Salahaddin University-Erbil College of Science Mathematics Department Semester II-Year 4 Final Exam (1^{st} Trial) General Topology II Date: 5/5/2024 Duration time: 120 minutes Instructor: Dr.Wuria Muhammad Ameen Xoshnaw

Remark.

During this exam sheet, the pair (X,τ) and (Y,ρ) are topological spaces.

- Q.1. (30 marks) Select T for true and F for false statements (Answer in order)
 - 1. Second Axiom space is hereditary.
 - 2. If a map $f:(X,\tau)\to (Y,\rho)$ is bijective, then f is homeomorphism if and only if f(int(A))=int(f(A)), for all $A\subseteq X$.
 - 3. If (X,τ) is compact, $A\subseteq X$ such that $A\subseteq drv(A)$, then A is compact.
 - 4. Any T_2 -space is a T_3 -space.
 - 5. First countable space is a topological property.
 - 6. The union of two connected set is connected.
 - 7. If (X, τ) is a T_1 -space, then $x, y \in X, x \neq y \rightarrow clo(x) \neq clo(y)$.
 - 8. Normality is not hereditary.
 - 9. Any two discrete spaces are homeomorphic.
 - 10. The usual topology is a second axiom space.
 - 11. T_0 -space is preserved under a bijective continuous map.
 - 12. Any regular space is a Hausdorff space.
 - 13. In a Hausdorff space (X, τ) , the set $\{a_1, \dots, a_n\}$ is closed.
 - 14. Trivial topology is regular and normal.
 - 15. The projection map on (R^2, U^2) is closed but not open.

.....

Q.2. (10 marks) (Select Only Two)

(a) Let (X, τ) be a topological space such that

 $G \in \tau$ and F is a closed set in X for which $F \subseteq G \to \exists H \in \tau$ such that $F \subseteq H$ and $clo(H) \subseteq G$.

Then prove that (X, τ) is normal.

- (b) In (X, τ) , if any class $\{F_{\alpha}; \alpha \in \Delta, \text{ where } \Delta \text{ is an arbitrary set}\}$ satisfies the *finite intersection property*, has the itself a non-empty intersection, then prove that (X, τ) is compact.
- (c) Prove that, a map $f:(X,\tau)\to (Y,\rho)$ is continuous if and only if $f^{-1}(int(B))\subseteq int(f^{-1}(B))$, for all $B\subseteq Y$.

.....

 \Rightarrow Additional questions are presented on the reverse side.

Q.3. (10 marks)

- (a) (6 marks) Let $X = \{a, b, c, d\}$, find
 - 1. Three connected topological spaces on X of cardinalities 4, 5 and 6.
 - 2. Three disconnected topological spaces on X of cardinalities 4, 6 and 8.
- (b) (4 marks) Prove that if a map $f:(X,\tau)\to (Y,\rho)$ is closed, then

$$clo(f(A)) \subseteq f(clo(A))$$
, for all $A \subseteq X$

.

Q.4. (10 marks) (*Prove or disprove*)

- (a) Every regular T_0 space is a T_3 -space.
- (b) If $f:(X,\tau)\to (Y,\rho)$ is an open map, then the restriction map $f\mid_A$ is open, $\forall A\subseteq X.$

.....

GOOD LUCK ON YOUR EXAM