Mathematics Department
Semester I
Date: 17/12-2023

Year Four
Final Exam

General Topology
First Trial (Answer)

Q1:

1. F
2. T
3. T
4. F
5. F
6. F
7. F
8. T
9. F
10. F
11. F
12. T
13. F
14. F
15. T

Q2:

1. $\left\{Z^{+},\{2,3,4, \ldots\},\{3,4,5, \ldots\},\{4,5,6, \ldots\},\{5,6,7, \ldots\},\{6,7,8, \ldots\},\{7,8,9, \ldots\}\right\}$.
2. $\{\{1,2,3,4,5,6,7\},\{1,2,3,4,5,6,7,8\},\{1,2,3,4,5,6,7,8,9\}$, $\left.\{1,2,3,4,5,6,7,8,9,10\}, \ldots, Z^{+}\right\}$.
3. $\{14,15,16, \ldots\}$.
4. $\{1,2,3, \ldots, 103\}$.
5. $\tau_{Y}=\{\{8,10,11,12, \ldots\}\} \cup\left\{\{m+9, m+10, m+11, \ldots\} ; m \in Z^{+}\right\} \cup\{Y\}$.

Q3:
(a) Let \mathfrak{B} be the base for τ generated by δ and \mathfrak{B}_{Y} be the corresponding base for τ_{Y} generated by \mathfrak{B}.
Let $B \cap Y \in \mathfrak{B}_{Y}$,

$$
\begin{aligned}
B \cap Y \in \mathfrak{B}_{Y} & \rightarrow B \in \mathfrak{B} \rightarrow B=\bigcap_{i=1}^{n} s_{i}, \text { for some } s_{i} \in \delta \rightarrow B \cap Y=\left(\bigcap_{i=1}^{n} s_{i}\right) \cap Y \\
& =\left(\bigcap_{i=1}^{n}\left(s_{i} \cap Y\right)\right)
\end{aligned}
$$

(b)

We have to show that,

$$
\left(\tau_{Y}\right)_{Z}=\tau_{Z}
$$

Let $K \in\left(\tau_{Y}\right)_{Z}$
$K \in\left(\tau_{Y}\right)_{Z} \rightarrow K=Z \cap H$, for some $H \in \tau_{Y}$
$H \in \tau_{Y} \rightarrow H=Y \cap G$, for some $G \in \tau$
Then,

$$
K=\mathrm{Z} \cap H \rightarrow K=\mathrm{Z} \cap(Y \cap G) \rightarrow K=(Z \cap Y) \cap G \rightarrow K=Z \cap G
$$

So, $K=Z \cap G$, for some $G \in \tau$, then $\left(Z,\left(\tau_{Y}\right)_{Z}\right)$ is a subspace of (X, τ).
Let $K \in \tau_{Z}$
$K \in \tau_{Z} \rightarrow K=Z \cap G$, for some $G \in \tau$
On the other hand,

$$
\begin{aligned}
& G \in \tau \rightarrow Y \cap G \in \tau_{Y} \rightarrow Z \cap(Y \cap G) \in\left(\tau_{Y}\right)_{Z} \\
& \rightarrow(Z \cap Y) \cap G \in\left(\tau_{Y}\right)_{Z} \rightarrow Z \cap G \in\left(\tau_{Y}\right)_{Z} \rightarrow K \in\left(\tau_{Y}\right)_{Z}
\end{aligned}
$$

Q4:
(a) Disproof

Let $X=\{a, b, c\}, \tau_{1}=\{\phi,\{a\}, X\}$ and $\tau_{1}=\{\phi,\{b\}, X\}$ be two topologies on X.

$$
\tau_{1} \cup \tau_{2}=\{\phi,\{a\},\{b\}, X\}
$$

Clearly, $\tau_{1} \cup \tau_{2}$ is not a topology on X, since $\{a\} \cup\{b\}=\{a, b\} \notin \tau_{1} \cup \tau_{2}$.
(b) Proof

Let A be an open set in X,
A be an open set in $X \rightarrow A^{c}$ is a closed set in $X \rightarrow \operatorname{clo}\left(A^{c}\right)=A^{c}$.

Then,

$$
\begin{aligned}
\operatorname{bou}(A) \cap A & =\left(\operatorname{clo}(A) \cap \operatorname{clo}\left(A^{c}\right)\right) \cap A \\
& =\left(\operatorname{clo}(A) \cap A^{c}\right) \cap A \\
& =\operatorname{clo}(A) \cap\left(A^{c} \cap A\right)=\operatorname{clo}(A) \cap \phi=\phi .
\end{aligned}
$$

Conversely
Let $\operatorname{bou}(A) \cap A=\phi$.
Then

$$
\begin{aligned}
\left(\operatorname{clo}(A) \cap \operatorname{clo}\left(A^{c}\right)\right) \cap A= & \rightarrow(\operatorname{clo}(A) \cap A) \cap c l o\left(A^{c}\right)=\phi \\
& \rightarrow A \cap \operatorname{clo}\left(A^{c}\right)=\phi, \text { since } A \subseteq \operatorname{clo}(A) . \\
& \rightarrow A \subseteq\left(\operatorname{clo}\left(A^{c}\right)\right)^{c} \\
& \rightarrow A \subseteq \operatorname{int}(A) .
\end{aligned}
$$

Since $\operatorname{int}(A) \subseteq A$, then $A=\operatorname{int}(A)$, hence $A \in \tau$.
(c) Proof

Let $y \in \operatorname{ext}_{r}(A)$,
$y \in \operatorname{ext}_{Y}(A) \rightarrow y \in \operatorname{int}_{Y}(Y-A) \rightarrow y \in H \subseteq Y-A$, for some $H \in \tau_{Y}$
$\rightarrow y \in G \cap Y \subseteq Y-A$, for some $G \in \tau$.
Clearly,
$G \cap A=\phi \rightarrow G \subseteq X-A$.
Hence,

$$
G \subseteq X-A \rightarrow y \in \operatorname{int}(X-A) \rightarrow y \in \operatorname{ext}(A) \rightarrow y \in Y \cap \operatorname{ext}(A) .
$$

Let $y \in Y \cap \operatorname{ext}(A)$,

$$
\begin{aligned}
y \in Y \cap \operatorname{ext}(A) \rightarrow y \in Y \wedge y \in \operatorname{ext}(A) & \rightarrow y \in Y \wedge y \in \operatorname{int}(X-A) \\
& \rightarrow y \in Y \wedge y \in G \subseteq X-A
\end{aligned}
$$

Clearly,

$$
G \subseteq X-A \rightarrow G \cap Y \subseteq Y-A .
$$

Since $y \in G \cap Y$, and $G \cap Y$ is open in Y, then $y \in \operatorname{int}_{Y}(Y-A)=e x t_{Y}(A)$

