.5.2:

If t>s, then there is a nontrivial solution. Hence x;, # 0, for some 1<k<t, consequently
Ais L.D (Impossible).

As a result, we obtain t<s.

Theorem 4.4.8:

The nonzero rows of a matrix in echelon form are linearly independent.

Example 4.4.9:

Consider the following matrix

>

I
COoCOCON
o Unl=ul1 O

W O\ =

_

cCoooOm
oo WwWw
cohRNN U

Clearly the nonzero rows are ry, rz, rzand ry. Let

M2 1,350 1)+4 0,0, 3 7,5 6+ (0, 0,0, 4, 1, 3)+ 4 (0, 0, 0, 0, 5, 3)=
(0,0,0,0,0,0)

(201, A1, 3A1, 5A1, 0, A)+ (0, 0, 3%, TAz, 5Aa, 62)+ (0, 0, 0, 443, Az, 3As)+ (0, 0, 0, 0, 5Aa,
3A4)= (0, 0, 0, 0, 0, 0)

Then, we obtain

(27\,1, A1, SA1+3Ao, SA+7Ao+4As, SAo+As+5A,, }\.1+67\,2+37\,3+3}\.4)= (0, 0,0,0,0, 0)
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Then
2A1=0
A1=0

301+3A,=0 e (D)
S5h+7A2+4A5=0

5ho+A3+504=0

A1+t6A+3A3+3A=0 —

Clearly, the solution of System (1) are A,=0, A,=0, A;=0 and A,=0.
Thenry, ry, rsand ryare L.1.

4.5 Basis and dimension
Definition 4.5.1:
Let V be a vector space over a field F. A subset B={v, ..., U,,} is called a basis of V if

1. PspansV.

2. Bis linearly independent.

Example 4.5.2:

For the vector space R® over the filed R, the set

B={(1,0,0), (0,1,0), (0,0,1)} is a basis of R® called the standard basis.
Generally, for R", the set

B={(1,0....,0), (0,1,0,...,0), ..., (0,...,1)} is the standard basis of R".
Example 4.5.3:

Show that the set B={(1,-1,2), (0,1,2), (3,-2,1)} is a basis of the vector space R*® over
the field R.
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Definition 4.5.4:

Let V be a vector space over a field F for which B is a basis. If |B|=n (the cardinality

of B), then we say that V has a finite dimension or n-dimension. We write
dim (V)=n.
The vector space {0} has 0-dimension.

In case, if a vector space has not a finite basis, then V is called an infinite-

dimensional vector space.
Theorem 4.5.5:

Let B, and B, be two bases of the vector space V over a field F for which |B;|=m and

IB2|=n, then m=n.

Proof:

From Fundamental result in linear algebra, we obtain m<n and n<m, then m=n.
Example 4.4.6:

For the vector space P; over a field R, the set {1, x, x*, x°} is a basis of Ps.
Then dim (P3)=4. Generally dim (P,)=n+1.

Solution:
pePsop=ax’+bx*+cx+d, then p=a(x®)+b(x%)+c(x)+d(1)
Example 4.4.7:

Let V be the set of all symmetric matrices of order two. Find dim (V) (Explain your

answer).
Solution:

V={Axo|A=AT}.

AeV—)A:(Z ’;)

Set the following set
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b0 o) oG D}

For AeV, we may select A;=a, A,=b and As=c.

Clearly,

A:a((l) 8)+ b((l) (1))+c(g (1))

Hence B spans V.

For any scalars A1, A, and A3 such that:
1 0 0 1 0 00 O

1y o)t 22(y o)l 170 o

Ar A2\ /0 0
_’(Az /13)‘(0 o)
Then, we obtain A;=0, A,=0 and A3=0.
Consequently B is linearly independent.
As a result B is a basis of V.

Exercise 4.4.8:

Let V be the set of all symmetric matrices of order three. Find dim (V) (Explain your

answer).
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