| Salahaddin University-Erbil | College of Science | Mathematics Department | | |---|-------------------------------------|----------------------------|--| | Semester I-Year 4 | Final Exam (1^{st} Trial) | General Topology | | | Date: 17/12/2023 | | Duration time: 120 minutes | | | Instructor: Dr.Wuria Muhammad Ameen Xoshnaw | | | | ## Remark. During this exam sheet, the pair (X, τ) is a topological space. Q.1. (30 marks) Select T for true and F for false statements (Answer in order) - 1. A topology τ on a set X is discrete iff $\{x\} \in \tau$, for some $x \in X$. - 2. In (X,τ) , for any $x \in X$, the neighbourhood system $\mathcal{N}(x) \neq \emptyset$. - 3. If $X \neq \emptyset$ and $A \subseteq Power(X)$, then A generates a unique topology on X for which A is a subbase. - 4. In a trivial topology (X, \mathcal{I}) , if $\emptyset \neq A \subseteq X$, then $drv(A) \neq \emptyset$. - 5. If (X,τ_1) and (Y,τ_2) are two topological spaces, then $(X \cap Y,\tau_1 \cap \tau_2)$ is a topological space. - 6. In (\mathbf{R}, U^1) , " $clo(I_{rr}) = I_{rr}$ ", where I_{rr} is the set of irrational numbers. - 7. In (X,τ) , for any $Y\subseteq X$, we can define the subspace (Y,τ_Y) . - 8. In (X,τ_{cof}) , any subset of X is closed iff it is finite. - 9. In (X,τ) . For any $A\subseteq X$, "clo(A)" and "int(A)" are disjoint sets. - 10. In $(\mathcal{R}, \tau_{right})$, if A is infinite and $a \in A$, then $a \in drv(A)$. - 11. In (X,τ) , "bou" is a 1-1 operator. - 12. Two equal topologies on a set X might have distinct bases. - 13. Any closed set in (X,τ) is a dense in itself. - 14. In (X,τ) and $A,B\subseteq X$, if $A\neq B$, then $int(A)\neq int(B)$. - 15. In (\mathbf{R}, U^1) , the set $\left\{\frac{1}{n}; n \in \mathbb{Z}^+\right\}$ is not a closed set. Q.2. (10 marks) Consider the topological space (Z^+, τ) , where, $\tau = \{\{m, m+1, \cdots\}; m \in Z^+\} \cup \{\emptyset\}.$ - 1. List the open sets that contain 7. - 2. List the closed sets that contain 7. - 3. Find $ext({4, 5, 7, 13})$. - 4. Find $clo(\{8, 15, 23, 103\})$. - 5. Find the subspace τ_Y , where $Y = \{5, 8, 10, 11, 12, 13, \dots \}$. \Rightarrow Additional questions are presented on the reverse side. | Q.3. (| (10) | marks) |) | |--------|------|--------|---| | | | | | (a) Let (X,τ) be a topological space for which δ is a subbase and $Y\subseteq X$. Show that $$\delta_Y = \{s \cap Y ; s \in \delta\},\$$ is a subbase for the subspace (Y, τ_Y) . (b) Let (Y,τ_Y) be a subspace of a topological space (X,τ) and $(Z,(\tau_Y)_Z)$ be a subspace of (Y,τ_Y) . Prove that $(Z,(\tau_Y)_Z)$ is a subspace of (X,τ) ## Q.4. (10 marks) (*Prove or disprove*)(Select Only Two) - (a) The union of two topologies on a set $X \neq \emptyset$, is a topology on X. - (b) In (X,τ) . For $A \subseteq X$. $$A \in \tau \iff bou(A) \cap A = \emptyset$$ (c) If (Y, τ_Y) is a subspace of the topological space (X, τ) and $A \subseteq Y$, then $$ext_Y(A) = Y \cap ext(A).$$ ## GOOD LUCK ON YOUR EXAM