Question Bank
 Introduction to Algebraic Geometry

2022-2023
Q1: Every ascending chain of ideals in $F\left[x_{1}, \ldots, x_{n}\right]$ is stabilised.

Q2: In an affine space \mathbb{A}^{n}, any affine variety can be written as a finite union of irreducible affine varieties.

Q3: Let $J=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be an ideal in $F\left[x_{1}, \ldots, x_{n}\right]$. Prove that $V(J)=V\left(f_{1}, \ldots, f_{m}\right)$.
Q4: Define and give an example for each of the following,

1. Affine subspace. 2. Algebraically closed field. 3. Affine variety. 4. Algebraic set. 5. Zariski closure of a set. 6. Vanishing ideal $I(B)$ of B. 7. Irreducible ideal.

Q5: State and prove The Strong Nullstellensatz.

Q6: Let F be an arbitrary field,
i. For any affine varieties V_{1} and V_{2} of \mathbb{A}^{n}, prove that

$$
V_{1} \subseteq V_{2} \leftrightarrow I\left(V_{2}\right) \subseteq I\left(V_{1}\right)
$$

ii. For any ideals J_{1} and J_{2} of $F\left[x_{1}, \ldots x_{n}\right]$, prove that

$$
J_{1 \subseteq J_{2} \rightarrow V\left(J_{2}\right) \subseteq V\left(J_{1}\right), ~}^{\text {and }}
$$

Q7: Let I and J be two ideals in $F\left[x_{1}, \ldots, x_{n}\right]$,

1. Define $I+J$.
2. Prove that $I+J$ is an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$.
3. Prove that $I+J$ is the smallest ideal containing I and J.
4. $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle \wedge J=\left\langle g_{1}, \ldots, g_{s}\right\rangle \rightarrow I+J=\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$.

Q8: Let I and J be ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, prove that

$$
\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}
$$

Q9: Let F be an infinite field and $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$. Then f and g are equal polynomials if and only if f and g are the same functions.

Q10: The union of two algebraic sets is an algebraic set.
Q11: Let f_{1}, \ldots, f_{s} be polynomials in $K\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\left\langle f_{1}, \ldots, f_{s}>\subseteq I\left(V\left(\left\langle f_{1}, \ldots, f_{s}>\right)\right) .\right.\right.
$$

Q12: State and prove Hilbert's Nullstellensatz

Q13: Let V be an affine variety of \mathbb{A}^{n}. If $f^{m} \in I(V)$, for some +ve integer m, then $f \in I(V)$.

Q14: Let F be an algebraically closed field and M be an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\sqrt{M}=I(V(M))
$$

Q15: Let $S=\{(-3,-1),(-4,5),(2,-4)\}$. Find $I(S)$.
Q16: Prove or disprove:

Let J be an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$, then $V(J)=V(I(V(J)))$
Q17: Let X and Y be two algebraic subsets of an affine space such that $X \subseteq Y$, then $Y=X \cup(\overline{Y-X})$.

Q18: For any subset B of \mathbb{A}^{n},

$$
\bar{B}=V(I(B)) .
$$

Q19: Let $f_{1}, \ldots, f_{r} \in F\left[x_{1}, \ldots, x_{n}\right]$, then $\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\langle f_{1}\right\rangle+\ldots+\left\langle f_{r}\right\rangle$.
Q20: If I and J are ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, then $V(I+J)=V(I) \cap V(J)$.

Q21: If I and J are ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, then $V(I . J)=V(I) \cup V(J)$.
Q22: Sketch the following affine varieties,

1. $V\left(x^{2}-y^{2}\right)$ in \mathfrak{R}^{2}.
2. $V(2 x+y-1,3 x-y+2)$ in \mathfrak{R}^{2}.
3. $V\left(x z^{2}-x y\right)$ in \mathfrak{R}^{3}.
4. $V(x+2 y,-x-y)$ in \mathfrak{R}^{3}.

Q23: Let F be an infinite field and $f \in F\left[x_{1}, \ldots, x_{n}\right]$. Then f is the zero polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$ if and only if f is the zero function.

Q24: Prove that every vector space is an affine space.
Q25: Let $\left\{I_{\alpha} \mid \alpha \in \Delta\right\}$ be a set of ideals in $F\left[x_{1}, \ldots, x_{n}\right]$, where Δ is arbitrary. Prove that

$$
V\left(\bigcup_{\alpha \in \Delta} I_{\alpha}\right)=\bigcap_{\alpha \in \Delta} V\left(I_{\alpha}\right)
$$

Q26: What is Zariski topology on an affine space \mathbb{A}^{n} ? Prove that Zariski topology satisfies the conditions of a topology on \mathbb{A}^{n}.

Q27: Let $f_{i}, g_{j} \in F\left[x_{1}, \ldots, x_{n}\right]$, where $1 \leq i \leq r$ and $1 \leq j \leq s$ (generally $r \neq s$). Then

1. $V\left(f_{1}, \ldots, f_{r}\right) \cup V\left(g_{1}, \ldots, g_{s}\right)=V\left(\left\{f_{i} g_{j} \mid 1 \leq i \leq r\right.\right.$ and $\left.\left.1 \leq j \leq s\right\}\right)$.
2. $V\left(f_{1}, \ldots, f_{r}\right) \cap V\left(g_{1}, \ldots, g_{s}\right)=V\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right)$.
