Question Bank

Introduction to Algebraic Geometry

2022-2023

Q1: Every ascending chain of ideals in $F[x_1,...,x_n]$ is stabilised.

Q2: In an affine space \mathbb{A}^n , any affine variety can be written as a finite union of irreducible affine varieties.

Q3: Let $J=\langle f_1,...,f_m\rangle$ be an ideal in $F[x_1,...,x_n]$. Prove that $V(J)=V(f_1,...,f_m)$.

Q4: Define and give an example for each of the following,

- 1. Affine subspace. 2. Algebraically closed field. 3. Affine variety. 4. Algebraic set.
 - 5. Zariski closure of a set. 6. Vanishing ideal *I* (*B*) of *B*. 7. Irreducible ideal.

Q5: State and prove The Strong Nullstellensatz.

Q6: Let F be an arbitrary field,

i. For any affine varieties V_1 and V_2 of \mathbb{A}^n , prove that

$$V_1 \subset V_2 \leftrightarrow I(V_2) \subset I(V_1)$$

ii. For any ideals J_1 and J_2 of $F[x_1,...,x_n]$, prove that

$$J_1 \subset J_2 \rightarrow V(J_2) \subset V(J_1)$$

Q7: Let I and J be two ideals in $F[x_1,...,x_n]$,

- 1. Define I+J.
- 2. Prove that I+J is an ideal of $F[x_1,...,x_n]$.
- 3. Prove that I+J is the smallest ideal containing I and J.
- 4. $I = \langle f_1, ..., f_r \rangle \land J = \langle g_1, ..., g_s \rangle \rightarrow I + J = \langle f_1, ..., f_r, g_1, ..., g_s \rangle$.

Q8: Let *I* and *J* be ideals in $F[x_1,...,x_n]$, prove that

$$\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$

Q9: Let F be an infinite field and $f,g \in F[x_1,...,x_n]$. Then f and g are equal polynomials if and only if f and g are the same functions.

Q10: The union of two algebraic sets is an algebraic set.

Q11: Let $f_1,...,f_s$ be polynomials in $K[x_1,...,x_n]$, then

$$< f_1, ..., f_s > \subseteq I(V(< f_1, ..., f_s >)).$$

Q12: State and prove Hilbert's Nullstellensatz

Q13: Let *V* be an affine variety of \mathbb{A}^n . If $f^m \in I(V)$, for some +ve integer *m*, then $f \in I(V)$.

Q14: Let F be an algebraically closed field and M be an ideal of $F[x_1,...,x_n]$. Then

$$\sqrt{M} = I(V(M))$$

Q15: Let $S = \{(-3,-1),(-4,5),(2,-4)\}$. Find I(S).

Q16: Prove or disprove:

Let *J* be an ideal of $F[x_1,...,x_n]$, then V(J)=V(I(V(J)))

Q17: Let X and Y be two algebraic subsets of an affine space such that $X \subseteq Y$, then $Y = X \cup (\overline{Y - X})$.

Q18: For any subset B of \mathbb{A}^n ,

$$\bar{B} = V\big(I(B)\big).$$

Q19: Let $f_1,...,f_r \in F[x_1,...,x_n]$, then $< f_1,...,f_r > = < f_1 > + ... + < f_r >$.

Q20: If *I* and *J* are ideals in $F[x_1,...,x_n]$, then $V(I+J)=V(I)\cap V(J)$.

Q21: If *I* and *J* are ideals in $F[x_1,...,x_n]$, then $V(I.J)=V(I)\cup V(J)$.

Q22: Sketch the following affine varieties,

- 1. $V(x^2-y^2)$ in \Re^2 .
- 2. V(2x+y-1,3x-y+2) in \Re^2 .
- 3. $V(xz^2-xy)$ in \Re^3 .
- 4. V(x+2y, -x-y) in \Re^3 .

Q23: Let F be an infinite field and $f \in F[x_1,..., x_n]$. Then f is the zero polynomial in $F[x_1,...,x_n]$ if and only if f is the zero function.

Q24: Prove that every vector space is an affine space.

Q25: Let $\{I_{\alpha}|\alpha\in\Delta\}$ be a set of ideals in $F[x_1,...,x_n]$, where Δ is arbitrary. Prove that

$$V\left(\bigcup_{\alpha\in\Delta}I_{\alpha}\right)=\bigcap_{\alpha\in\Delta}V(I_{\alpha})$$

Q26: What is Zariski topology on an affine space \mathbb{A}^n ? Prove that Zariski topology satisfies the conditions of a topology on \mathbb{A}^n .

Q27: Let f_i , $g_j \in F[x_1,...,x_n]$, where $1 \le i \le r$ and $1 \le j \le s$ (generally $r \ne s$). Then

- 1. $V(f_1,...,f_r) \cup V(g_1,...,g_s) = V(\{f_ig_i|1 \le i \le r \text{ and } 1 \le j \le s\}).$
- 2. $V(f_1,...,f_r) \cap V(g_1,...,g_s) = V(f_1,...,f_r,g_1,...,g_s)$.