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Chapter 0: Introduction  

Definition 0.1:  

In mathematics, a linear combination is an expression constructed from a set of terms 

by multiplying each term by a constant and adding the results.  

For example, from the set V={v1,…vn},  

∑𝒄𝒊𝒗𝒊

𝒏

𝒊=𝟏

 

is a linear combination V. 

Definition 0.2: 

- Linear algebra is the study of linear combinations.  

- It is the study of vector spaces, lines and planes, and some mappings that are 

required to perform the linear transformations.  It includes vectors, matrices and 

linear functions.  

- It is the study of linear sets of equations and its transformation properties. 

Chapter 1: Algebraic structures and Vectors 

1.1 Algebraic structure 

Definition 1.1.1: 

 Let M. A binary operation on the set M is a mapping  from MM to M. In other 

words if the following implication holds 

a, bM((a,b))M 

or 

 a, bMabM (common) 

In this case, the pair (M,) is called an algebraic structure. Notice that an algebraic 

structure can be a set with one, two or more binary operations. 
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Examples 1.1.2: 

1. The standard addition + is a binary operation on N. 

2. The standard multiplication  is a binary operation on Z. 

3. The standard subtraction  is not a binary operation on N. 

4. The standard division  is not a binary operation on R. 

5. The standard division  is a binary operation on R\{0}. 

6. The union is a binary operation on Power (X), for a set X. 

7. The intersection is a binary operation on Power (X), for a set X. 

8. The difference is a binary operation on Power (X), for a set X. 

Definition 1.1.3:  

  Let  be a binary operation on the set M, 

1.  is called associative on M, if the following implication holds 

a, b, cM(ab)c=a(bc) 

2.  is called commutative on M, if the following implication holds 

a, bMab=ba 

3. eM is called the identity of M with respect to , if the following implication 

holds 

aMae=a=ea 

4. For aM, the element a
-1
M is called the inverse of M with respect to , if the 

following implication holds 

aa
 -1

=a
-1
a=e 

Definition 1.1.4:  

Let  and  be two binary operations on the set M, we say that 

1.  is distributed on  from the left hand side, if the following implication holds 

a, b, cMa(bc)= (ab)(ac) 

2.  is distributed on  from the right hand side, if the following implication holds 

a, b, cM (bc)a=(ba)(ca) 

3.  is distributed on , if it is distributed from left and right hand sides. 
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Examples 1.1.5: 

1. The standard addition + is associative and commutative on Z. 

2. The standard subtraction is neither associative nor commutative on Z, since 

2,3,4Z2-(3-4)=3-5=(2-3)-4 

3.  is the identity element of Power (X) with respect to . While X is the identity 

element of Power (X) with respect to . 

4. In the algebraic structure (Power (X),),  is the only element that has inverse. 

While in (Power (X),), X is the only element that has inverse.  

5. The standard multiplication  is distributed on the standard addition + in R.  

     Remark 1.1.6:  

     Henceforth, we write ab instead of ab. 

     Example 1.1.7:  

     Consider R. Define  on R as follows 

ab=a+b+1 

     Exercise 1.1.8:  

Consider R. Define  on R as follows    ab=
𝒂𝒃

𝟒
 

1. Verify whether  is associative or commutative. 

2. Does R have the identity element? 

3. Does any aR have the inverse? 

  Definition 1.1.9:  

Let F and +F, F be two binary operations on F. A triple (F,+F,F) is called a field if 

the following conditions hold 

1. +F is associative on F. 

2. F has the identity element with respect to +F, we use 0 to this identity element. 

3. Any element of aF has the inverse with respect to +F. The inverse of any 

element aF is denoted by -Fa. 
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4. +F is commutative on F. 

5. F is associative on F\{0}. 

6. F\{0} has the identity element with respect to F, we use e to this identity element. 

7. Any element of F\{0} has the inverse with respect to F. The inverse of any 

element aF\{0} is denoted by a
 -1

. 

8. F is commutative on F\{0}. 

9. F is distributed on +F. 

 

Example 1.1.10: 

1. (Q,+,) is afield. 

2. (R,+,) is a field. 

3. (Z,+,) is not a field.  

 

1.2 Vectors 

        Definition 1.2.1:  

       A vector is a quantity that has both magnitude and direction.  

 

      Vectors describe the movement of an object with respect to another point.  

      Velocity, acceleration and force are some examples of vectors. 

- Speed is the time rate at which an object is moving along a path, while velocity is 

the rate and direction of an object’s movement. 

- Acceleration is the rate of change of the velocity of an object with respect to time.  

- A force is an influence that can change the motion of an object. 

       In R
2
, any vector can be written as 𝒗⃗⃗ =(vx,vy), where vx and vy are real numbers.  

        |v|= r (magnitude)=√𝒗𝒙𝟐 + 𝒗𝒚𝟐 

        Direction ()=tan 
-1(
𝒗𝒚

𝒗𝒙
) 

       Notice that (r, ) is the polar representation of v. 
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Example 1.2.2:  

  The vector v=(1,√𝟑) has magnitude r=√𝟏𝟐 + (√𝟑)
𝟐
=2 and direction =tan

-1(√𝟑
𝟏
)=𝝅

𝟑
  or 

=+
𝝅

𝟑
. According to the position of v, =

𝝅

𝟑
. 

So (2, 𝝅
𝟑

 ) is the polar representation of v. 

On the other hand, for a point in polar coordinate (2, 𝝅
𝟑

 ),                      

x=rcos(
𝝅

𝟑
)=2(

𝟏

𝟐
)=1 and y=r sin(

𝝅

𝟑
)=2(

√𝟑

𝟐
)= √𝟑 .  

Hence (1,√𝟑) is the Cartesian representation of (2, 𝝅
𝟑

 ). 

Definition 1.2.3: 

1- For any vector 𝒗⃗⃗ , the -𝒗⃗⃗  is the vector with the same magnitude and opposite 

direction. 

2- The zero or the null vector is a vector that has a zero magnitude and no direction 

and denoted by 𝟎⃗⃗ . 

Pulling a rope from its two ends with equal force but in opposite directions is an 

example of null force (zero vector). 

Definition 1.2.4:  

   Let 𝒗⃗⃗ =(vx,vy) and 𝒘⃗⃗⃗ =(wx,wy) be two vectors in R
2
 and c (scalar)R. The vector addition 

and the scalar multiplication of vectors are defined as follows 

1.  𝒗⃗⃗ +𝒘⃗⃗⃗ =(vx+wx,vy,+wy).  (vector addition) 

2. c𝒗⃗⃗ =(cvx,cvy).   (scalar multiplication) 

Definition 1.2.5: 

   A vector 𝒗⃗⃗ =(vx, vy) is called a unit vector if |𝒗⃗⃗ |=1. 

The standard unit vectors in R
2
 are 𝒊̂=(1,0) and 𝒋̂=(0,1). 

Any vector can be written as 𝒗⃗⃗ = vx𝒊̂+ vy𝒋̂. 
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Proposition 1.2.6:  

For any vector 𝒗⃗⃗ , the vector 𝒘⃗⃗⃗ =
𝒗⃗ 

|𝒗|
 is a unit vector.  

Remark 1.2.7: 

 We may define vectors in R
n
 as follows 

𝒗⃗⃗ =(v1,…,vn), where viR, for all i. 

In this case, |𝒗⃗⃗ |=√∑ 𝒗𝒊
𝟐𝒏

𝒊=𝟏 . 
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Chapter 2: Matrix Theory 

2.1 Basic definitions 

Definition 2.1.1: 

A matrix A is a rectangular array of numbers arranged into rows and columns. 

𝑨 = (
𝒂𝟏𝟏 ⋯ 𝒂𝒏𝟏
⋮
𝒂𝒎𝟏

  ⋮
⋯ 𝒂𝒎𝒏

)

𝒎×𝒏

 

- m is the number of rows and n is the number of columns. 

- The object 𝒂𝒊𝒋 is the entry of the matrix A, located in i-th row and j-th column. 

- A is called an mn matrix or A is a matrix of dimension (order) mn. 

  Definition 2.1.2: 

A matrix of the dimension 

1. 1n is called a row vector. 

2. m1 is called a column vector. 

According to Definition 2.1.2, any vector 𝒗⃗⃗  in R
n
 can be considered as a 1n matrix 

𝒗⃗⃗ =(𝒗𝟏 ⋯ 𝒗𝒏), 

or an n1 matrix  

𝒗⃗⃗ =(

𝒗𝟏
⋮
𝒗𝒏
) 

Definition 2.1.3: 

Let A be a matrix of dimension mn, A is said to be 

1. Square, if m=n. 

2. Zero matrix “0”, if 𝒂𝒊𝒋=0, for all i, j.  

Notice that 0 matrix can be of any dimension. 
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Definition 2.1.4: 

Let A be a square matrix of dimension n,  

1. The set of entries 𝒂𝒊𝒊, is called the main diagonal of A. 

2. The sum ∑ 𝒂𝒊𝒊
𝒏
𝒊=𝟏  is called the trace of the matrix A, and is denoted by trac(A). 

3. A is called a diagonal matrix if  

ij𝒂𝒊𝒋=0 

4. A is called identity matrix, if  

𝒂𝒊𝒋 = {
𝟏   𝒊𝒇 𝒊 = 𝒋
𝟎   𝒊𝒇 𝒊 ≠ 𝒋

 

Usually, identity matrix of order n is denoted by In. Notice that, the identity 

matrix can be defined by the Kronecker delta function ij. 

        Definition 2.1.5:  

   Let A be an mn matrix, the transpose of A is the matrix generated by interchanging 

the rows and columns of the matrix A and denoted by A
T
. Clearly A

T
 is a matrix of 

dimension nm matrix.  

𝒂𝒊𝒋 is an entry in A𝒂𝒋𝒊 is an entry in A
T
. 

Example 2.1.6: 

Let A= (
𝟐 𝟎 −𝟑
𝟓 √𝟑 𝟒

), then A
T
=(

𝟐 𝟓
𝟎
−𝟑

√𝟑
𝟒

). 

Exercise 2.1.7: 

Let A be a square matrix of order n, then 

trac (A
T
)=trac(A). 

2.2 Matrix operations 

2.2.1 Addition of matrices 

Definition 2.2.1.1:  

Let A=(𝒂𝒊𝒋)mn and B=(𝒃𝒊𝒋)mn be two matrices of dimension mn, then the sum of A and 

B is given by 
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A+B=(𝒂𝒊𝒋+𝒃𝒊𝒋) 

This means that A+B=(𝒄𝒊𝒋), where 𝒄𝒊𝒋 = 𝒂𝒊𝒋 + 𝒃𝒊𝒋. 

Example 2.2.1.2: 

Let A=(

𝟓 𝟐 −𝟒
𝟐
𝟏
𝟖

−𝟏 𝟏
𝟎 𝟕
𝟒 𝟔

) and B=(

𝟒 𝟎 𝟐
−𝟕
𝟐
𝟒

𝟏 𝟎
𝟗 𝟑
−𝟏 𝟏𝟏

) 

Exercise 2.2.1.3:  

Prove that, for any matrix A of dimension mn, 

1. A+0=A=0+A, where 0 is the mn zero dimensional matrix. 

2. (𝑨𝑻)𝑻 = 𝑨. 

Theorem 2.2.1.4:  

Let A, B and C be matrices of order mn, then 

1. A+B is a matrix of order mn. 

2. A+(B+C)=(A+B)+C. 

3. A+B=B+A 

4. (A+B)
T
=A

T
 +B

T
 

5. trac(A+B)=trac(A)+trac(B), where m=n. 

 

2.2.2 Multiplication of matrices by a scalar 

Definition 2.2.2.1:  

Let A=(𝒂𝒊𝒋)mn and  be a scalar, then the multiplication A is a matrix of dimension 

mn and is given by  

A =(𝒂𝒊𝒋)mn 

It is easy to verify that A=A. 

Example 2.2.2.2:  

Let A be the matrix given in Example 2.2.1.2 and =2. 
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Remark 2.2.2.3:  

   From Definition 2.2.1.1 and Definition 2.2.2.1, we may define the subtraction of two 

matrices of the same order (dimension). 

Definition 2.2.2.4: 

 Let A=(𝒂𝒊𝒋)mn and B=(𝒃𝒊𝒋)mn be two matrices of dimension mn, then the subtraction 

of A and B is denoted by A-B and is given by 

A-B=A+(-B) 

Exercise 2.2.2.5: 

Let A and B be matrices of the same order and R, then  

1. A=A 

2. (A+B)=A+B 

3. Let A be a matrix of order mn, then, A-A=0. 

4. (A)
T
=A

T
. 

5. A0=0=0A. 

6. trac(A)=trac(A). 

 

2.2.3 Multiplication of two matrices 

Definition 2.2.3.1:  

Let A=(𝒂𝒊𝒋)mn and B=(𝒃𝒊𝒋)nk be two matrices. The multiplication of A and B is a matrix 

C=AB of order mk such that 

𝒄𝒊𝒋 =∑𝒂𝒊𝒖𝒃𝒖𝒋

𝒏

𝒖=𝟏

 

Example 2.2.3.2:  

A=(
𝟐 −𝟏 𝟎
𝟏 𝟒 𝟓

) and B=(
𝟑 −𝟐 𝟏 𝟒
𝟏
−𝟒

𝟎
𝟔

𝟐 𝟓
−𝟏 −𝟏

) 
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Theorem 2.2.3.3:  

Let A, B and C be matrices of order kl, lm and mn respectively, then 

1. A(BC)=(AB)C. 

2. (AB)=(A)B=A(B). 

3. (AB)
T
=B

T
A

T
. 

Theorem 2.2.3.4: 

Let A and B be square matrices of the same order, then 

trac(AB)= trac(BA). 

Theorem 2.2.3.5:  

Let A=(𝒂𝒊𝒋), B=(𝒃𝒊𝒋) and C=(𝒄𝒊𝒋) be conformable matrices, then 

1. C(A+B)= CA+CB. 

2. (A+B)C=AC+BC. 

Theorem 2.2.3.6:  

Let A be a square matrix of order n, then 

AIn=A=InA. 

Exercise 2.2.3.7:  

Give an example to show that ABBA, even A and B are square matrices of the same 

order. 

Remark 2.2.3.8: 

Let A be a matrix and n be a positive integer,  

A
n
=AA…A 

   n-times 
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2.3 Determinant of matrix 

- Determinant of square matrix of order two 

Definition 2.3.1:  

Let 𝑨 = (
𝒂𝟏𝟏 𝒂𝟏𝟐
𝒂𝟐𝟏 𝒂𝟐𝟐

). The determinant of A is defined as follows 

|A|=det (A)=𝒂𝟏𝟏𝒂𝟐𝟐 − 𝒂𝟏𝟐𝒂𝟐𝟏 

Example 2.3.2:  

Let 𝑨 = (
−𝟑 𝟐
−𝟒 𝟓

) 

- Determinant of square matrix of order n, n>2. 

Definition 2.3.3:  

Let A=(𝒂𝒊𝒋) be a square matrix of order n, n>2 

1. The minor matrix of A is the matrix M=(𝒎𝒊𝒋) such that 𝒎𝒊𝒋 is the 

determinant of the remaining matrix after eliminating the i-th row 

and the j-th column form the original matrix.  

2. The cofactor matrix of A is the matrix C=(𝒄𝒊𝒋), where 𝒄𝒊𝒋=(-1)
i+j𝒎𝒊𝒋.  

Definition 2.3.4: 

Let A=(𝒂𝒊𝒋) be a square matrix of order n, n>2. The determinant of A is defined as 

follows, 

|𝑨| =∑𝒂𝒊𝒋 𝒄𝒊𝒋

𝒏

𝒋=𝟏

 

Notice that the above formula can be applied for square matrices of order 2 as well. 

Example 2.3.5: 

Let A= (
𝟐 −𝟑 𝟏
𝟓
𝟒

−𝟏 𝟎
𝟕 𝟑

) 
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Exercise 2.3.6: 

Find the determinant of the matrix 

1. A= (
−𝟏 𝟒 𝟎
𝟖
−𝟑

𝟒 𝟐
𝟏 𝟓

) 

2. A=(

𝟑 𝟐 −𝟏 𝟔
𝟎
𝟗
𝟒

𝟓 𝟐 𝟐
𝟖 𝟏 −𝟒
−𝟐 𝟏 𝟕

) 

Theorem 2.3.7 (Properties of determinant of a matrix) 

Let A and B be square matrices of order n, then 

1. |AB|=|A||B|. 

2. |In|=1. 

3. The sign of the determinant changes under the row interchange. 

4. The sign of the determinant changes under the column interchange. 

5. If all the elements of a row (or column) are zeros, then the value of the 

determinant is zero. 

6. |A|=
n
|A|. 

7. Determinant is a linear function of a row or a column. 

8. If two rows (columns) are identical, then |A|=0. 

9.  |A|=|A
T
|. 

10. Is |A+B|=|A|+|B|? 

Definition 2.3.8:  

A square matrix A is said to be non-singular if |A|0. Otherwise it is called singular. 

2.4 Invertible matrix 

Definition 2.4.1: 

Let A be a non-singular matrix of order n, a non-singular square matrix B of order n is 

called the inverse of A if  

AB=In=BA 
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If such a matrix B exists satisfies the above formula, then we say that A is an invertible 

matrix of order n. Notice that, if B is the inverse of A, then A is the inverse of B as well. 

We use the notation A
-1

 to the inverse of a matrix A.  

Definition 2.4.2:  

   Let A be a square matrix of order n, The adjoint of the matrix A, denoted by adj(A) is 

the transpose of the cofactor matrix of A. That means,  

adj(A)=C
T
 

Theorem 2.4.3: 

Let A be a non-singular matrix of order n, the inverse of A can be find from the 

following formula: 

𝑨−𝟏=
𝟏

|𝑨|
𝒂𝒅𝒋(𝑨) 

Example 2.4.4:  

Let A= (
𝟐 −𝟑 𝟏
𝟓
𝟒

−𝟏 𝟎
𝟕 𝟑

) 

Theorem 2.4.5:  

Suppose that A is an invertible matrix of order n. Prove the following  

1. |A
-1

|=
𝟏

|𝑨|
 

2. (A
-1

)
-1

=A 

3. (AB)
-1

=B
-1

A
-1

 

4. (A
T
)
-1

=(A
-1

)
T
 

5. (A)
-1

=
𝟏

𝝀
 A-1

 

6. (A
-1

)
n
=A

-n
, where 𝑨−𝒏 =

𝟏

𝑨𝒏
 

 

 

 

 



17 
 

1.5 Some types of square matrix 

Definition 2.5.1: 

Let A=(𝒂𝒊𝒋) be a square matrix of order n, A is said to be 

1. Symmetric, if A
T
=A. 

2. Skew symmetric if A
T
=-A. 

3. Upper triangular if aij=0, for all i>j. 

4. Lower triangular if aij=0, for all i<j. 

5. Triangular, if it is upper triangular or lower triangular or both.   

 

1.6 Rank of matrix 

Definition 2.6.1: 

Let A be an mn matrix (possibly m=n). The rank of A is the order of the nonzero 

determinant of highest order that may be formed from the elements of a matrix by 

selecting arbitrarily an equal number of rows and columns. 

Example 2.6.2: 

Let A=(
𝟐 −𝟑 𝟏 −𝟒
𝟓
−𝟒

−𝟐
𝟔

𝟑
−𝟐

𝟐
𝟖
) and B=(

𝟐 −𝟑 𝟔 −𝟒
𝟓
−𝟒

−𝟐
𝟔

𝟏𝟓
−𝟏𝟐

𝟐
𝟗
) 

1.7 Row echelon form matrix 

Definition 2.7.1: 

  The leading entry in each entire row of a matrix is considered as the first nonzero 

entry in that row.  

     Definition 2.7.2: 

A matrix is said to be in row echelon form ref (echelon form), if 

1. Each leading entry is in a column to the right of the leading entry in the previous 

row. 

2. Rows with all zero elements, if any, are below rows having nonzero elements. 
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Example 2.7.3: 

      The following matrices are in ref 

A=(
𝟏 𝟓 𝟒
𝟎
𝟎

𝟏
𝟎

−𝟑
𝟏
),          B=(

𝟏 𝟎 −𝟐 𝟑
𝟎
𝟎

𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

),          C=(
𝟏 𝟐 𝟎
𝟎
𝟎

𝟏 𝟐
𝟎 𝟎

) 

- Pivot position and pivot column 

Definition 2.7.4: 

   A pivot position in a matrix is the location of a leading entry in the ref of a matrix. A 

pivot column is a column that contains a pivot position.       

Definition 2.7.5: 

A matrix is said to be in reduced row echelon form rref (canonical form), if 

1. The matrix satisfies conditions for a ref. 

2. The leading entry in each row is the only nonzero entry in its column. 

Example 2.7.6: 

   The following matrices are in rref. 

 A= (
𝟏 𝟎 𝟎
𝟎
𝟎

𝟏
𝟎

𝟎
𝟏
),          B= (

𝟏 𝟎 𝟎 𝟎
𝟎
𝟎

𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

),          C= (
𝟏 𝟎 𝟎
𝟎
𝟎

𝟏 𝟎
𝟎 𝟎

) 

Exercise 2.7.7 

Transform the following matrices to ref 

1. A=(
𝟒 𝟑 −𝟏 𝟐
𝟑 𝟑 −𝟐 𝟔
𝟓 𝟏 𝟏 −𝟐

) 

2. B=(

𝟓 𝟔 𝟑
−𝟒 𝟎 𝟏
−𝟏
𝟐

𝟑
𝟒

𝟐
−𝟑

) 
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Chapter 3: System of Linear Equations 

3.1 Basic definitions 

Definition 3.1.1: 

A system of m linear equations in n unknown can be defined as follows,  

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 = 𝒃𝟏
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 = 𝒃𝒎

… (3.1) 

where 𝒂𝒊𝒋 and bi are scalars in F. 

A solution of system (3.1) is a vector (𝒔𝟏⋯𝒔𝒏)F
n
 which satisfies all m equations 

simultaneously. 

𝒂𝟏𝟏𝒔𝟏 +⋯+ 𝒂𝟏𝒏𝒔𝒏 = 𝒃𝟏
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝒂𝒎𝟏𝒔𝟏 +⋯+ 𝒂𝒎𝒏𝒔𝒏 = 𝒃𝒎

 

Definition 3.1.2: 

The Linear System (3.1) is called homogeneous, if bi=0, for all i. Otherwise is called 

nonhomogeneous. 

Definition 3.1.3: 

Two linear systems  

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 = 𝒃𝟏
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 = 𝒃𝒎

 

and  

𝒄𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 = 𝒅𝟏
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝒄𝒌𝟏𝒙𝟏 +⋯+ 𝒂𝒌𝒏𝒙𝒏 = 𝒅𝒌

 

are called equivalent if they both have exactly the same solutions. 
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Definition 3.1.4: (Row Elementary Operations-REO) 

The following operations on a system of linear equations are called row elementary 

operations. 

Type I: Interchange the rows ri and rk. 

Type II: Multiply the row ri by a nonzero scalar . 

Type III: Replace the row ri by the row rk+ri, ik. 

Theorem 3.1.5:  

 For a linear system, if we apply at least (one or more) elementary operations of REO, 

then we obtain an equivalent system to the original one.   

2.2 Representing linear systems with matrices 

System (3.1) can be written as 

(
𝒂𝟏𝟏 ⋯ 𝒂𝟏𝒏
⋮
𝒂𝒎𝟏

⋮ ⋮
⋯ 𝒂𝒎𝒏

)(

𝒙𝟏
⋮
𝒙𝒏
) = (

𝒃𝟏
⋮
𝒃𝒎

) 

 

Or, in matrix equation, as 

AX=B … (3.2) 

where,  

A=(
𝒂𝟏𝟏 ⋯ 𝒂𝟏𝒏
⋮
𝒂𝒎𝟏

⋮ ⋮
⋯ 𝒂𝒎𝒏

) is called the coefficients matrix. 

X=(

𝒙𝟏
⋮
𝒙𝒏
) is called the column matrix of unknowns (variables). 

B= (
𝒃𝟏
⋮
𝒃𝒎

) is called the column matrix of constants. 

Clearly, any solution of (3.2) is a solution of (3.1) and vice versa. 
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Theorem 3.2.1: 

   In Definition 3.1.1, if F is infinite and System (3.1) has more than one solution, then 

there is infinite number of solutions.  

Proof: 

Let X1 and X2 be two distinct solutions of (3.2). Then X
*
=X1+(X1-X2), F is also a 

solution of (3.2). 

Definition 3.2.2: 

The Augmented matrix of the system (3.2) is defined by 

(

𝒂𝟏𝟏
⋮
𝒂𝒎𝟏

⋯
⋮
⋯

𝒂𝟏𝒏
⋮
𝒂𝒎𝒏

|
𝒃𝟏
⋮
𝒃𝒎

) 

Definition 3.2.3: 

A linear equation (hyperplane)  

𝒂𝟏𝒙𝟏 +⋯+ 𝒂𝒏𝒙𝒏 = 𝒃 … (3.3) 

is said to be degenerate, if 𝒂𝒊=0, for all i. Otherwise is called a non-degenerate linear 

equation. 

Remark 3.2.4: 

Let System (3.1) contains a degenerate equation, 

1. If b0, then the system has no solution. 

2. If b=0, then the degenerate equation may be deleted from the system without 

changing the solution of the system. 

Definition 3.2.5: 

   For a non-degenerate equation, the leading unknown (variable) is the variable with 

the first non-zero coefficient (entry).  
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Definition 3.2.6: 

   A matrix A is said to be row equivalent to a matrix B, if B can be obtained by a finite 

sequence of REO. 

Theorem 3.2.7: 

   Any matrix is a row equivalent to a matrix in ref. 

Proof: Not required. 

Theorem 3.2.8: 

Any matrix is a row equivalent to a unique matrix in rref. 

Proof: Not required. 

Theorem 3.2.9: 

Let AX=B and CX=D be two linear systems of the same number of equations and 

unknowns. If the augmented matrix [A:B] and [C:D] are row equivalents, then both 

systems are equivalents. 

3.3 Solving linear systems 

Definition 3.3.1: 

     In a system of ref, an unknown xi is called a basic variable if it corresponds to a pivot 

column i. Otherwise xi is called a free variable.  

Example 3.3.2: 

The solution of the following system 

𝟐𝒙 − 𝒚 + 𝒛 = 𝟏
𝒙 + 𝒚 − 𝟐𝒛 = 𝟒

 

is defined by 

𝒙 =
𝟓

𝟑
+
𝟏

𝟑
𝒕

𝒚 =
𝟕

𝟑
+
𝟓

𝟑
𝒕

𝒛 = 𝒕
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Definition 3.3.3: 

The Linear System (3.1) is said be 

1. Consistent, if it has a solution (either unique or infinite number of solutions). 

2. Inconsistent, if it has no solution. 

Theorem 3.3.4: 

Consider a system of ref with m equations and n unknowns. Let r be the number of 

nonzero rows. (Clearly rm) 

1. The system is inconsistent, if among the nonzero rows, there is a row for which 

all entries are zero except the entry of the last column. 

That means, a row like (0 0 … 0|b), b0. 

2. If rn, then the system is consistent 

2.1 If r<n, then the system has infinite number of solutions. 

2.2 If r=n, the system has unique a solution. 

3.4 Solving system of linear equations 

3.4.1 Gaussian elimination method 

      Gaussian elimination is a method for solving matrix equation (3.2). The steps are 

1. Compose the augmented matrix 

2. Perform elementary row operations to put the augmented matrix into the upper 

triangular form. 

3. Use backwards substitution to find the values of the unknowns. 

 

Example 3.4.1.1 

Solve the following system by using Gaussian elimination method 

1. 
𝟐𝒙 − 𝟑𝒚 + 𝟒𝒛 = −𝟑
𝟓𝒙 + 𝟐𝒚 − 𝒛 = 𝟓
𝟔𝒙 − 𝟐𝒚 + 𝟑𝒛 = 𝟐

 

2. 
𝒙 + 𝟐𝒚 − 𝒛 = 𝟐
𝟐𝒙 + 𝟓𝒚 − 𝟑𝒛 = 𝟏
𝒙 + 𝟒𝒚 − 𝟑𝒛 = 𝟑

 

 

 

https://mathworld.wolfram.com/MatrixEquation.html
https://mathworld.wolfram.com/ElementaryRowandColumnOperations.html
https://mathworld.wolfram.com/AugmentedMatrix.html
https://mathworld.wolfram.com/UpperTriangularMatrix.html
https://mathworld.wolfram.com/UpperTriangularMatrix.html
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3. 
−𝟐𝒙 + 𝟑𝒚 + 𝟑𝒛 = −𝟗
𝟑𝒙 − 𝟒𝒚 + 𝒛 = 𝟓

−𝟓𝒙 + 𝟕𝒚 + 𝟐𝒛 = −𝟏𝟒
 

 

3.4.2 Gauss-Jordan elimination 

   We may use Gauss-Jordan elimination for solving linear system (3.1). In 

fact we do the same steps as we have done in Gaussian elimination method as 

well as we continue until the augmented matrix becomes in reduced row 

echelon form. 

       Example 3.4.2.1:  

       Solve the following system (Use Gauss-Jordan elimination) 

𝟐𝒙 + 𝟑𝒚 + 𝒛 = 𝟏
𝒙 + 𝟓𝒚 − 𝟒𝒛 = −𝟏𝟐
𝟒𝒙 − 𝒚 + 𝟐𝒛 = 𝟗

 

 

       Remark 3.4.2.2: 

         We may use Gauss-Jordan elimination to find the inverse of matrices.  

  Example 3.4.2.3:  

       Use Gauss-Jordan elimination to find the inverse of the following matrices 

1. 𝑨 = (
−𝟑 𝟓
𝟐 𝟏

)  

2. 𝑩 = (
𝟏 𝟑 𝟏
−𝟏
𝟑

−𝟐 𝟏
𝟕 −𝟏

) 

 

Exercise:  

A system AX=B, where A is a square matrix of order n has a unique solution if and only 

if A is invertible. 
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3.4 Homogeneous linear system of equations 

A homogeneous linear system of m equations and n unknowns can be defined as 

follows, 

𝒂𝟏𝟏𝒙𝟏 +⋯+ 𝒂𝟏𝒏𝒙𝒏 = 𝟎
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝒂𝒎𝟏𝒙𝟏 +⋯+ 𝒂𝒎𝒏𝒙𝒏 = 𝟎

… (3.4) 

                In fact, System (3.4) has always {x1=0,…, xn=0} as a solution called the zero or 

trivial solution.  

Theorem 3.5.1: 

In the ref of System (3.4), let k be the number of nonzero rows. 

1. If k<n, then the system has a nontrivial solution. 

2. If k=n, then the system has a unique solution.  

Corollary 3.5.2: 

Consider a homogeneous linear system of equations 

AX=0, where A is an mn matrix. 

If m<n, then the system has a nontrivial solution. 

Remark 3.5.3:  

Let A be a square system in the following homogeneous linear system,  

AX=0. 

If |A|=0, then the system has a nontrivial solution. Is the converse true? Explain your 

answer. 

 Definition 3.6.7: 

For a nonhomogeneous system AX=B, the system AX=0 is called its associated 

homogenous system. 
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Theorem 3.6.8: 

Let xp be a particular solution of AX=B. 

1. If xh is a solution of the associated homogeneous system, then xp+xh is a solution 

of AX=B. 

2. If u is a solution of AX=B, then there exists a solution xh of the associated 

homogeneous system such that u=xp+xh.    

 Exercise 3.6.9: 

For each of the following, if it is possible give an example. Otherwise explain why? 

1. An inconsistent system with an associated homogeneous system that has 

infinitely many solutions. 

2. An inconsistent system with an associated homogeneous system that has a unique 

(trivial) solution. 
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Chapter 4: Vector space (Linear space) 

4.1 Basic definitions 

Remark:  

Let  and  be scalars in a field F.   

- Axioms of vector addition (⊕) 

Let 𝒗⃗⃗ , 𝒘⃗⃗⃗  and 𝒛⃗  be vectors in a set V and ⊕ be an operation 

1. Closure property  

𝒗⃗⃗ ⊕ 𝒘⃗⃗⃗ V 

2. Associative property 

𝒗⃗⃗ ⊕ (𝒘⃗⃗⃗ ⊕ 𝒛⃗  ) = (𝒗⃗⃗ ⊕ 𝒘⃗⃗⃗  ) ⊕ 𝒛⃗  

3. Commutative property 

𝒗⃗⃗ ⊕ 𝒘⃗⃗⃗ = 𝒘⃗⃗⃗ ⊕ 𝒗⃗⃗  

4. The existence of the identity vector 

𝒗⃗⃗ ⊕ 𝟎⃗⃗ = 𝒗⃗⃗ = 𝟎⃗⃗ ⊕ 𝒗⃗⃗  

5. The existence of the additive inverse  

𝒗⃗⃗ ⊕ (−𝒗⃗⃗ ) = 𝟎⃗⃗ = (−𝒗⃗⃗ ) ⊕ 𝒗⃗⃗  

- Axioms of vector multiplication by a scalar (⊙) 

Let 𝒗⃗⃗  and 𝒘⃗⃗⃗  be vectors in V and an operation ⊙  

6.  

⊙ 𝒗⃗⃗ V 

7.  

⊙ (𝒗⃗⃗ ⊕ 𝒘⃗⃗⃗  ) = (⊙ 𝒗⃗⃗ ) ⊕ (⊙ 𝒘⃗⃗⃗ ) 

8.  

(+ ) ⊙ 𝒗⃗⃗ = (⊙ 𝒗⃗⃗ ) ⊕ (⊙ 𝒗⃗⃗ ) 

9.  

⊙ (⊙ 𝒗⃗⃗ ) = () ⊙ 𝒗⃗⃗  

10.  

𝟏⊙ 𝒗⃗⃗ = 𝒗⃗⃗ = 𝒗⃗⃗ ⊙ 𝟏 
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Definition 4.1.2: 

   A vector space (linear space) V over a field F consists of a set of vectors V and 

scalars in F such that the axioms of vector addition and axioms of vector 

multiplication by a scalar holds. 

Example 4.1.3: 

Let V={𝒗⃗⃗ |𝒗⃗⃗  is a vector in R
2
} and F=R. Then V is vector space over R. 

 

Example 4.1.4: 

 Let V={𝒗⃗⃗ |𝒗⃗⃗  is a vector in R
n
} and F=R. Then V is vector space over R. 

 

Example 4.1.5: 

Let P2={p(x)| p(x)=𝒂𝟐𝒙
𝟐 + 𝒂𝟏𝒙 + 𝒂𝟎, 𝒂𝒊R} be the set of all polynomials of degree 

less than or equal to 2 together with the zero polynomial. 

Then V=P2 is vector space over the field F=R under the addition of polynomials 

and standard multiplication. 

        More generally, let  

        Pn={p(x)| p(x)=∑ 𝒂𝒊𝒙
𝒊𝒏

𝒊=𝟎 , 𝒂𝒊R} be the set of all polynomials of degree less than or 

to n together with the zero polynomial. 

Then V=Pn is vector space over the field F=R. 

         Example 4.1.6: 

          Let M be the set of all matrices of order mn with real coefficients.  

           Then M is a vector space under the matrix addition and the matrix multiplication    

by scalars. 

          Example 4.1.7: 

         Let A and R
A
={f|f:AR is a mapping}.  

          Define + on R
A
 such that 

(f+g)(x)=f (x)+g (x) 
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and the scalar multiplication is the  standard multiplication of R.  

Then R
A
 is a vector space over R.  

Theorem 4.1.8: 

Let V be a vector space over a field F, then 

1. The additive identity 𝟎⃗⃗  is unique.  

2. The additive inverse −𝒗⃗⃗  of 𝒗⃗⃗  is unique. 

3. 0𝒗⃗⃗ =𝟎⃗⃗ . (0 is the zero in F, while 𝟎⃗⃗  is the zero vector). 

4. (-1)𝒗⃗⃗ =-𝒗⃗⃗ . 

Theorem 4.1.9 (Cancellation law) 

Let 𝒗⃗⃗ , 𝒘⃗⃗⃗  and 𝒛⃗  be vectors in a vector space V over a filed F, then 

𝒗⃗⃗ +𝒘⃗⃗⃗ =𝒗⃗⃗ +𝒛⃗ 𝒘⃗⃗⃗ =𝒛⃗  

4.2 Linear combination and span 

o Linear combination 

Definition 4.2.1: 

Let V be a vector space over a field F and 𝒗𝟏⃗⃗⃗⃗ , … , 𝒗𝒏⃗⃗ ⃗⃗  be a set of vectors in V. A 

vector 𝒘⃗⃗⃗ V is said to be a linear combination of vectors 𝒗𝟏⃗⃗⃗⃗ , … , 𝒗𝒏⃗⃗ ⃗⃗  if  

 scalars 𝟏, … , 𝒏 in F (not necessary to be distinct) such that  

𝒘⃗⃗⃗ = ∑𝝀𝒊𝒗⃗⃗ 𝒊

𝒏

𝒊=𝟏

 

     Example 4.2.2: 

       Consider the vector space R
2
 over the field R and 𝒗𝟏⃗⃗⃗⃗  =(-1,3) and 𝒗𝟐⃗⃗⃗⃗ =(4,1). Check 

whether (10, 9) is a linear combination of A or not.      

     Example 4.2.3: 

      Consider the vector space R
3
 over the field R and let A={(0,2,4), (3,5,1), (3,7,5)}. 

Check whether (1,2,-1) is a linear combination of A or not. 
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- Span 

Definition 4.2.4: 

Let V be a vector space, a subset S={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏}V is said to span (generate) V, if the 

following implication holds: 

𝒗⃗⃗ V𝒗⃗⃗  is a linear combination the set S. 

Example 4.2.5: In the vector space R
4
 over the field R, the set  

𝑺 = {(

𝟏
𝟎
𝟎
𝟎

) ,(

𝟎
𝟏
𝟎
𝟎

) ,(

𝟎
𝟎
𝟏
𝟎

) ,(

𝟎
𝟎
𝟎
𝟏

)} 

spans the vector space R
4
 over R. 

Generally, for the vector space R
n
 over the field R, the set 

𝑺 = {(𝟏, 𝟎, … , 𝟎), (𝟎, 𝟏, … , 𝟎),… , (𝟎, 𝟎, … , 𝟏)} 

spans the vector space R
n
 over R. 

Example 4.2.6: 

In the vector space P3 over the field R, the set  

𝑺 = {𝒙𝟑, 𝒙𝟐, 𝒙, 𝟏} 

spans P3. 

Proposition 4.2.7: 

Let S={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏} be a span of a vector space V. For any 𝒘⃗⃗⃗ V, the set                

S1={𝒘⃗⃗⃗ , 𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏} spans V. 

Proposition 4.2.8: 

Let S={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏} be a span of a vector space V. If 𝒗⃗⃗ 𝒌S is a linear combination of some 

of the other vi 
,
s. Then S\{𝒗⃗⃗ 𝒌} spans V. 

Example 4.2.9: 



31 
 

In the vector space R
3
 over the field R, the set  

𝑺 = {(
𝟏
𝟎
𝟏
) , (

𝟎
𝟏
𝟏
) , (

𝟎
𝟎
𝟏
)} spans the vector space R

3
 over R. 

Example 4.2.10: 

In the vector space R
3
 over the field R, the set  

𝑺 = {(
𝟏
𝟐
𝟏
) , (

𝟐
𝟓
𝟒
) , (

−𝟏
−𝟑
−𝟑
)} 

does not span the vector space R
3
 over R. 

Example 4.2.11:  

In the vector space P3 over R, 

1. The set {1+x+x
2
, 1+2x+3x

2
,1+5x+8x

2
} spans P3. 

2. The set {1+2x, -1+x+2x
2
,3-4x

2
} does not span P3. 

Exercise 4.2.12:  

In the vector space P2 over R, let p1(x)=2x
2
-x+5, p2(x)=x

2
+4x-1 and p3(x)=-3x

2
-2x. Check 

whether q (x)=x
2
-2x+3 is a linear combination of p1, p2 and p3. 

 

4.3 Subspace 

Definition 4.3.1:  

Let V be a vector space over a field F. A nonempty subset WV is said to be a 

subspace of V over the field F if W is a vector space with the same vector addition 

and vector scalar multiplication of V over the field F. 

Clearly, any vector space has at least two subspaces, W={0} and W=V.                      

W={0} is called the trivial subspace. 
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Theorem 4.3.2:   

      Let V be a vector space over a field F. A subset WV is a subspace of V over the field 

F if and only if 

1. 𝟎⃗⃗ 𝑾. 

2. 𝒖⃗⃗ , 𝒗⃗⃗ 𝑾𝒖⃗⃗ + 𝒗⃗⃗ 𝑾 

3. 𝒗⃗⃗ 𝑾  F𝒗⃗⃗ 𝑾 

Proposition 4.3.3:  

Let V be a vector space over a field F. A nonempty subset WV is a subspace of V 

over the field F if and only if the following implication holds 

𝒖⃗⃗ , 𝒗⃗⃗ 𝑾  , F𝒖⃗⃗ + 𝒗⃗⃗ 𝑾 

Example 4.3.4: 

Consider the vector space R
n
 over the field R.  The set of all hyperplanes passes 

through the origin is a subspace of R
n
. 

Example 4.3.5: 

In the vector space R
2
 over R, Check whether the following subsets of R

2
 is a 

subspace or not.  

1. W={(x, y)R
2
|xy=0}. 

2. W={(x, y)R
2
|x+y0}. 

Example 4.3.6: 

Let M be a square matrix of order n, 

1. The set of all upper (lower) triangular matrices is a subspace of M. 

2. The set of all symmetric matrices is a subspace of M.  

Theorem 4.3.7: 

   The solution set of the linear homogeneous system in n unknowns is a subspace of 

F
n 

(where F is the field of scalars).  
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Theorem 4.3.8: 

Let M and N be two subspaces of the vector space V. 

1. Show that MN is a subspace of V. 

2. Is MN a subspace of V? If so, prove it. Otherwise explain by giving a 

counterexample. 

Theorem 4.3.9: 

   Let W be a subspace of V and M be a subspace of W. Then M is a subspace of V. So 

the property of subspace is transitive. 

Theorem 4.3.10: 

Let V be a vector space and AV. Define the set  

Span(A)={𝒗⃗⃗ |𝒗⃗⃗  is a linear combination of members of A}. 

Then  

1. Span (A) is a subspace of V called a subspace generated by A. 

2. Span (A) is the smallest subspace of V containing A.   

 Example 4.3.8: In R
3
, let  

𝑨 = {(
𝟏
−𝟏
𝟐
) , (

𝟐
𝟐
𝟑
) , (

𝟒
𝟏
−𝟏
)} 

 Find the span(A). 

Solution:  

x = 
𝟏

𝟑𝟏
(5a-14b+6c),    y = 

𝟏

𝟑𝟏
(-a+9b+5c),   z = 

𝟏

𝟑𝟏
(7a-b-4c) 

Example 4.3.9: In R
3
, let  

𝑨 = {(
𝟏
−𝟏
𝟐
) , (

𝟐
𝟐
𝟑
)} 

 Find the Span (A) 
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Solution: 

Span (A)={(a,b,c)|a-7b+c=0} 

 

Example 4.3.10: In R
3
, let  

𝑨 = {(
𝟏
−𝟏
𝟐
) , (

𝟐
𝟐
𝟑
) , (

𝟒
𝟏
−𝟏
) , (

−𝟏
𝟑
𝟐
)} 

 Find the Span (A) 

Solution:  

x = 
𝟏

𝟑𝟏
(5a-14b+6c+35t),    y = 

𝟏

𝟑𝟏
(-a+9b+5c-38t),   z = 

𝟏

𝟑𝟏
(7a-b-4c+18t), u=t 

4.4 Linear dependence and independence 

Let V be a vector space over a field F and 𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏 be vectors in V. We say that   

𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏 are linearly independent if the following implication holds: For any set of 

scalars 1,…, n 

∑ 𝒊𝒗⃗⃗ 𝒊
𝒏
𝒊=𝟏 = 𝟎𝒊=0 

       Otherwise, 𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏 is called linearly dependent. 

        A subset L={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏} is said to be linearly independent if the vectors 𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏 

are linearly independent  

   An infinite set L of vectors is linearly dependent or independent according to whether 

there do or do not exist vectors 𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏 in S that are linearly dependent. 

Proposition 4.4.1: 

Let V be a vector space over a field F and L={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏}V. 

1. If 𝒗⃗⃗ 𝒊=0, for some i, then L is linearly dependent. 

2. If 𝒗⃗⃗ 𝒊 = 𝒄𝒗⃗⃗ 𝒌, for some 1i, kn and cF, then L is linearly dependent. 

3. Two vectors 𝒗⃗⃗ 𝟏 and 𝒗⃗⃗ 𝟐 are linearly dependent if one of them is a multiple of the 

other. 
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4. If a set L of vectors is linearly independent, then any subset of L is linearly 

independent. Alternatively, if L contains a linearly dependent subset, then L is 

linearly dependent. 

Example 4.4.2: 

In the vector space R
3
 over the field R, the set 

𝑨 = {(
𝟎
𝟐
𝟑
) , (

𝟏
−𝟑
𝟐
) , (

𝟏
𝟏
−𝟏
)} is linearly independent. 

Example 4.4.3: 

In the vector space R
3
 over the field R, the set 

𝑨 = {(
𝟐
𝟏
−𝟏
) , (

𝟎
𝟑
−𝟐
) , (

𝟏
𝟒
−𝟐
)} is linearly independent. 

Example 4.4.4: 

In the vector space R
3
 over the field R, the set 

𝑨 = {(
−𝟒
𝟐
𝟑
) , (

𝟏
−𝟐
−𝟏
) , (

−𝟐
−𝟐
𝟏
)} is linearly dependent. 

Solution: 

x=-t, y=-2t, z=t. 

Theorem 4.4.5: 

   Let V be a vector space over e field F. The vectors 𝒗⃗⃗ 𝟏,…, 𝒗⃗⃗ 𝒌 in V are linearly 

dependent if and only if some 𝒗⃗⃗ 𝒊 is a linear combination of the others. 

Theorem 4.4.6: 

In a vector space V over a filed F, if A={𝒗⃗⃗ 𝟏,…, 𝒗⃗⃗ 𝒏} is a linearly independent set, then 

any vectors has a unique linear combination representation.  
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Fundamental result in linear algebra 

Theorem 4.4.7: 

In a vector space V over a field F, if S={𝒗⃗⃗ 𝟏,…, 𝒗⃗⃗ 𝒔} is a span of V and A={𝒘⃗⃗⃗ 𝟏,…, 𝒘⃗⃗⃗ 𝒕} 

is a linearly independent set, then ts. 

Proof: 

For the set A, consider 

∑𝒙𝒋𝒘⃗⃗⃗ 𝒋

𝒕

𝒋=𝟏

= 𝟎…(𝟏) 

Since S is a span of V, then 

𝒘⃗⃗⃗ 𝒋 =∑𝒂𝒊𝒋𝒗⃗⃗ 𝒊

𝒔

𝒊=𝟏

…(𝟐) 

From (1) and (2), we obtain 

∑𝒙𝒋

𝒕

𝒋=𝟏

∑𝒂𝒊𝒋𝒗⃗⃗ 𝒊 = 𝟎

𝒔

𝒊=𝟏

 

∑(∑𝒂𝒊𝒋𝒙𝒋

𝒕

𝒋=𝟏

)

𝒔

𝒊=𝟏

𝒗⃗⃗ 𝒊 = 𝟎 

Then, we obtain 

∑𝒂𝒊𝒋𝒙𝒋

𝒕

𝒋=𝟏

= 𝟎, 𝐟𝐨𝐫 𝒊 = 𝟏,… , 𝒔 

In other words, we obtain 

𝒂𝟏𝟏𝒙𝟏 + 𝒂𝟏𝟐𝒙𝟐 +⋯+ 𝒂𝟏𝒕𝒙𝒕 = 𝟎
𝒂𝟐𝟏𝒙𝟏 + 𝒂𝟐𝟐𝒙𝟐 +⋯+ 𝒂𝟐𝒕𝒙𝒕 = 𝟎

⋮
𝒂𝒔𝟏𝒙𝟏 + 𝒂𝒔𝟐𝒙𝟐 +⋯+ 𝒂𝒔𝒕𝒙𝒕 = 𝟎

 

The matrix homogeneous system of the above system is written as follows  
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(

𝒂𝟏𝟏 𝒂𝟏𝟐 ⋯ 𝒂𝟏𝒕
𝒂𝟐𝟏 𝒂𝟐𝟐 ⋯ 𝒂𝟐𝒕
.
𝒂𝒔𝟏

.
𝒂𝒔𝟏

.
⋯

.
𝒂𝒔𝒕

)

𝒔×𝒕

 (

𝒙𝟏
𝒙𝟐
⋮
𝒙𝒕

) = (

𝟎
𝟎
⋮
𝟎

) 

This matrix coefficient of the homogeneous system is of order st.  

According to Corollary 3.5.2: 

If ts, then there is a nontrivial solution. Hence 𝒙𝒌 ≠ 𝟎, for some 1kt, consequently 

A is L.D (Impossible).  

As a result, we obtain ts.   

 

Theorem 4.4.8:  

The nonzero rows of a matrix in echelon form are linearly independent. 

 

Example 4.4.9: 

Consider the following matrix 

A=

(

 
 

𝟐 𝟏 𝟑 𝟓 𝟎 𝟏
𝟎 𝟎 𝟑 𝟕 𝟓 𝟔
𝟎
𝟎
𝟎

𝟎
𝟎
𝟎

𝟎
𝟎
𝟎

𝟒
𝟎
𝟎

𝟏 𝟑
𝟓 𝟑
𝟎 𝟎)

 
 

 

Clearly the nonzero rows are r1, r2, r3 and r4. Let 

1 (2, 1, 3, 5, 0, 1)+ 2 (0, 0, 3, 7, 5, 6)+ 3 (0, 0, 0, 4, 1, 3)+ 4 (0, 0, 0, 0, 5, 3)=                    

(0, 0, 0, 0, 0, 0)    

 (21, 1, 31, 51, 0, 1)+ (0, 0, 32, 72, 52, 62)+ (0, 0, 0, 43, 3, 33)+ (0, 0, 0, 0, 54, 

34)= (0, 0, 0, 0, 0, 0) 

Then, we obtain 

(21, 1, 31+32, 51+72+43, 52+3+54, 1+62+33+34)= (0, 0, 0, 0, 0, 0) 
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Then  

21=0 

1=0 

31+32=0                              … (I) 

51+72+43=0 

52+3+54=0 

1+62+33+34=0 

Clearly, the solution of System (I) are 1=0, 2=0, 3=0 and 4=0.  

Then r1, r2, r3 and r4 are L.I. 

4.5 Basis and dimension 

      Definition 4.5.1: 

Let V be a vector space over a field F. A subset ={𝒗⃗⃗ 𝟏, …, 𝒗⃗⃗ 𝒏} is called a basis of V if  

1.  spans V. 

2.  is linearly independent. 

Example 4.5.2:  

For the vector space R
3
 over the filed R, the set 

={(1,0,0), (0,1,0), (0,0,1)} is a basis of R
3
 called the standard basis. 

Generally, for R
n
, the set 

={(1,0,…,0), (0,1,0,…,0), …, (0,…,1)} is the standard basis of R
n
. 

Example 4.5.3: 

Show that the set ={(1,-1,2), (0,1,2), (3,-2,1)} is a basis of the vector space R
3
 over 

the field R.  
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Definition 4.5.4:  

Let V be a vector space over a field F for which  is a basis. If ||=n (the cardinality 

of ), then we say that V has a finite dimension or n-dimension. We write 

dim (V)=n. 

The vector space {0} has 0-dimension.  

In case, if a vector space has not a finite basis, then V is called an infinite-

dimensional vector space.   

Theorem 4.5.5: 

   Let 1 and 2 be two bases of the vector space V over a field F for which |1|=m and 

|2|=n, then m=n.  

Proof: 

From Fundamental result in linear algebra, we obtain mn and nm, then m=n. 

Example 4.4.6: 

For the vector space P3 over a field R, the set {1, x, x
2
, x

3
} is a basis of P3.              

Then dim (P3)=4. Generally dim (Pn)=n+1. 

Solution: 

pP3p=ax
3
+bx

2
+cx+d, then p=a(x

3
)+b(x

2
)+c(x)+d(1) 

Example 4.4.7: 

 Let V be the set of all symmetric matrices of order two. Find dim (V) (Explain your 

answer). 

Solution:  

V={A22|A=A
T
}. 

AVA=(
𝒂 𝒃
𝒃 𝒄

). 

Set the following set 
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={(
𝟏 𝟎
𝟎 𝟎

) , (
𝟎 𝟏
𝟏 𝟎

) , (
𝟎 𝟎
𝟎 𝟏

)} 

For AV, we may select 1=a, 2=b and 3=c.  

Clearly, 

 A=a(
𝟏 𝟎
𝟎 𝟎

)+ b(
𝟎 𝟏
𝟏 𝟎

)+ c(
𝟎 𝟎
𝟎 𝟏

).  

Hence  spans V. 

For any scalars 1, 2 and 3 such that: 

 1 (
𝟏 𝟎
𝟎 𝟎

)+ 2 (
𝟎 𝟏
𝟏 𝟎

)+ 3 (
𝟎 𝟎
𝟎 𝟏

)=(
𝟎 𝟎
𝟎 𝟎

) 

(
𝝀𝟏 𝝀𝟐
𝝀𝟐 𝝀𝟑

)=(
𝟎 𝟎
𝟎 𝟎

) 

Then, we obtain 1=0, 2=0 and 3=0. 

Consequently  is linearly independent. 

As a result  is a basis of V. 

Exercise 4.4.8: 

Let V be the set of all symmetric matrices of order three. Find dim (V) (Explain your 

answer). 

 

 

 


