Semester II (Question bank)

A map *f*: (*X*,τ)→(*Y*,ρ) is continuous at *x*∈*X* if and only if for any open set *H* in *Y* containing *f* (*x*), there exists an open set *G_x* in *X* containing *x* such that,

$$f(G_x) \subseteq H$$

- 2. Let $f: (X,\tau) \rightarrow (Y,\rho)$ and $g: (Y,\rho) \rightarrow (Z,\sigma)$ be continuous maps, then $gof: (X,\tau) \rightarrow (Z,\sigma)$ is continuous.
- Let f: (X,τ)→(Y,ρ) be a map and 𝔅 be a base for τ. Then f is open if and only if f (B) is open, for all B∈𝔅.
- 4. Is $f: (R, U^{l}) \rightarrow (R, U^{l})$ an open map?
- 5. Under the usual topology on *R*, prove that any closed interval [*a*, *b*] is homeomorphic to [0,1].
- 6. Neighbourhood of a point is a topological property.Is τ a topology on *X*?
- 7. Let $X = \{a, b, c, d, e\}$. Find
 - 7.1Four different connected spaces of cardinalities 4, 5, 6 and 7.
 - 7.2 Five different disconnected spaces of cardinalities 3, 4, 5, 6 and 7.
- 8. Prove or disprove:

If (X,τ) is a connected space and ρ is coarser than τ , then (X,ρ) is connected.

- 9. In a topological space (X,τ) , the components of X form a partition of X.
- 10.Prove or disprove:
 - If (X,τ) is a compact space and ρ is coarser than τ , then (X,ρ) is compact.
- 11. The property of T_0 space is hereditary.
- $12.T_1$ space is preserved under a bijective open map.
- 13.If $g,h: (X,\tau) \rightarrow (Y, \rho)$ are continuous mappings for (Y, ρ) is a Hausdorff space, then, the set,

$$F = \{x \in X | f(x) = g(x)\}$$
 is closed

14.Prove or disprove:

Every regular T_0 space is a T_3 space.

15. The property of being first countable space is a topological property.

16. Any subspace of a second countable space is a second countable space.

in atable s. ata