Semester I (Question bank)

- 1. List all topologies on the set $X=\{1, 2, 3\}$.
- 2. List all topologies of cardinality seven on the set $X=\{1, 2, 3, 4\}$.
- 3. How to define the usual topology on \Re^2 .
- 4. Is there any way to define the right ray topology on \Re ?
- 5. Let $X \neq \emptyset$, and a be a fixed element in X, define

$$\tau_a = \{ G \subseteq X | a \notin G \vee G = X \}.$$

Is τ a topology on X?

- 6. Consider the natural numbers N, define, $\tau = \{ \{m, m+1, ...\} | m \in N \} \cup \{\phi\}. \text{ Is } \tau \text{ a topology on } N\text{? Explain your answer.}$
- 7. Consider \Re , let τ be the set of all closed intervals with ϕ and \Re . Is τ a topology on \Re ? Explain your answer.
- 8. In a topological space (X,τ) , a subset $A\subseteq X$ is called clopen if it is both open and closed in X. Give an example for a topological space for which some of its subsets are clopen.
- 9. Find N(3), N(18) and N(100) in Exercise 6.
- 10. Let $X=\{1, 2, 3, 4\}$ and $\tau=\{\phi, \{2,4\}, \{1,4\}, \{4\}, \{1,2,4\}, X\}$. Find $W(\tau)$.
- 11. Let $X=\{a, b, c, d, e\}$ and $\mathcal{A}=\{\{a, c\}, \{b, c, e\}, \{d, e\}\}$. Find the topology τ on X generated by \mathcal{A} .
- 12. Let $Y = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{A} = \{\{2, 6\}, \{1, 2, 4\}, \{4, 5\}\}$. Find the topology τ on Y generated by \mathcal{A} .
- 13. Let $X = \{1, 2, 3, 4, 5\}$ and $\mathfrak{B} = \{\{2,3,4\}, \{3,4,5\}\}$. Is there any topology on X, for which \mathfrak{B} is a base?
- 14. Find a subbase for the right ray topology on \Re .
- 15. In a topological space (X, τ) , a subclass $\mathfrak{B}_x \subseteq \tau$ is called a local base for a point $x \in X$, if the following conditions satisfy
 - i. $x \in B, \forall B \in \mathfrak{B}_r$.

- ii. $G \in \tau \land x \in G \rightarrow \exists B \in \mathfrak{B}_x \text{ such that } G \subseteq B$.
- I. Let (X, τ) be a topological space and $y \in X$, if $\mathfrak B$ is a base for τ , then show that the following class of sets

 $\Psi = \{B \in \mathfrak{B}: y \in B\}$ is a local base for $y \in X$. In other words, show that $\Psi = \mathfrak{B}_{\nu}$.

- II. For Exercise 2, find \mathfrak{B}_a , \mathfrak{B}_c and \mathfrak{B}_e .
- 16. Is closure operator bijective?
- 17. Let (X, τ) be a topological space. Find a result analogous to Theorem 4.14 in term of "ext".
- 18. In Exercise 6, Page 10, find
 - a. $drv(\{4, 5, 6, ...\}), drv(Z_e), drv(\{10, 5, 16\})$
 - b. $clo({4, 5, 6, ...}), clo(Z_e), clo({10, 5, 16})$
 - c. $int({4, 5, 6, ...}), int(Z_e), int({10, 5, 16})$
 - d. $bou(\{4,5,6,\ldots\}), bou(Z_e), bou(\{10,5,16\})$
- 19. Let τ_1 and τ_2 be two topologies on X for which τ_1 is coarser than τ_2 . Let $A \subseteq X$. Prove or disprove
 - a. Any accumulation point of A in (X, τ_1) is an accumulation point of A in (X, τ_2) .
 - b. Any accumulation point of A in (X, τ_2) is an accumulation point of A in (X, τ_1) .
- 20. Let (X, τ) be a topological space and $A\subseteq X$. Prove that

$$bou(A)=clo(A)\cap clo(A^c)$$
.

- 21. Discuss the dense in Exercise 3.
- 22. In left-ray topology, let Y=[0, 1]. Describe the subspace of Y.
- 23. Let (Y, τ_Y) be a subspace of a topological space (X, τ) and $A \subseteq Y$. Is there any relation between int(A) and $int_Y(A)$, where $int_Y(A)$ is the interior of A in (Y, τ_Y) .
- 24. Let (Y, τ_Y) be a subspace of a topological space (X, τ) and $(Z, (\tau_Y)_Z)$ be a subspace of (Y, τ_Y) . Then $(Z, (\tau_Y)_Z)$ is a subspace of (X, τ) .