Salahaddin University-Erbil	College of Science	Mathematics Department	
Semester I-Year 4	Final Exam (1^{st} Trial)	General Topology	
Date: 17/12/2023		Duration time: 120 minutes	
Instructor: Dr.Wuria Muhammad Ameen Xoshnaw			

Remark.

During this exam sheet, the pair (X, τ) is a topological space.

Q.1. (30 marks) Select T for true and F for false statements (Answer in order)

- 1. A topology τ on a set X is discrete iff $\{x\} \in \tau$, for some $x \in X$.
- 2. In (X,τ) , for any $x \in X$, the neighbourhood system $\mathcal{N}(x) \neq \emptyset$.
- 3. If $X \neq \emptyset$ and $A \subseteq Power(X)$, then A generates a unique topology on X for which A is a subbase.
- 4. In a trivial topology (X, \mathcal{I}) , if $\emptyset \neq A \subseteq X$, then $drv(A) \neq \emptyset$.
- 5. If (X,τ_1) and (Y,τ_2) are two topological spaces, then $(X \cap Y,\tau_1 \cap \tau_2)$ is a topological space.
- 6. In (\mathbf{R}, U^1) , " $clo(I_{rr}) = I_{rr}$ ", where I_{rr} is the set of irrational numbers.
- 7. In (X,τ) , for any $Y\subseteq X$, we can define the subspace (Y,τ_Y) .
- 8. In (X,τ_{cof}) , any subset of X is closed iff it is finite.
- 9. In (X,τ) . For any $A\subseteq X$, "clo(A)" and "int(A)" are disjoint sets.
- 10. In $(\mathcal{R}, \tau_{right})$, if A is infinite and $a \in A$, then $a \in drv(A)$.
- 11. In (X,τ) , "bou" is a 1-1 operator.
- 12. Two equal topologies on a set X might have distinct bases.
- 13. Any closed set in (X,τ) is a dense in itself.
- 14. In (X,τ) and $A,B\subseteq X$, if $A\neq B$, then $int(A)\neq int(B)$.
- 15. In (\mathbf{R}, U^1) , the set $\left\{\frac{1}{n}; n \in \mathbb{Z}^+\right\}$ is not a closed set.

.....

Q.2. (10 marks)

Consider the topological space (Z^+, τ) , where, $\tau = \{\{m, m+1, \cdots\}; m \in Z^+\} \cup \{\emptyset\}.$

- 1. List the open sets that contain 7.
- 2. List the closed sets that contain 7.
- 3. Find $ext({4, 5, 7, 13})$.
- 4. Find $clo(\{8, 15, 23, 103\})$.
- 5. Find the subspace τ_Y , where $Y = \{5, 8, 10, 11, 12, 13, \dots \}$.

 \Rightarrow Additional questions are presented on the reverse side.

Q.3. ((10)	marks))

(a) Let (X,τ) be a topological space for which δ is a subbase and $Y\subseteq X$. Show that

$$\delta_Y = \{s \cap Y ; s \in \delta\},\$$

is a subbase for the subspace (Y, τ_Y) .

(b) Let (Y,τ_Y) be a subspace of a topological space (X,τ) and $(Z,(\tau_Y)_Z)$ be a subspace of (Y,τ_Y) . Prove that $(Z,(\tau_Y)_Z)$ is a subspace of (X,τ) .

.....

Q.4. (10 marks) (*Prove or disprove*)(Select Only Two)

- (a) The union of two topologies on a set $X \neq \emptyset$, is a topology on X.
- (b) In (X,τ) . For $A \subseteq X$.

$$A \in \tau \iff bou(A) \cap A = \emptyset$$

(c) If (Y, τ_Y) is a subspace of the topological space (X, τ) and $A \subseteq Y$, then

$$ext_Y(A) = Y \cap ext(A).$$

.....

GOOD LUCK ON YOUR EXAM