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PART I 
THERMODYNAMICS 
 
1. THERMODYNAMIC STATES AND THE FIRST 
LAW (1001-1030) 
1001 
Describe briefly the basic principle of the following instruments for 
making temperature measurements and state in one sentence the special 
usefulness of each instrument: constant-volume gas thermometer, thermocouple, 
thermistor. 
( Wisconsin) 
Solution: 
Constant-volume gas thermometer: It is made according to the principle 
that the pressure of a gas changes with its temperature while its volume 
is kept constant. It can approximately be used as an ideal gas thermometer. 
Thermocouple thermometer: It is made according to the principle that 
thermoelectric motive force changes with temperature. The relation between 
the thermoelectric motive force and the temperature is 

8 = a + bt + ct2 + dt3 , 
where E is the electric motive force, t is the difference of temperatures of 
the two junctions, a,b,c and d are constants. The range of measurement 
of the thermocouple is very wide, from -2OOOC to 16OOOC. It is used as a 
practical standard thermometer in the range from 630.74'C to 1064.43"C. 
Thermister thermometer: We measure temperature by measuring the 
resistance of a metal. The precision of a thermister made of pure platinum 
is very good, and its range of measurement is very wide, so it is usually 
used as a standard thermometer in the range from 13.81K to 903.89K. 
1002 
Describe briefly three different instruments that can be used for the 
accurate measurement of temperature and state roughly the temperature 
range in which they are useful and one important advantage of each instrument. 
Include at least one instrument that is capable of measuring 
temperatures down to 1K. 



( Wisconsin) 
3 
4 Problems d S d u t i o ~o n Thermodynamics tY Statistical Mechanics 

Solution: 

1. Magnetic thermometer: Its principle is Curie's law x = C/T, where 

x is the susceptibility of the paramagnetic substance used, T is its absolute 

temperature and C is a constant. Its advantage is that it can measure 

temperatures below 1K. 
2. Optical pyrometer: It is based on the principle that we can find the 
temperature of a hot body by measuring the energy radiated from it, using 
the formula of radiation. While taking measurements, it does not come 
into direct contact with the measured body. Therefore, it is usually used 
to measure the temperatures of celestial bodies. 
3. Vapor pressure thermometer: It is a kind of thermometer used 
to measure low temperatures. Its principle is as follows. There exists a 
definite relation between the saturation vapor pressure of a chemically pure 
material and its boiling point. If this relation is known, we can determine 
temperature by measuring vapor pressure. It can measure temperatures 
greater than 14K, and is the thermometer usually used to measure low 
temperatures. 
1003 
A bimetallic strip of total thickness z is straight at temperature T. 
What is the radius of curvature of the strip, R, when it is heated to temperature 
T+AT? The coefficients of linear expansion of the two metals are 
a1 and a2, respectively, with a2 > a1. You may assume that each metal 

has thickness 212, and you may assume that x << R. 
( Wisconsin) 
Solution: 
We assume that the initial length is 10. After heating, the lengths of 
the mid-lines of the two metallic strips are respectively 
Thermodynamics 5 
Fig. 1.1. 

Assuming that the radius of curvature is R, the subtending angle of the 
strip is 8, and the change of thickness is negligible, we have 

z z 11 + 12 210 

12 - 11 = -8 = - - = -[2 + (a1 + a2)ATI . 
2 2 2R 4R (3) 
From (1) and (2) we obtain 
(3) and (4) then give 
1004 
An ideal gas is originally confined to a volume Vl in an insulated container 
of volume Vl +V2. The remainder of the container is evacuated. The 
partition is then removed and the gas expands to fill the entire container. 
If the initial temperature of the gas was T, what is the final temperature? 
Justify your answer. 
( Was cons in) 

insulated container c 
Fig. 1.2. 
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Solution: 
This is a process of adiabatic free expansion of an ideal gas. The 
internal energy does not change; thus the temperature does not change, 



that is, the final temperature is still T. 
1005 
An insulated chamber is divided into two halves of volumes. The left 
half contains an ideal gas at temperature TO and the right half is evacuated. 
A small hole is opened between the two halves, allowing the gas to flow 
through, and the system comes to equilibrium. No heat is exchanged with 
the walls. Find the final temperature of the system. 
(Columbia) 
Solution: 
After a hole has been opened, the gas flows continuously to the right 
side and reaches equilibrium finally. During the process, internal energy of 
the system E is unchanged. Since E depends on the temperature T only 
for an ideal gas, the equilibrium temperature is still To. 
Fig. 1.3. 
1006 
Define heat capacity C, and calculate from the first principle the numerical 
value (in caloriesj'C) for a copper penny in your pocket, using your 
best physical knowledge or estimate of the needed parameters. 
(UC, Berkeley) 
Solution: 
penny is about 32 g, i.e., 0.5 mol. Thus C, = 0.5 x 3R = 13 J/K. 
C,, = (dQ/dT),. The atomic number of copper is 64 and a copper 
Thermodynamics 7 
1007 
Specific heat of granite may be: 0.02,0.2,20,2000 cal/g.K. 
(Columbia) 
Solution: 
The main component of granite is CaC03; its molecular weight is 100. 
The specific heat is C = 3R/100 = 0.25 cal/g. K. Thus the best answer is 
0.2 cal/g.K. 
1008 
The figure below shows an apparatus for the determination of C,/C,, 
for a gas, according to the method of Clement and Desormes. A bottle 
G, of reasonable capacity (say a few litres), is fitted with a tap H, and a 
manometer M. The difference in pressure between the inside and the outside 
can thus be determined by observation of the difference h in heights of 
the two columns in the manometer. The bottle is filled with the gas to be 
investigated, at a very slight excess pressure over the outside atmospheric 
pressure. The bottle is left in peace (with the tap closed) until the temperature 
of the gas in the bottle is the same as the outside temperature 
in the room. Let the reading of the manometer be hi. The tap H is then 
opened for a very short time, just sufficient for the internal pressure to 
become equal to the atmospheric pressure (in which case the manometer 
reads h = 0). With the tap closed the bottle is left in peace for a while, 
until the inside temperature has become equal to the outside temperature. 
Let the final reading of the manometer be h. From the values of h; and h, 
it is possible to find Cp/Cv. (a) Derive an expression for C,/Cv in terms of 
h; and h, in the above experiment. (b) Suppose that the gas in question 
is oxygen. What is your theoretical prediction for C,/Cv at 2OoC, within 
the framework of statistical mechanics? 
(UC, Berkeley) 
h 
Fig. 1.4. 
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Solution: 
(a) The equation of state of ideal gas is pV = nkT. Since the initial 



and final T,V of the gas in the bottle are the same, we have p f / p ; = n f / n ; . 
Meanwhile, nf/n; = V/V', where V' is the volume when the initial 
gas in the bottle expands adiabatically to pressure PO. Therefore 

-=(E)71 VV' 1 "=(a)+ Pi , 

Since h;/ho << 1 and hf/ho << 1, we have 7 = h;/(h; - h f ) . 
(b) Oxygen consists of diatomic molecules. When t = 2OoC, only 
the translational and rotational motions of the molecules contribute to the 
specific heat. Therefore 
1009 
(a) Starting with the first law of thermodynamics and the definitions 
of cp and c,, show that 

c p - c , = [ P + ( aavu) T 1 (%) 
P 

where cp and c, are the specific heat capacities per mole at constant pressure 
and volume, respectively, and U and V are energy and volume of one 
mole. 
(b) Use the above results plus the expression 
p + ( % ) , = T ( % ) V 

to find cp - c, for a Van der Waals gas 
Use that result to show that as V --+ 00 at constant p , you obtain the ideal 
gas result for cp - c,. 
(SUNY, Buflulo) 
Thermodynamics 9 
Solution: 

(a) From H = U + pV, we obtain 
( % ) p = ( % ) , + p ( % ) P * 

Let U = U[ TV, ( T ,p ) ] . The above expression becomes 
Hence 
P 

(b) For the Van der Waals gas, we have 
R 
RT 2a(V - b) 
v3 

Hence , 
R 
cp - C" = 

1 - 2a( 1 - b/V)2/VRT ' 
When V -+ 00, cp - c, + R, which is just the result for an ideal gas. 
1010 
One mole of gas obeys Van der Waals equation of state. If its molar 
internal energy is given by u = cT - a/V (in which V is the molar volume, 
a is one of the constants in the equation of state, and c is a constant), 
calculate the molar heat capacities C, and C,. 
Solution: 
( was co nsin) 

c,=(%) = c , 

%= ( g ) p + p ( % ) p = (%)v+ [ ( 3 , + P l 

V 

x(%) = c + ( & + p ) ( E ) . 



P P 
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From the Van der Waals equation 

( p + a/Vz)(V - b) = RT , 
we obtain 
Therefore 
R 
RTV3 
a 2ab 2 a ( -~ b )2 * 

c , = c + 

p - ,+v, v 1- 
1011 
A solid object has a density p, mass M, and coefficient of linear expansion 
a. Show that at pressure p the heat capacities C, and C,, are related 
bY 

C, - C,, = 3aMp/p . 
( Wisconsin) 
Soh tion: 

From the first law of thermodynamics dQ = dU + pdV and (%),- 
(g),, (for solid), we obtain 

c , - c "=( g ) , - ( g )= p $dVT . 
U 

From the definition 1 dV of coefficient of linear expansion a = asolid/3 = - - 
3V dT' 
we obtain M 
- = 3aV = 3a- . dV 
dT P 

Substituting this in (*), we find 
M 
P 

c, - c,, = 3a-p . 
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1012 
One mole of a monatomic perfect gas initially at temperature To expands 
from volume Vo to 2VOl (a) at constant temperature, (b) at constant 
pressure. 
Calculate the work of expansion and the heat absorbed by the gas in 
each case. 
(Wisconsin) 
Solution: 
(a) At constant temperature To, the work is 
2vo 

W = L B pdV = RTo lo d V / V = RTo In2 . 
As the change of the internal energy is zero, the heat absorbed by the gas 
is 
Q = W = RTo l n 2 . 
(b) At constant pressure p, the work is 
The increase of the internal energy is 



3 3 3 
2 2 2 
AU = C,AT = -RAT = - p A V = -pVd 

3 -RTo . 2 
Thus the heat absorbed by the gas is 
5 
2 
Q=AU+W=-RTo. 
101s 
For a diatomic ideal gas near room temperature, what fraction. of the 
heat supplied is available for external work if the gas is expanded at constant 
pressure? At constant temperature? 
(Wisconsin) 
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Solution: 
In the process of expansion at constant pressure p , assuming that the 
volume increases from V1 to V2 and the temperature changes from TI to 
T2, we have 

pV1 = nRT1 { pV2 = nRT2 . 
In this process, the work done by the system on the outside world is W = 

p(V2 - V1) = nRAT and the increase of the internal energy of the system 
is 

AU = C,AT . 
Therefore 
W 2 

Q AU+W C,+nR 7 
-- - 

_ -- W - nR 
In the process of expansion at constant temperature, the internal energy 
does not change. Hence 
W / Q = 1 . 
1014 
A compressor designed to compress air is used instead to compress helium. 
It is found that the compressor overheats. Explain this effect, assuming 
the compression is approximately adiabatic and the starting pressure is 
the same for both gases. 
( wis cons in) 
Solution: 
The state equation of ideal gas is 
pV = nRT. 
The equation of adiabatic process is 

P ( v6 )7 = P o , 
where 7 = cP/c,,po and p are starting and final pressures, respectively, and 

VOa nd v are volumes. Because VO> v and 7He > 7 A i r ( 7 =~ 7/5~;7* ir = 

5/3), we get 

PHe > PAir and THe > TAir * 

Thermodyamics 13 
1015 
Calculate the temperature after adiabatic compression of a gas to 10.0 
atmospheres pressure from initial conditions of 1 atmosphere and 300K (a) 
for air, (b) for helium (assume the gases are ideal). 
Soh tion: 



( wis co nsin) 

The adiabatic process of an ideal gas follows the law 
TB = (pB/pA)(7-1)/7 TA = 10(7-1)/7 X 300 K . 
(a) For air, 7 = Cp/C,, = 1 . 4 , thus TB = 5.8 x 10'K. 

(b) For helium, 7 = Cp/Cu = 5/3 , thus TB = 7.5 x 102K . 
1016 
(a) For a mole of ideal gas at t = OOC, calculate the work W done (in 
Joules) in an isothermal expansion from VO to lOV0 in volume. 
(b) For an ideal gas initially at ti = O"C, find the final temperature tf 
(in "C) when the volume is expanded to lOV0 reversibly and adiabatically. 
(UC, Berkeley) 
Solution: 
pdV = -dV = RTln 10 = 5.2 x 103J 
(b) Combining the equation of adiabatic process pV7 = const and the 
equation of state pV = RT, we get TV7-l = const. Thus 
If the ideal gas molecule is monatomic, 7 = 5/3, we get tf = 59K or -214°C. 
1017 
(a) How much heat is required to raise the temperature of 1000 grams 
(b) How much has the internal energy of the nitrogen increased? 
(c) How much external work was done? 
of nitrogen from -20°C to 100°C at constant pressure? 
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(d) How much heat is required if the volume is kept constant? 
Take the specific heat at constant volume c, = 5 cal/mole "C and 
R = 2 cal/mole.'C. 
( Wisconsin) 
Solution: 
(a) We consider nitrogen to be an ideal gas. The heat required is 
1000 
28 

Q = n(c, + R)AT = -(5 + 2) x 120 = 30 x 103cal 
(b) The increase of the internal energy is 
100 
28 
AU = nc,AT = - x 5 x 120 
= 2 1 x 1 0 ~ . ~ ~ 1 
(c) The external work done is 

W = Q - AU = 8.6 x lo3 cal . 
(d) If it is a process of constant volume, the required heat is 

Q = nc,AT = 21 x 103cal . 
1018 
10 litres of gas at atmospheric pressure is compressed isothermally to 
a volume of 1 litre and then allowed to expand adiabatically to 10 litres. 
(a) Sketch the processes on a pVdiagram for a monatomic gas. 
(b) Make a similar sketch for a diatomic gas. 
(c) Is a net work done on or by the system? 
(d) Is it greater or less for the diatomic gas? 
( was co nsin) 
Solution: 
We are given that VA = lOl,V, = l l , V c = 101 and pA = 1 atm.. 
A -+ B is an isothermal process, thus 

pV = const. or ~ A V A= ~ B V B, 
Thermodynamics 15 



hence 
VA 
VB 

p~ = ---PA = 10 atm . 
(The curve AB of the two kinds of gas are the same). 
B -+ C is an adiabatic process, thus 

pV7 = const, or p ~ V 2= pcV2 , hence 
(a) For the monatomic gas, we have 

7 = 5/3,pc = lOe2I3 = 0.215 atm . 
(b) For the diatomic gas, we have 
7 = 7/5,pc = 10-2’5 = 0.398 atm. 
The two processes are shown in the figures 1.5. (The curve BC of the 
monatomic gas (a) is lower than that of the diatomic gas (b)). 
(c) In each case, as the curve AB for compression is higher than the 
curve BC for expansion, net work is done on the system. As pc (monatomic 
gas) < pc (diatomic gas) the work on the monatomic gas is greater than 
that on the diatomic gas. 

1 p (atm 1 
10- 
8- 
6 - 
I - 
2 - 
A 

c, 
0 2 I 6 8 1Oy( 
p (atm) 
L) 
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1019 
An ideal gas is contained in a large jar of volume Vo. Fitted to the 
jar is a glass tube of cross-sectional area A in which a metal ball of mass 
M fits snugly. The equilibrium pressure in the jar is slightly higher than 
atmospheric pressure po because of the weight of the ball. If the ball is 
displaced slightly from equilibrium it will execute simple harmonic motion 
(neglecting friction). If the states of the gas represent a quasistatic adiabatic 
process and 7 is the ratio of specific heats, find a relation between the 
oscillation frequency f and the variables of the problem. 
(UC, Berkeley) 
Fig. 1.6. 
Solution: 
have 
Assume the pressure in the jar is p . As the process is adiabatic, we 

pV7 = const , 
giving 
dp dV 
- +-y- = 0 . 
P V 
This can be written as F = Adp = -kz, where F is the force on the ball, 

3: = dV/A and k = -yA2p/V. Noting that p = po + mg/A, we obtain 
1020 
The speed of longitudinal waves of small amplitude in an ideal.gas is 
Thermodpnmics 17 
where p is the ambient gas pressure and p is the corresponding gas density. 
Obtain expressions for 



(a) The speed of sound in a gas for which the compressions and rarefactions 
are isothermal. 
(b) The speed of sound in a gas for which the compressions and rarefactions 
are adiabatic. 
( Wisconsin) 
Solution: 
The isothermal process of an ideal gas follows pV = const; the adiabatic 
process of an ideal gas follows pV7 = const. We shall use pVt = const for 
a general process, its differential equation being 
d p dV 
- + t - = O . 
P V 

Thus (2)= -tvP . 
With p = M / V , we have 
RT 
Therefore 

(a) The isothermal process: t = 1, thus c = d m . 
(b) The adiabatic process: t = 7, thus c = d m . 
1021 
Two systems with heat capacities C1 and Cz, respectively, interact 
thermally and come to a common temperature Tf.If the initial temperature 

of system 1 was TI, what was the initial temperature of system 2? You may 
assume that the total energy of the combined systems remains constant. 
( wis co nsin) 
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Solution: 
We assume that the initial temperature of system 2 is T2. According 
to the conservation of energy, we know the heat released from system 1 is 
equal to that absorbed by the other system, i.e., 
The solution is 
C1 
c2 

T2 = -(Tf - TI) + T f * 
1022 
A large solenoid coil for a physics experiment is made of a single layer 
of conductor of cross section 4cm x 2cm with a cooling water hole 2 cm 
x Icm in the conductor. The coil, which consists of 100 turns, has a 
diameter of 3 meters, and a length of 4 meters (the insulation thickness is 
negligible). At the two ends of the coil are circular steel plates to make the 
field uniform and to return the magnetic flux through a steel cylindrical 
structure external to the coil, as shown in the diagram. A magnetic field 
of 0.25 Tesla is desired. The conductor is made of aluminium. 
(a) What power (in kilowatts) must be supplied to provide the desired 
field, and what must be the voltage of the power supply? 
(b) What rate of water flow (litres/second) must be supplied to keep 
the temperature rise of the water at 40"C? Neglect all heat losses from the 
coil except through the water. 
(c) What is the outward pressure exerted on the coil by the magnetic 
forces? 
(d) If the coil is energized by connecting it to the design voltage calculated 
in (a), how much time is required to go from zero current to 99% of 
the design current? Neglect power supply inductance and resistance. The 



resistivity of aluminium is 3 x lo-* ohm-meters. Assume that the steel is 
far below saturation. 
(CUSPEA) 
Thermodynamics 19 

r----------- cooling - 7 
I 

I coil in detail I 

r- - ------I 

I----- 
Fig. 1.7. 
Solution: 
where N is the number of turns, L is the length of the solenoid coil. The 
current is therefore 
(a) The magnetic field is B = poNI/L, 
I = - -B- -L- - 0.25 x 4 = 7960A . 
p o ~4T x 10-7 x 100 
The total resistance of the coil is R = pL/A. Therefore, the resistance, the 
voltage and the power are respectively 
(3 X 10-8)(100 X 2~ x 1.5) 
R= = 0.0471i-l 
(4 x 2 - 2 x 1) x 10-4 
V = RI = 375V 

P = V I = 2.99 x lo3 kw , 

(b) The rate of flow of the cooling water is W. Then pWCAT = P, 
where p is the density, C is the specific heat and AT is the temperature 
rise of the water. Hence 
2.99 x 103 x 103 
P = 17.8 11s 
pCAT 

w=-= 
1 x 4190 x 40 
(c) The magnetic pressure is 
(0.25)' 
= 2.49 x lo4 N/m2 . B2 
2po z(4Tx 10-7) 
p = - = 
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(d) The time constant of the circuit is 
T = LIR, with L= N @ / I , 
where L is the inductance, R is the resistance, N is the number of turns, I 
is the current and Q is the magnetic flux. Thus we have 
L = 100 x 0.25~x (1.5)'/7960 = 0.0222 H 
and 

7 = 0.0222/0.0471 = 0.471 s . 
The variation of the current before steady state is reached is given by 

I ( t ) = Imax[I - exp(-t/.r)] . 
When I(t)/Imax = 99%, 
t = 71n 100 = 4.67 M 2.17 s 
102s 
Consider a black sphere of radius R at temperature T which radiates 

to distant black surroundings at T = OK. 
(a) Surround the sphere with a nearby heat shield in the form of a black 



shell whose temperature is determined by radiative equilibrium. What is 
the temperature of the shell and what is the effect of the shell on the total 
power radiated to the surroundings? 
(b) How is the total power radiated affected by additional heat shields? 
(UC, Berkeley) 

(a) At radiative equilibrium, J - J1 = J1 or J1 = 512. Therefore 
(Note that this is a crude model of a star surrounded by a dust cloud.) 
Solution: 
Tf = T4/2, or TI = 
Fig. 1.8. 
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(b) The heat shield reduces the total power radiated to half of the 
initial value. This is because the shield radiates a part of the energy it 
absorbs back to the black sphere. 
1024 
In vacuum insulated cryogenic vessels (Dewars), the major source of 
heat transferred to the inner container is by radiation through the vacuum 
jacket. A technique for reducing this is to place “heat shields” in the 
vacuum space between the inner and outer containers. Idealize this situation 
by considering two infinite sheets with emissivity = 1 separated by a 

vacuum space. The temperatures of the sheets are TI and Tz (TZ > TI). 
Calculate the energy flux (at equilibrium) between them. Consider a third 
sheet (the heat shield) placed between the two which has a reflectivity of 
R. Find the equilibrium temperature of this sheet. Calculate the energy 
flux from sheet 2 to sheet 1 when this heat shield is in place. 
For Tz = room temperature, TI = liquid He temperature (4.2 K) find 
the temperature of a heat shield that has a reflectivity of 95%. Compare 
the energy flux with and without this heat shield. 
(0 = 0.55 x lo-’ watts/m2K) 
(UC, Berkeley) 
Fig. 1.9. 

Solution: 
When there is no “heat shield”, the energy flux is 
When Uheat shield” is added, we have 

J’ = Ez - RE, - (1 - R)E3 , 
J’ = (1 - R)E3 + RE1 - El . 
22 

These equations imply E3 = (El + E2)/2, or T3 = [(T; + Tf)/2]'I4. Hence 
Problems 8 Sdutiom on Thermodynamics d Statiaticd Mechanics 

J* = ( 1 - R)(E2 - E1)/2 = ( 1 - R) J/2 . 
With Tl = 4.2 K, T2 = 300K and R = 0.95, we have 

T3 = 252 K and J*/J = 0.025 . 
1025 
Two parallel plates in vacuum, separated by a distance which is small 
compared with their linear dimensions, are at temperatures TI and T2 respectively 

(TI > T2). 
(a) If the plates are non-transparent to radiation and have emission 
powers e l and e2 respectively, show that the net energy W transferred per 
unit area per second is 
El - E2 
Ei E2 W = 
-+--1 
where El and E2 are the emission powers of black bodies at temperatures 



TI and Tz respectively. 

(b) Hence, what is W if TI is 300 K and T2 is 4.2 K, and the plates 
are black bodies? 
(c) What will W be if n identical black body plates are interspersed 
between the two plates in (b)? 
(0 = 5.67 x 10-8W/m2K4). 
(SVNY, Buflulo) 
Solution: 
reflection) of the two plates respectively. We have 
(a) Let fl and f 2 be the total emission powers (thermal radiation plus 
23 
The solution is 
Hence 
Ei - E2 
-Ei+ - -E12 

w =f 1 - f 2 = 

el e2 

(b) For black bodies, W = El - E2 = u(Tf - T;) = 460 W/m2. 
(c) Assume that the n interspersed plates are black bodies at temperatures 

tl, t2, . . . , t,. When equilibrium is reached, we have 

T: - t: = t: - Ti , for n = 1 , 
with solution 
with solution 
Then in the general we have 

Tf - tt = t; - tf = .. . = t4, - Ti , 
with solution 

d W = o ( T ~- T i )= -(Tt - T i ) . 
n+l 
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1026 
A spherical black body of radius r at absolute temperature T is surrounded 
by a thin spherical and concentric shell of radius R, black on 
both sides. Show that the factor by which this radiation shield reduces 
the rate of cooling of the body (consider space between spheres evacuated, 
with no thermal conduction losses) is given by the following expression: 

aR2/(R2 + br2), and find the numerical coefficients a and 6. 
Solution: 
black body before being surrounded by the spherical shell is 
(SUNY, Buflulo) 
Let the surrounding temperature be To. The rate of energy loss of the 

Q = 4ar2u( T4 - Ti) . 
The energy loss per unit time by the black body after being surrounded by 
the shell is 

Q‘ = 4rr2u(T4 - T:), where TI is temperature of the sheli . 
The energy loss per unit time by the shell is 

Q” = 4aR2a(T; - TO) . 
Since Q” = Q’, we obtain 

Tf = (r2T4 -t R2T;)/(R2 + r2) 

Hence Q’/Q = R2/(R2 + r2), i.e., a = 1 and b = 1. 
1027 



The solar constant (radiant flux at the surface of the earth) is about 
0.1 W/cm2. Find the temperature of the sun assuming that it is a black 
body. 
Solution: 
(MITI 
The radiant flux density of the sun is 

J = uT4 , where u = 5.7 x lo-’ W/m2K4. Hence ~ T ~ ( r s / r=s 0~.1) ,~ 
where the radius of the sun rs = 7.0 x 105km, the distance between the 
earth and the sun rSE = 1.5 x 108km. Thus 
1028 
(a) Estimate the temperature of the sun's surface given that the sun 
subtends an angle 0 as seen from the earth and the earth's surface temperature 
is To. (Assume the earth's surface temperature is uniform, and that 
the earth reflects a fraction, E, of the solar radiation incident upon it). Use 
your result to obtain a rough estimate of the sun's surface temperature by 
putting in 'reasonable" values for all parameters. 
(b) Within an unheated glass house on the earth's surface the temperature 
is generally greater than To. Why? What can you say about the 
maximum possible interior temperature in principle? 
(Columbia) 
Solution: 
(a) The earth radiates heat while it is absorbing heat from the solar 
radiation. Assume that the sun can be taken as a black body. Because of 
reflection, the earth is a grey body of emissivity 1 - E. The equilibrium 
condition is 
where Js and JE are the radiated energy flux densities on the surfaces of 
the sun and the earth respectively, Rs, R E and TS-E are the radius of the 
sun, the radius of the earth and the distance between the earth and the sun 
respectively. Obviously Rs/rs-E = tan(8/2). From the Stefan-Boltzman 
law, we have 
for the sun, Js = aTt ; 
for the earth JE = (1 - E)UT;. 
Therefore 
7 x 106 km 

Ts = T E / F w300Kx ( 2 x 

w 6000 K 
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(b) Let T be temperature of the glass house and t be the transmission 
coefficient of glass. Then 

(1 - t)T4 + tT: = tT4 , 
giving 
Since t < 1, we have t > 2t - 1, so that 
T > To 
1029 
Consider an idealized sun and earth, both black bodies, in otherwise 
empty flat space. The sun is at a temperature of Ts = 6000 K and heat 
transfer by oceans and atmosphere on the earth is so effective as to keep 
the earth’s surface temperature uniform. The radius of the earth is RE = 

6 x lo8 cm, the radius of the sun is Rs = 7 x lolo cm, and the earth-sun 
distance is d = 1.5 x 1013 cm. 
(a) Find the temperature of the earth. 
(b) Find the radiation force on the earth. 
(c) Compare these results with those for an interplanetary Uchondrulen 



in the form of a spherical, perfectly conducting black-body with a radius of 

R = O.lcm, moving in a circular orbit around the sun with a radius equal 
to the earth-sun distance d. 
(Princeton) 
Solution: 
approximately 
(a) The radiation received per second by the earth from the sun is 
The radiation per second from the earth itself is 
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Neglecting the earth’s own heat sources, energy conservation leads to the 
relation QE = qSE, so that 
i.e., 
(b) The angles subtended by the earth in respect of the sun and by 
the sun in respect of the earth are very small, so the radiation force is 
(c) AS RE + R,T = TE = 17°C 

F = (R/RE)2FE= 1.7 x 10-l’ N . 
1030 
Making reasonable assumptions, estimate the surface temperature of 
Neptune. Neglect any possible internal sources of heat. What assumptions 
have you made about the planet’s surface and/or atmosphere? 
Astronomical data which may be helpful: radius of sun=7 x lo5 km; 
radius of Neptune = 2 . 2 ~ 1 0km~ ; mean sun-earth distance = 1 . 5 ~ 1 0 8k m; 
mean sun-Neptune distance = 4 . 5 ~lo 9 km; TS = 6000 K; rate at which 
sun’s radiation reaches earth = 1.4 kW/m2; Stefan-Boltzman constant = 
5.7 x W/m2K4. 
( wasco nsin) 
Solution: 
We assume that the surface of Neptune and the thermodynamics of 
its atmosphere are similar to those of the earth. The radiation flux on the 
earth’s surface is 
JE = 4.lrR:uT;/4.lrRiE 
The equilibrium condition on Neptune’s surface gives 
28 
Hence 
Problem f3 Sdutiona on Thermodynamics d Statistical Mechanics 

REE JEIRgN = 4aTi , 
and we have 

(1.5 x lo8)' 
(5.7 x 10912 4 x 5.7 x 10-8 

= 5 2 K . 
2. THE SECOND LAW AND ENTROPY (1031-1072) 
1031 
A steam turbine is operated with an intake temperature of 4OO0C, and 
an exhaust temperature of 150OC. What is the maximum amount of work 
the turbine can do for a given heat input Q? Under what conditions is the 
maximum achieved? 
( wis co nsin) 
Solution: 
From the Clausius formula 
we find the external work to be 
Substituting Q1 = Q,T1 = 673 K and Tz = 423 K in the above we have 

W, = (1 - 2) Q = 0.379 . 
As the equal sign in the Clausius formula is valid if and only if the cycle 



is reversible, when and only when the steam turbine is a reversible engine 
can it achieve maximum work. 
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1032 
What is a Carnot cycle? Illustrate on a pV diagram and an ST diagram. 
Derive the efficiency of an engine using the Carnot cycle. 
( was cons in) 
Solution: 
adiabatic lines (as shown in Fig. 1.10 (a)). 
A Carnot cycle is a cycle composed of two isothermal lines and two 
A 
L 
V 

s t 
Fig. 1.10. 

Now we calculate the efficiency of the Carnot engine. First, we assume 
the cycle is reversible and the gas is 1 mole of an ideal gas. As A -+ B is 
a process of isothermal expansion, the heat absorbed by the gas from the 
heat source is 

Qi = RTi 1n(vB/vA) . 
As C -+ D is a process of isothermal compression, the heat released by the 
gas is 

9 2 = RT2 ln(Vc/VD) . 
The system comes back to the initial state through the cycle ABCDA. In 
these processes, the relations between the quantities of state are 
Thus we find 
VE VC 
VA VD ' 
- 
Therefore the efficiency of the engine is 
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If the engine (or the cycle) is not reversible, its efficiency is 

q’ < q = 1 - Tz/Tl . 
1033 
A Carnot engine has a cycle pictured below. 
and 
V 
Fig. 1.11. 

(a) What thermodynamic processes are involved at boundaries AD 
BC;AB and CD? 
(b) Where is work put in and where is it extracted? 

(c) If the above is a steam engine with z,=, 450 K, operating at room 

temperature, calculate the efficiency. 
Solution: 
processes. 
the processes AB and BC. 
(Wisconsin) 
(a) DA and BC are adiabatic processes, AB and CD are isothermal 
(b) Work is put in during the processes GD and DA; it is extracted in 
(c) The efficiency is 
1034 
A Carnot engine has a cycle as shown in Fig. 1.12. If W and W’ 
represent work done by 1 mole of monatomic and diatomic gas, respectively, 
calculate W’IW. 



(Columbia) 
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Solution: 
For the Carnot engine using monatomic gas, we have 

W = R(T1 - T2) ln(V2/Vi) , 
VO 6C Vo 
Fig. 1.12 

where Tl = 4TC, and Tz = TO are the temperatures of the respective heat 
sources, V, = V,, and V2 is the volume at state 2. We also have V3 = 64 VO. 

With W’ = R(T1 - T2) In (g) for the diatomic gas engine, we obtain 

Then, using the adiabatic equations 4ToV2-l = TOV;-~, 
4T v’7‘--1 = T V7’-l 

0 2 0 3 , 
we obtain 
W’ 
W 3 + ( 1 - 7 ) - ’ * 

_ -- 3 + (1 - y y 
For a monatomic gas 7 = 5/3; for a diatomic gas, 7’ = 7/5. Thus 
W’ 1 

w 3 - _ - - 
1035 
Two identical bodies have internal energy U = NCT, with a constant 
C. The values of N and C are the same for each body. The initial temperatures 
of the bodies are TI and T2, and they are used as a source of 
work by connecting them to a Carnot heat engine and bringing them to a 

common final temperature Tf. 
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(a) What is the final temperature Tf? 
(b) What is the work delivered? 
(GUSPEA) 
(a) The internal energy is U = NCT. Thus dQ1 = NCdT1 and dQ2 = 
Solution : 
dQi dQ2 

Tl T2 
NCdT2. For a Carnot engine, we have - = --. Hence 

Tf dT1 Tfd T2 In-T=r - ln- , Tf 

Thus Li = K’ Tl T2 

Therefore Tf = m. 
(b) Conservation of energy gives 



w = (Ul - U) - (U - U2) = u, + u2 - 2u 
= NC(Ti+ T2 - 2Tf) . 
1036 
Water powered machine. A self-contained machine only inputs two 
equal steady streams of hot and cold water at temperatures TI and T2. Its 
only output is a single high-speed jet of water. The heat capacity per unit 
mass of water, C, may be assumed to be independent of temperature. The 
machine is in a steady state and the kinetic energy in the incoming streams 
is negligible. 
(a) What is the speed of the jet in terms of T1,TZ and T, where T is 
(b) What is the maximum possible speed of the jet? 
the temperature of water in the jet? 
Fig. 1.13. 
33 
Solution: 
(a) The heat intake per unit mass of water is 

AQ [C(Tl - T) - C(T - T2)]/2 . 
As the machine is in a steady state, v2/2 = AQ, giving 

u = JC(T1 + T2 - 2T) . 
(b) Since the entropy increase is always positive, i.e., 
1037 
In the water behind a high power dam (110 m high) the temperature 
difference between surface and bottom may be 10°C. Compare the possible 
energy extraction from the thermal energy of a gram of water with that 
generated by allowing the water to flow over the dam through turbines in 
the conventional way. 
( Col urn bia) 
Solution: 
The efficiency of a perfect engine is 
The energy extracted from one gram of water is then 
where Q is the heat extracted from one gram of water, Cu is the apecific 
heat of one gram of water. Thus 
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If Thigh can be taken as the room temperature, then 

W = 1 x 102/300 = 0.3 cal . 
The energy generated by allowing the water to flow over the dam is 
W' = mgh = 1 x 980 x 100 x 10' 
= lo7 erg = 0.24 cal . 
We can see that under ideal conditions W' < W. However, the efficiency 
of an actual engine is much less than that of a perfect engine. 
Therefore, the method by which we generate energy from the water height 
difference is still more efficient. 
1038 
Consider an engine working in a reversible cycle and using an ideal 
gas with constant heat capacity cp as the working substance. The cycle 
consists of two processes at constant pressure, joined by two adiabatics. 
adiabatics 
C 

Fig. V 1.14. 

(a) Find the efficiency of this engine in terms of pl, p2. 
(b) Which temperature of T,, Tb, T,, Td is highest, and which is lowest? 
(c) Show that a Carnot engine with the same gas working between the 
highest and lowest temperatures has greater effficiency than this engine. 
( Col urn baa) 



Solution: 
source of higher temperature is 
(a) In the cycle, the energy the working substance absorbs from the 
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The energy it gives to the source of lower temperature is Qgi = c,(Tc - Td). 

Thus 
From the equation of state pV = nRT and the adibatic equations 

P2Vd' = PlVJ , p2v: = p1v; , 
we have 
(b) From the state equation, we know Tb > T,,Tc > Td; from the 
adiabatic equation, we know Tb > Tc, T, > Td; thus 
1039 
A building at absolute temperature T is heated by means of a heat 
pump which uses a river at absolute temperature To as a source of heat. 
The heat pump has an ideal performance and consumes power W. The 
building loses heat at a rate cr(T - To), where Q is a constant. 
(a) Show that the equilibrium temperature T, of the building is given 
by 
Te =To +2wa [1+ (1+9)'] 
(b) Suppose that the heat pump is replaced by a simple heater which 
also consumes a constant power W and which converts this into heat with 
100% efficiency. Show explicitly why this is less desirable than a heat pump. 
(Columbia) 
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Solution: 
(a) The rate of heat from the pump is 

At equilibrium, T = T, and Q = Q, = a(Te - To). Thus 
(b) In this case, the equilibrium condition is 

W = Q ( T-~ T o) . 
Thus 
W 
Ti=To+-<Te. 
Q 

Therefore it is less desirable than a heat pump. 
1040 
A room at temperature T2 loses heat to the outside at temperature T1 
at a rate A(Tz - Tl). It is warmed by a heat pump operated as a Carnot 
cycle between TI and Tz. The power supplied by the heat pump is dW/dT. 
(a) What is the maximum rate dQm/dt at which the heat pump can 
deliver heat to the room? What is the gain dQm/dW? Evaluate the gain 
for tl = 2"C, t2 = 27°C. 
(b) Derive an expression for the equilibrium temperature of the room, 
(UC, Berkeley) 
Tz, in terms of TI, A and dW/dt. 
Solution: 
(a) From dQm . (TZ - T1)/T2 = dW, we get 
With TI = 275K, T2 = 300K, we have dQm/dW = 12. 
(b) When equilibrium is reached, one has 
T2 dW 
A(T2 - Ti) = - - T2 -TI dt ' 
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giving 
1041 



A building at a temperature T (in K) is heated by an ideal heat pump 
which uses the atmosphere at To(K) as heat source. The pump consumes 
power W and the building loses heat at a rate a(T - To). What is the 
equilibrium temperature of the building? 
(MIT) 
Solution: 
Let Te be the equilibrium temperature. Heat is given out by the pump 
at the rate Q1 = W/r], where r] = 1 - To/Te. At equilibrium Q1 = a(T, - 
TO)s,o that 

W = -a( Te - To)' , 
Te 
from which we get 

Te=T0+"./ToF+(E) 2 . 
2a 
1042 
Let M represent a certain mass of coal which we assume will deliver 
100 joules of heat when burned - whether in a house, delivered to the 
radiators or in a power plant, delivered at 1000°C. Assume the plant is 
ideal (no waste in turbines or generators) discharging its heat at 30°C to a 
river. How much heat will M, burned at the plant to generate electricity, 
provide for the house when the electricity is: 
(a) delivered to residential resistance-heating radiators? 
(b) delivered to a residential heat pump (again assumed ideal) boosting 
heat from a reservoir at 0°C into a hot-air system at 3OoC? 
( Wisconsin) 
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Solution: 
When M is burned in the power plant, the work it provides is 

= 76.2J . 
This is delivered in the form of electric energy. 
(a) When it is delivered to residential resistance-heating radiators, it 
(b) When the electricity is delivered to a residential heat pump, heat 
flows from a source of lower temperature to a system at higher temperature, 
the working efficiency being 
will transform completely into heat: Q' = W = 76.2J. 
m 

&=- '' = 273/30 = 9.1 

Tl - T2 
Hence the heat provided for the house is 

Q' = (1 + E)W = 770 J . 
1043 
An air conditioner is a device used to cool the inside of a home. It is, in 
essence, a refrigerator in which mechanical work 4 done and heat removed 
from the (cooler) inside and rejected to the (warmer) outside. 
A home air conditioner operating on a reversible Carnot cycle between 
the inside, absolute temperature T2, and the outside, absolute temperature 

TI > T2, consumes P joules/sec from the power lines when operating 
continuously. 
(a) In one second, the air conditioner absorbs 9 2 joules from the house 
and rejects Q1 joules outdoors. Develop a formula for the efficiency ratio 
Q2/P in terms of TI and T2. 
(b) Heat leakage into the house follows Newton's law Q = A(T1 - T2). 
Develop a formula for T2 in terms of TI, P, and A for continuous operation 



of the air conditioner under constant outside temperature TI and uniform 
(in space) inside temperature T2. 
(c) The air conditioner is controlled by the usual on-off thermostat 
and it is observed that when the thermostat set at 2OoC and an outside 
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temperature at 30°, it operates 30% of the time. Find the highest outside 
temperature, in "C, for which it can maintain 20°C inside (use -273°C for 
absolute zero). 
(d) In the winter, the cycle is reversed and the device becomes a heat 
pump which absorbs heat from outside and rejects heat into the house. 
Find the lowest outside temperature in "C for which it can maintain 20°C 
inside. 
( CUSPEA) 
(a I ( b l 
Fig. 1.15. 

Solution: 
(a) From the first and second thermodynamic laws, we have 

Qi = P + Qzr Qz/Tz = Qi,JTi . 
Hence 

_Q2 -_- T2 
P TI - T2 a 

(b) At equilibrium, heat leakage into the house is equal to the heat 
transfered out from the house, i.e., Q2 = A(T1 - T2). We obtain, using the 
result in (a). 
Hence / 

In view of the fact T2 < TI, the solution is 
T 2 = T2 1 A+ l [ E - / m ) . 
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(c) When the air conditioner works 30% of the time, we know from (b) 
When it operates continuously, we have 
100 100 

p = pSon. 30 239 = A . - . - w 1.13774 . 
With T2 = 20°C = 293K, we get 

Tl = T2 + = 293 + 
= 293 + 18.26 K = 38.26"C . 
Id) When the cycle is reversed in winter, we have 9 2 = P + Q1 and 

-Qz =' -Q. i At equilibrium, Qz = A(T2 - Ti)) SO that 

T2 Tl 

Thus Ti = T2 - K-T2 = 293 - (1.14 x 293)'/2 = 275K = 2°C. 

1044 
Calculate the change of entropy involved in heating a gram-atomic 
weight of silver at constant volume from 0" to 30°C. The value of C, over 
this temperature may be taken as a constant equal to 5.85 cal/deg.mole. 

( wis ca nsin) 
Solution: 
The change of entropy is 

7'2 30 + 273 



273 as -= nC, In - = 5.851n = n 6 cg T Ti 

= 0.61 cal/K . 
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1045 
A body of constant heat capacity C, and a temperature Ti is put into 

contact with a reservoir at temperature Tf. Equilibrium between the body 
and the reservoir is established at constant pressure. Determine the total 
entropy change and prove that it is positive for either sign of (Tf - Ti)/Tf. 

You may regard 1% - Ti\/Tf < 1. 
Solution: 

Ti = Tf). The change of entropy of the body is 
( wis co nsin) 

We assume Ti # fi (because the change of entropy must be zero when 
The change of entropy of the heat source is 
Therefore the total entropy change is 

When z > 0 and z # 1, the function f (z) = x - 1 - Ins > 0. Therefore 
1046 
One kg of H2O at 0°C is brought in contact with a heat reservoir at 
(a) what is the change in entropy of the water? 
(b) what is the change in entropy of the universe? 
(c) how could you heat the water to 100°C so the change in entropy of 
100OC. When the water has reached 100°C, 
the universe is zero? 
( was co nsin) 
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Solution: 
The process is irreversible. In order to calculate the change of entropy 
of the water and of the whole system, we must construct a reversible process 
which has the same initial and final states as the process in this problem. 
(a) We assume the process is a reversible process of constant pressure. 
The change in entropy of the water is 
r373 

We substitute m = lkg, and C H ,=~ 4 .18 J /g into it, and find 

ASH,, = 1305 J/K . 
(b) The change in entropy of the heat source is 
Ash, = -IQI/T = -1000 X 4.18 X 100/373 

= -11121 J/K . 
Therefore the change of entropy of the whole system is 
(c) We can imagine infinitely many heat sources which have infinitesimal 
temperature difference between two adjacent sources from O°C to 
100°C. The water comes in contact with the infinitely many heat sources 
in turn in the order of increasing temperature. This process which allows 
the temperature of the water to increase from 0°C to 100°C is reversible; 
therefore AS = 0. 
1047 
Compute the difference in entropy between 1 gram of nitrogen gas at 
a temperature of 20°C and under a pressure of 1 atm, and 1 gram of liquid 
nitrogen at a temperature -196"C, which is the boiling point of nitrogen, 
under the same pressure of 1 atm. The latent heat of vaporization of nitrogen 
is 47.6 cal/gm. Regard nitrogen as an ideal gas with molecular weight 
28, and with a temperature-independent molar specific heat at constant 



pressure equal to 7.0 cal/mol.K. 
(UC, Berkeley) 
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Solution: 
The number of moles of l g nitrogen is 
n = 1/28 = 3.57 x lO-’rnol. 
The entropy difference of an ideal gas at 20°C and at -196°C is 

AS’ = nCpln(T,/T2) = 0.33 cal/K , 
and the entropy change at phase transition is 

AS” = nL/Tz = 0.64 cal/K . 

Therefore AS = AS’ + AS’’ = 0.97 cal/K. 
1048 
A Carnot engine is made to operate as a refrigerator. Explain in detail, 
with the aid of (a) a pressure-volume diagram, (b) an enthalpy-entropy 
diagram, all the processes which occur during a complete cycle or operation. 
This refrigerator freezes water at 0°C and heat from the working substance 
is discharged into a tank containing water maintained at 20°C. Determine 
the minimum amount of work required to freeze 3 kg of water. 
(SVNY, Buflalo) 
V S 
[a) (b) 
Fig. 1.16. 

Solution: 
(a) As shown in Fig. l.l6(a), 
1-2: adiabatic compression, 
2-3: isothermal compression, 
3-4: adiabatic expansion, 
4-1: isothermal expansion. 
(b) As shown in Fig. l.l6(b): 
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1-2: Adiabatic compression. The entropy is conserved. 
2-3: Isothermal compression. If the working matter is an ideal gas, the 
3-4: Adiabatic expansion. The entropy is conserved. 
4-1: Isothermal expansion. The enthalpy is conserved. 
The refrigeration efficiency is 
enthalpy is conserved. 
Hence 
TI - T2 
T2 
W = 9 2 ~ . 

Q2 = ML is the latent heat for M = 3 kg of water at T = 0°C to become 
ice. As 

L = 3.35 x lo5 J/kg , 
we find W = 73.4 x lo3 J. 
1049 
n = 0.081 kmol of He gas initially at 27°C and pressure = 2 x 105N/m2 
is taken over the path A -+ B ---t C. For He 

C, = 3R/2 , C, = 5R/2 . 
Assume the ideal gas law. 
from A -+ B? 
(a) How much work does the gas do in expanding at constant pressure 
(b) What is the change in thermal or internal energy of the helium 
(c) How much heat is absorbed in going from A -+ B? 
(d) If B -+ C is adiabatic, what is the entropy change and what is the 



from A -+ B? 
final pressure? 
Solution: 
( was co nsin) 

(a) For A B, the external work is 

W = PA(VB - VA) = 1.0 x lo5 J . 
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(b) For A -+ B, the increase of the internal energy is 

AU = &',,AT = C,,PA(VB - VA)/R = 3W/2 = 1.5 x lo5 J . 

21 x ' l0o55[ I 

C 
I I I 

I I I I I I 

0 1.0 1.5 2.0 
v(m3) 
Fig. 1.17. 

(c) By the first law of thermodynamics, the heat absorbed during A + 

B is W + AU = 2.5 x lo5 3. 
(d) For B + C, the adiabatic process of an monatomic ideal gas satisfies 
the equation 

pV7 = const. , where 7 = C,/C, = 5/3 . 
Thus p~v;= pcv,' and p c = (vB/vc)7pB= 1.24 x lo5 N/rn2. 
In the process of reversible adiabatic expansion, the change in entropy is 
AS = 0. This is shown by the calculation in detail as follows: 
TC VC 
TB VB 
TcV2-l 

= nC, In = o . 
~Bv2-l 

AS = nC,, In - + nR In - 
1050 
A mole of an ideal gas undergoes a reversible isothermal expansion 
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from volume V1 to 2V1. 
(a) What is the change in entropy of the gas? 
(b) What is the change in entropy of the universe? 
Suppose the same expansion takes place as a free expansion: 
(a) What is the change in entropy of the gas? 
(b) What is the change in the entropy of the universe? 
( wis co nsin) 
Solution: 
the system is 
(a) In the process of isothermal expansion, the external work done by 
pdV = R T - -- R T I n 2 . 
Because the internal energy does not change in this process, the work is 
supplied by the heat absorbed from the external world. Thus the increase 
of entropy of the gas is 



(b) The change in entropy of the heat source AS2 = -ASl, thus the 
total change in entropy of the universe is 
If it is a free expansion, the internal energy of the system is constant. As its 
final state is the same as for the isothermal process, the change in entropy 
of the system is also the same. In this case, the state of the heat source 
does not change, neither does its entropy. Therefore the change in entropy 
of the universe is AS = Rln2. 
1051 
N atoms of a perfect gas are contained in a cylinder with insulating 
walls, closed at one end by a piston. The initial volume is V1 and the initial 
temperature 2'1. 
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(a) Find the change in temperature, pressure and entropy that would 
occur if the volume were suddenly increased to V2 by withdrawing the 
piston. 
(b) How rapidly must the piston be withdrawn for the above expressions 
to be valid? 
(MITI 

[Ejl. - 
Fig. 1.18. 
Solution: 
(a) The gas does no work when the piston is withdrawn rapidly. Also, 
the walls are thermally insulating, so that the internal energy of the gas 
does not change, i.e., dU = 0. Since the internal energy of an ideal gas is 
only dependent upon temperature T, the change in temperature is 0, i.e., 
Tz = TI. As for the pressure, p 2 / p 1 = Vl/V2. The increase in entropy is 
(b) The speed at which the piston is withdrawn must be far greater 
than the mean speed of the gas molecules, i.e., u >> 0 = ( 8 k T l / ~ m ) ~ / ~ . 
1052 
A cylinder contains a perfect gas in thermodynamic equilibrium at 
p, V, T, U (internal energy) and S (entropy). The cylinder is surrounded by 
a very large heat reservoir at the same temperature T. The cylinder walls 
and piston can be either perfect thermal conductors or perfect thermal 
insulators. The piston is moved to produce a small volume change *AV. 
“Slow” or “fast” means that during the volume change the speed of the 
piston is very much less than, or very much greater than, molecular speeds 
at temperature T. For each of the five processes below show (on your answer 
sheet) whether the changes (after the reestablishment of equilibrium) in the 
other quantities have been positive, negative, or zero. 
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+ AV 
-AV 
T 
Fig. 1.19 

I I I 1 A T 1 AU 1 AS 

1. (+AV) (slow) (conduct) 
2. (+AV) (slow) (insulate) 
3. (+AV) (fast) (insulate) 
4. (+AV) (fast) (conduct) 
5. (-AV) [fast) (conduct) 
( wis co ns in) 
Solution: 
(1) For isothernial expansion, AT = 0, AU = 0, and 



A S = R-A V > 0, Ap = --PA V < 0 . V V 
(2) For adiabatic expansion, AQ = 0. Because the process proceeds 
very slowly it can be taken as a reversible process of quasistatic states, then 
AS = 0. The adiabatic process satisfies pV7 = const. While V increases, 
p decreases, i.e., Ap < 0; and the internal energy of the system decreases 
because it does work externally, thus AU < 0, or AT < 0. 
(3) The process is equivalent to adiabatic free expansion of an ideal 
gas, thus AS > 0, AU = 0, AT = 0, Ap < 0. 
(4) The result is as the same as that of isothermal free expansion, thus 
AT = 0, AU = 0, AS > 0, Ap < 0. 
(5) The result is the same as that of isothermal free compression, thus 
The above are summarized in the table below 
AT = 0, AU = 0, Ap > 0, AS < 0. 
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1053 
A thermally insulated box is separated into two compartments (volumes 
Vl and Vi) by a membrane. One of the compartments contains an 
ideal gas at temperature T; the other is empty (vacuum). The membrane 
is suddenly removed, and the gas fills up the two comparments and reaches 
equilibrium. 
(a) What is the final temperature of the gas? 
(b) Show that the gas expansion process is irreversible. 
(MIT) 

insulated walls . ... ,. . * .. ..*. .. . . . : .: . ..:: .. .: .;. : 

Fig. 1.20. 

Solution: 
(a) Freely expanding gas does no external work and does not absorb 
heat. So the internal energy does not change, i.e., dW = 0. The internal 
energy of an ideal gas is only a function of temperature; as the temperature 
does not change in the process, Tf = T. 
(b) Assuming a quasi-static process of isothermal expansion, we can 
calculate the change in entropy resulting from the free expansion. In the 
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process, we have dS = pdV/T,pV = NkT. Hence, 

S, - S = P Vl +v2 > (). / dS = -dV = Nkln ___ 

Vl 
Thus the freely expanding process of the gas is irreversible. 
1054 
A thermally conducting, uniform and homogeneous bar of length L, 
cross section A, density p and specific heat at constant pressure cp is brought 
to a nonuniform temperature distribution by contact at one end with a hot 
reservoir at a temperature TH and at the other end with a cold reservoir 
at a temperature T,. The bar is removed from the reservoirs, thermally 
insulated and kept at constant pressure. Show that the change in entropy 
of the bar is 
where C,, = cppAL, 



(SVNY, Buflulo) 
Solution: 
As the temperature gradient in the bar is (T'-T,)/L, the temperature 
at the cross section at a distance x from the end at T, can be expressed by 

T, = T, + (TH - T,)x/L. As the bar is adiabatically removed, we have 

Tf = (TH + T,)/2 . 
from which we obtain 
But cp = T(aS/aT), 

rL Jo 

Tf = 
L 

AS =cppA dx 
where C,, = c,pAL. 
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1055 
A mixture of 0.1 mole of helium (71 = C,/Cv = 5/3) with 0.2 mole of 
nitrogen (72 = 7/5), considered an ideal mixture of two ideal gases, is initially 
at 300K and occupies 4 litres. Show that the changes of temperature 
and pressure of the system which occur when the gas is compressed slowly 
and adiabatically can be described in terms of some intermediate value of 
7. Calculate the magnitude of these changes when the volume is reduced 
by 1%. 
(UC, Berkeley) 
Solution: 
The entropy change for an ideal gas is 

AS = nC, ln(Tf/z) + nR ln(Vf/x) , 
where n is the mole number, i and f indicate initial and final states respectively. 
As the process is adiabatic the total entropy change in the nitrogen 

gas and helium gas must be zero, that is, AS, + AS2 = 0. The expression 

for AS then gives 
where 
Together with the equation of state for ideal gas, it gives 
where 
nlCpl+ n2Cp2 
nlCvl+ n2G2 * 

7 = 
Helium is monatomic, so that C,, = 3R/2, C,, = 5R/2; nitrogen is diatomic, 

so that C,, = 5R/2, C,, = 712. Consequently, 7 = 1.46. 
When Vf = 0.99x, we have 

Tf = 1.006Ti = 302 K , 
pf = 1.016pi = l.O16nRT/V = 2.0 x lo5 N/m2 
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1056 
Consider two ways to mix two perfect gases. In the first, an adiabatically 
isolated container is divided into two chambers with a pure gas A in 
the left hand side and a pure gas B in the right. The mixing is accomplished 
by opening a hole in the dividing wall. 



Cross section: [-z;zzJ 
Fig. 1.21(a). 

In the second case the chamber is divided by two rigid, perfectly selective 
membranes, the membrane on the left is perfectly permeable to gas A but 
impermeable to gas B. The membrane on the right is just the reverse. 
The two membranes are connected by rods to the outside and the whole 
chamber is connected to a heat reservoir at temperature T. The gases can 
be mixed in this case by pulling left hand membrane to the left and the 
right hand one to the right. 
A permeable B permeable 

Cross sect ion: 

Fig. 1.21(b). 

(a) Find the change in entropy of the container and its contents for 
second process. 
(b) Find the change in entropy of the container and contents for the 
first process. 
(c) What is the change in entropy of the heat reservoir in part (a)? 
(CUSPEA) 
Solution: 
(a) Because the process is reversible, we have 
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where we have made use of the equation of state pV = nRT. 
(b) Because energy is conserved and the internal energy of an ideal gas 
is related only to its temperature, the temperatures of the initial and final 
states are the same. The initial and final states of the gas in this case are 
identical with those in case (a). As entropy is a function of state, AS is 
equal to that obtained in (a). 
(c) Asheat source = -AS, where AS is that given in (a). 
1057 
Consider a cylinder with a frictionless piston composed of a semipermeable 
membrane permeable to water only. Let the piston separate 
a volume V of N moles of pure water from a volume V' of a dilute salt 
(NaC1) solution. There are N' moles of water and n moles of the salt in the 
solution. The system is in contact with a heat reservoir at temperature T. 
(a) Evaluate an expression for entropy of mixing in the salt solution. 
(b) If the piston moves so that the amount of water in the salt solution 
(c) Derive an expression for the pressure A across the semipermeable 
(Prince ton) 
(a) The entropy of mixing, i.e., the increase of entropy during mixing 
doubles, how much work is done? 
membrane as a function of the volume of the salt solution. 
Solution: 
isothermally and isobarically is 

N' n AS = -N'R In ~N ' + n - nR In -N' + n . 



(b) The osmotic pressure of a dilute solution is 

AV' = nRT (Van't Hoff's law) . 
When the amount of water in the salt solution doubles, the work done is 

W = 1 2 " ' ndV = l:' -ndVy = nRTln2. 

V' 

(c) A = nRT/V'. The osmotic pressure, i.e., the pressure difference 
across the membrane, is the net and effective pressure on the membrane. 
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1058 
(a) In the big-bang theory of the universe, the radiation energy initially 
confined in a small region adiabatically expands in a spherically symmetric 
manner. The radiation cools down as it expands. Derive a relation between 
the temperature T and the radius R of the spherical volume of radiation, 
based purely on thermodynamic considerations. 
(b) Find the total entropy of a photon gas as a function of its temperature 
T, volume V , and the constants k, h,c. 
(SUNY, Bufulo) 
Solution: 
(a) The expansion can be treated as a quasi-static process. We then 
have dU = TdS - pdV. Making use of the adiabatic condition dS = 0 
and the expression for radiation pressure p = U/3V, we obtain dU/U = 
-dV/3V; hence U cx V-'f3. The black body radiation energy density is 
u = U/V = aT4, a being a constant. The above give T4 o( V-4/3 cx RP4, 
so that To( R-l, i.e., RT = constant. 

(b) dS = -dU + -Pd V = -Vd u + -4-duV = d 
T T T 3T 
4 

we obtain S = ,aT3V. By dimensional analysis we find a - k 4 / ( h ~ ) 3In. 

fact, a = -- so that S = 4-T2 -k4 T 3V. 
n2 k' 
15 ( h ~' ) ~ 45 (hc)3 
1059 
(a) A system, maintained at constant volume, is brought in contact 
with a thermal reservoir at temperature Tf. If the initial temperature of 

the system is x, calculate AS, change in the total entropy of the system + reservoir. You may assume that c,, the 

specific heat of the system, is 
independent of temperature. 
(b) Assume now that the change in system temperature is brought 

about through successive contacts with N reservoirs at temperature + 
AT, + 2AT,. . . , fi - AT, fi, where NAT = fi - x. Show that in the 

limit N -+ 00, AT -+ 0 with NAT = Tf - x fixed, the change in entropy 

of the system + reservoir is zero. 
(c) Comment on the difTerence between (a) and (b) in the light of the 
second law of thermodymmics. 
(SUNY, Bufulo) 
55 



Solution: 
(a) The change in entropy of the system is 
Tf Mc,dX Tf 
Ti 

- Mc, In - . 
The change in entropy of the heat source is 
The total change in entropy is 
AS = AS, +AS, = Mc, 
N-1 

AS= lim C AS, , 
AT-0 
AN+w n=O 

where 
- 

Tj + nAT + (n + 1)AT 

is the change in entropy of the (n + 1)th contact. Thus 

(c) The function f(z) = z - Ins - 1 > 0 if z > 0 and z # 1. Thus 

in (a) AS = Mc,f(Ti/Tf) > 0, that is, the entropy is increased. We know 
the process is irreversible from the second law of thermodynamics. In (b) 
AS = 0, the process is reversible. 
1060 

A material is brought from temperature 3 to temperature Tf by placing 

it in contact with a series of N reservoirs at temperatures Ti + AT, Ti + 
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2AT,. . . , Ti + NAT = Tf. Assuming that the heat capacity of the material, 

C, is temperature independent, calculate the entropy change of the total 
system, material plus reservoirs. What is the entropy change in the limit 

N + 00 for fixed Tf - z? 
( wis co nsin) 

Solution: 

reservoir at temperature Ti + (t + 1)AT. 
equilibrium, the change of entropy of the material is 

Consider the material at temperature Ti + tAT in contact with the 
When they come to thermal 

T i + ( t + l )AT CdT T + ( t + 1)AT 

~- - Cln T z + t A T ' 

AS1 = 1 Ti+tAT 

The change in entropy of the heat reservoir is 
CAT 
z + ( t + l ) A T ' 
AS2 = - 
The total change in entropy is 

- AT ) . Ti + (t + 1)AT 

Therefore, after the material of initial temperature Ti has had contacts with 



the series of reservoirs, the total change of entropy of the whole system is 
N-1 N-1 

A S = C A S t = C (ln' ll - 

2?, + (t + 1)AT t =O t = O 

When N -+ 00, or AT --t 0, the above sum can be written as an integration, 
so that 
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1061 
The specific heat of water is taken as 1 cal/g.K, independent of temperature, 
where 1 calorie = 4.18 joules. 
(a) Define the specific heat of a substance at constant pressure in terms 
of such quantities as Q (heat), S (entropy), and T (temperature). 
(b) One kg of water at 0°C is brought into sudden contact with a large 
heat reservoir at 100°C. When the water has reached 1OO"C, what has been 
the change in entropy of the water? Of the reservoir? Of the entire system 
consisting of both water and the heat reservoir? 
(c) If the water had been heated from 0°C to 100°C by first bringing it 
into contact with a reservoir at 50°C and then another reservoir at 1OO"C, 
what would be the change in entropy of the entire system? 
(d) Show how the water might be heated from 0°C to 100°C with 
(UC, Berkeley) 
negligible change in entropy of the entire system. 

Solution: (a)cp=(g),=~(g). P 

(b) The change in the entropy of the water is 
and the change in entropy of the reservoir is 
AS, = T2 - Ti -cP- = -0.268 T2 
cal/g,K . 
Thus AS = 0.044 cal/g.K. 
(c) In this process, the change in entropy of the water is still AS': = 

0.312 cal/g,K, while that of the reservoir is 
AS; = - 1 x (50 - 1) - 1 X (100 - 50) 

273 + 50 273 + 100 

= -0.289 cal/g.K I 

So that AS' = AS: + AS; = 0.023 cal/g.K . 
(d) Divide the range of temperature 0°C - 100°C into N equal parts, 

with N >> 1. 
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At every temperature point, there exists a large heat rcservoir. Let 
the water come into contact with them successively from low temperature 
to high temperature, to make the process of thermal contact quasi-static. 
Then AS = 0 at every step and consequently for the entire process. 
1062 
Two finite, identical, solid bodies of constant total heat capacity per 
body, C, are used as heat sources to drive heat engine. Their initial temperatures 
are TI and T2 respectively. Find the maximum work obtainable 
from the system. 
Soh t ion : 

As energy is conserved, the work obtainable is W = C(T1 + T2 - 2 q ) , 
where Tf is the final temperature of the system. From the second law of 
thermodynamics, we have 



(MIT) 
Tf Tr 
Tl TZ 

AS = Cln - + Cln - > 0 , so that Tf > m. 
Hence W,,, = C(T1 + T2 - 2 m ) . 
1063 
A rigid box containing one mole of air at temperature 2’0 (in K) is 
initially in thermal contact with an “infinite’ heat-capacity reservoir” at 
the same temperature TO. The box is removed from the reservoir and a 
cyclic engine is used to take some heat from the reservoir and put some 
into the air in the box. What is the minimum amount of work from To 
to TI? Express W in terms of TO, TI and the gas constant R, and state 
units. Ignore vibrational degrees-of-freedom in the air molecules and the 
heat capacity of the container. Would inclusion of vibrational degrees-offreedom 
increase or reduce the value of W? 
( Columbia) 
Solution: 

“infinite heat-capacity reservoir” , we get 

As AQ + W = C,(T1 - To), where AQ is the heat absorbed from the 

0 I AS = ASsourc+e Asair = -AQ/To + C,, ln(Tl/To) . 
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Hence 

W 2 Cu(Tl - To) - CUT, ln(Tl/To) = Wmin . 
With the inclusion of vibrational degrees-of-freedom, Wmin increases as C, 
increases. 
1064 
A reversible heat engine operates between two reservoirs, Ti and T2 
(T2 > Tl). Ti can be considered to have infinite mass, i.e., Ti remains 

constant. However the warmer reservoir at Tz consists of a finite amount 
of gas at constant volume (p moles with a specific heat capacity C,). 
After the heat engine has operated for some long period of time, the 
temperature Tz is lowered to TI. 
(a) What is the heat extracted from the warmer reservoir during this 
period? 
(b) What is the change of entropy of the warmer reservoir during this 
period? 
(c) How much work did the engine do during this period? 
(Columbia) 
Solution: 
(a) Qab = pC,(T, - Ti). 
dQ G U d T Tl 
T T Tz 

(b) Because dS = - = ___ , AS=pC, ln- . 

dW Tl ( c ) - = 1 - - dQ T ’ dQ = -pC,dT, therefore the work done by the 
engine is 

W=/dW=-/TT1 (1- ~ ) p C u d T = p C , ( T 2 - 4 ) ) L C , T l l ~ (2) * 

1065 
Large heat reservoirs are available at 900 K (H) and 300 K (C). 



(a) 100 cal of heat are removed from the reservoir H and added to C. 
(b) A reversible heat engine operates between H and C. For each 
What is the entropy change of the universe? 
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100 cal of heat removed from H, what work is done and what heat is added 
to C? 
(c) What is the entropy change of the universe in the process of part 
(b) above? 
(d) A real heat engine is operated as a heat pump removing heat from 
C and adding heat to H. What can be said about the entropy change in 
the universe produced by the heat pump? 
( Wisconsin) 
Solution: 
(a) The change of entropy of the universe is 
2 
(b) The external work done by the engine for each 100 cal of heat is 
200 
3 
xlOO=-cal. 
The heat absorbed by C is 
100 
Q2=Q1 -W = -3 c a l . 
(c) The change in entropy of the universe is 
(d) The change of entropy is 
AS = - - +92- , Qi 

TC TH 
where Q2 is the heat released by the reservoir of lower temperature, Q1 is 

the heat absorbed by the reservoir of higher temperature. As - - - 5 
O,AS>O. 
Qz Qi 

TC TH 
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1066 
Consider an arbitrary heat engine which operates between two reservoirs, 
each of which has the same finite temperature-independent heat capacity 
c. The reservoirs have initial temperatures TI and T2, where T2 > TI, 
and the engine operates until both reservoirs have the same final temperature 
T3. 

(a) Give the argument which shows that T3 > m. 
(b) What is the maximum amount of work obtainable from the engine? 
(UC, Berkeley) 
Solution: 
(a) The increase in entropy of the total system is 

Thus T: 2 T1T2, or T3 2 a. 
(b) The maximum amount of work can be obtained using a reversible 
heat engine, for which AS = 0. 

Wmax = C(TI+ T2 - 2T31nin) = c(T1 + T2 - 2 m ) = ~ ( f i - . 
1067 
(a) What is the efficiency for a reversible engine operating around 
the indicated cycle, where T is temperature in K and S is the entropy in 
joules/K? 
T 



~30o0 -o - -~ -; -- - -- -- -- - - - - r L ~ S 

Fig. 1.22. 

(b) A mass M of a liquid at a temperature TI is mixed with an equal 
mass of the same liquid at a temperature T2. The system is thermally 
insulated. If cp is the specific heat of the liquid, find the total entropy 
change. Show that the result is always positive. 
(UC, Berkeley) 
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Solution : 
(a) In the cycle, the heat absorbed by the engine is 

400 + 300 
2 

Q = (1000 - 500) = 1.75 x lo5 J , 
and the work it does is 
400 - 300 
2 
W = (1000 - 500) = 2.5 x lo4 J 
Thus the efficiency is q = W/Q = 14.3%. 
fore 
(b) Obviously the equilibrium temperature is T3 = (TI +T2)/2. Thereand 
thus 

Since (TI + T2)2 2 4TlT2, we have AS 2 0. 
1068 
(a) One mole of an ideal gas is carried from temperature TI and molar 
volume V1 to T2,VZ. Show that the change in entropy is 
T2 v2 

Ti Vl 
A S = C , l n - + R l n - . 
(b) An ideal gas is expanded adiabatically from ( p l , Vl) to (p2, V2). 
Then it is compressed isobarically to (p2, V1). Finally the pressure is 
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increased to p1 at constant volume Vl. Show that the efficiency of the cycle 
is 
r] = 1 - 7(V2/vl - l ) / ( P l / P 2 - 1) j 

where 7 = C,/C,,. 
(Columbia) 
Solution: 
1 1 

T T (a) From dS = -(dU + pdV) = -(C,dT + pdV) and 

pV = RT , 
we obtain 
T2 v2 

Tl Vl 
A S = C , l n - + R l n - . 
(b) The cycle is shown in the Fig. 1.23. 
A 
adiabatic 
p2 
Vl 
Fig. 1.23. 
The work the system does in the cycle is 



Because AB is adiabatic and an ideal gas has the equations pV = nkT and 

C, = C, + R, we get 
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During the CA part of the cycle the gas absorbs heat 

Q = / TdS = CvdT = CV(Tl - Tz) 
CA 

Hence, the efficiency of the engine is 
1069 
(1) Suppose you are given the following relation among the entropy S, 
volume V, internal energy U , and number of particles N of a thermodynamic 
system: S = A[NVU] 1 / 3w, here A is a constant. Derive a relation 
among: 
(a) U, N, V and T; 
(b) the pressure p, N, V , and T. 
(c) What is the specific heat at constant volume c,? 

(2) Now assume two identical bodies each consists solely of a material 
obeying the equation of state found in part (1). N and V are the same for 

both, and they are initially at temperatures TI and T2, respectively. They 
are to be used as a source of work by bringing them to a common final 
temperature Tf. This process is accomplished by the withdrawal of heat 
from the hotter body and the insertion of some fraction of this heat in the 
colder body, the remainder appearing as work. 
(a) What is the range of possible final temperatures? 
(b) What Tf corresponds to the maximum delivered work, and what is 
You may consider both reversible and irreversible processes in answer- 
(Prince ton) 
this maximum amount of work? 
ing these questions. 
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Solution: 
(1) 

u=- s3 

A3NV 
(2) When no work is delivered, T f will be maximum. Then 
2 

3 91 = /TTf c,dT = XfidT = -A(Tfi2 - , 
2 
3 

Q 2 = /TT( c,dT = -A(TfI2 - Ti12) . 

Since 91 + 92 = 0, we have 

The minimum of T corresponds to a reversible process; for which the change 
in entropy of the system is zero. As 

AS1 = c,dT/T = 2A(T;I2 - T;I2) , 

AS2 = l2 c,dT/T = 2A(T;12 - T i f 2 ) . 



r Tf 

and AS1 + AS, = 0, we have 
Hence 
66 Problem d Solution, on Thermodynamics d Statistical Mechanica 

- 
W,,, corresponds to Tfn,in,i .e., the reversible heat engine has the maximum 
delivered work 
1070 
One kilogram of water is heated by an electrical resistor from 20°C to 
99°C at constant (atmospheric) pressure. Estimate: 
(a) The change in internal energy of the water. 
(b) The entropy change of the water. 
(c) The factor by which the number of accessible quantum states of 
(d) The maximum mechanical work achievable by using this water as 
(UC, Berkely) 
the water is increased. 
heat reservoir to run an engine whose heat sink is at 20°C. 
Solution: 
(a) The change in internal energy of the water is 
AU = McAT = 1000 x 1 x 79 = 7.9 x lo4 cal. 
(b) The change in entropy is 

AS = s -MdTc = Mc In -T2 = 239 cal/K, 

T Tl 
(c) Rom Boltzmann’s relation S = Iclnr2, we get 

nl 

-n2 = exp (y) = exp(7 x 1025). 

(d) The maximum mechanical work available is 

= 9 x lo3 cal . 
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One mole of the paramagnetic substance whose TS diagram is shown 
below is to be used as the working substance in a Carnot refrigerator operating 
between a sample at 0.2 K and a reservoir at 1K: 
(a) Show a possible Carnot cycle on the TS diagram and describe in 
detail how the cycle is performed. 
(b) For your cycle, how much heat will be removed from the sample 
per cycle? 
(c) How much work will be performed on the paramagnetic substance 
(Columbia) 
per cycle? 
Fig. 1.24. 
Solution: 
(a) The Carnot cycle is shown in the Fig. 1.24; 
A -+ B, adiabatically decrease the magnetic field; 
B 4 C, isothermally decrease the magnetic field; 

C -+ D, adiabatically increase the magnetic field; 
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D + A, isothermally increase the magnetic field; 

(b) Qabs= z owAS~- - . c= 0.2 x (1.5 - 0.5)R 
= 1.7 x lo7 ergs/mol. 
(c) Qrel= T h i g h A S ~ +=~ 1 x (1.5 - 0.5)R 

= 8.3 x lo7 ergs/mol. 
The work done is 

W = Qrel - Qabs = 6.6 x lo7 ergs/mol. 
1072 
A capacitor with a capacity that is temperature sensitive is carried 
through the following cycle: 
(1) The capacitor is kept in a constant temperature bath with a temperature 
TI while it is slowly charged (without any ohmic dissipation) to 
charge q and potential V1. An amount of heat Q1 flows into the capacitor 
during this charging. 
(2) The capacitor is now removed from the bath while charging con- 
(3) The capacitor is kept at a temperature T2 and is slowly discharged. 
(4) It is removed from the bath which kept it at temperature T2 and 
discharged completely until it is returned to its initial uncharged state at 
temperature Tl. 
(a) Find the net amount of work done in charging and discharging the 
capacitor. 
(b) How much heat flows out of the capacitor in step (3)? 
(c) For fixed capacitor charge q find dV/dT. 
tinues until a potential V2 and temperature T2 are reached. 

Hint: Consider V2 = V1 + dV 
(Columbia) 
Solution: 
(a) The whole cycle can be taken as a reversible Carnot cycle. 
(1) and (3) are isothermal processes; (2) and (4) are adiabatic pro- 
In the whole cycle, the work done by the outside world is 
cesses. 
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Fig. 1.25. 

(c) We construct the V(Vo1tage)-q(charge) diagram for the cycle as 
shown in the Fig. 1.25. We have 
W = Vdq. 

Assume V2 = V, + d V , where dV is an infinitesimal voltage change, and let 
the capacitance of the capacitor be C(T). We then have 

f 
0 -+ A : V = q/C(T1) , B -+ C : V = q/C(T2) 

Obviously the adiabatic line B -+ C crosses point 0. Thus if dV is.a small 
quantity, V3 is also a small quantity. Then in the first-order approximation, 
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Therefore 
On the other hand, we know from (a) 

Qi Q 
Tl T W = -(T2 - Ti) = -dT. 
Thus 
or 
Finally we have 



( %)q = [” dT . ’1, C(T) = 9& (&) 
or 
where Q(T,q) is the heat that the capacitor absorbs when it is charged 
from 0 to q while in contact with a heat source of constant temperature T. 
3. THERMODYNAMIC FUNCTIONS AND EQUILIBRIUM 
CONDITIONS (1073-1105) 
1073 
For each of the following thermodynamic conditions, describe a system, 
or class of systems (the components or range of components, temperatures, 
etc.), which satisfies the condition. Confine yourself to classical, single 
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component, chemical systems of constant mass. U is the internal energy 
and S is the entropy of the system. 
( wis co nsin) 
Solution: 
(a) The classical ideal gas. 
This requires a < 0, i.e., the system has a negative coefficient of expansion 
at const ant pressure. 
= 0. This requires C, = 00. The system has two 

T 
P CP 

coexistent phases. 

(d) ( g)T = (g) = 0. This requires ,d = ; - (g)v = 0. 

V 
It is a system whose coefficient of pressure at constaht volume is zero. 
(e) All systems of a single component and constant mass satisfy this 
Maxwell relation. 
1074 

Consider an ideal gas whose entropy is given by "I n 

U 
n 

u+5Rln-++Rln- , 
where n = number of moles, R = universal gas constant, U = internal 
energy, V = volume, and u = constant. 
(a) Calculate cp and cv, the specific heats at constant pressure and 
volume. 
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(b) An old and drafty house is initially in equilibrium with its surroundings 
at 32°F. Three hours after turning on the furnace, the house is 
at a cozy 70°F. Assuming that the air in the house is described by the 
above equation, show how the energy density (energy/volume) of the air 
inside the house compares at the two temperatures. 
( Columbia) 
Solution: 
(a) The temperature T is determined by the following equation: 
1 = -n5 R - ,1 or U = - 5n R T . 



T=(%)" 2 u 2 
Therefore, the specific heat at constant volume is 

c v = (g) = -5n R . 

v 2 
The specific heat at constant pressure is 
v 

cp = c, -I- nR = :nR. 2 
U 5 n 

(b) - = -R (p) T . 
v 2 
Using the equation of state of ideal gas pV = nRT, we have 

_u - 5 v - iiP 
Because the pressure of the atmosphere does not change at the two 
temperatures in the problem, neither does the energy density. 
1075 
A perfect gas may be defined as one whose equation of state is pV = 
NkT and whose internal energy is only a function of temperature. For a 
perfect gas show that 

(a) cp = c, + k, where cp and c, are the heat capacities (per molecule) 
(b) The quantity pV7 is constant during an adiabatic expansion. (Asat 
constant pressure and constant volume respectively. 
sume that 7 = cp/c, is constant.) 

(MITI 
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Solution: 
Let C, and C, be the principal molar specific heats. 

(a) From pV = NkT and TdS = dU + pdV, we find 

C, - C, = T (%),- T (g)v = p (g) = Nk . 
P 

Hence C, - C, = k. 
pV = NkT, we have 
(b) For an adiabatic process, TdS = 0 and hence C,dT = -pdV.From 

pdV + Vdp = NkdT = (C, - C,)dT , 

giving 7pdV + Vdp = 0, i.e., 

pV7 = const. 
1076 
The difference between the speficif heat at constant pressure and the 
specific heat at constant volume is nearly equal for all simple gases. What 
is the approximate numerical value of cp - c,? What is the physical reason 
for the difference between cp and c,? Calculate the difference for an ideal 
gas. 
Solution: 
( wis cons in) 

c, - c, = 1m [. ( g), - T ( 3v] 
where m is the mass of the gas. From the functional relationship 



we can find 

(%),= (%)v + (z)(T%) , 

Utilizing Maxwell’s relation (g)T = (g)v, the above formula becomes 

VTa2 (*I 
P m 
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where a is the coefficient of thermal expansion, and K is the coefficient of 

compression. For an ideal gas, a = - and K = -, thus cp - c, = nR/m = 

RIM. (M is the molecular weight of the gas). 
The formula (*) relates the difference of two specific heats to the equation 
of state. For some materials, the specific heat at constant volume or 
constant pressure is not easily measured in experiments; it can be determined 
with formula (*) by measuring K and a. For a simple gas, its values 
of a and K are near to those of an ideal gas. Thus, the difference between 
the two specific heats is approximately RIM. The reason that cp > c, is 
that the gas expanding at constant pressure has to do work so that more 
heat is absorbed for this purpose. 
1 1 
T P 
1077 
A paramagnetic system in an uniform magnetic field H is thermally 
insulated from the surroundings. It has an induced magnetization M = 

aH/T and a heat capacity CH = b / p at constant H, where a and b are 
constants and T is the temperature. How will the temperature of the system 
change when H is quasi-statically reduced to zero? In order to have the 
final temperature change by a factor of 2 from the initial temperature, how 
strong should be the initial H? 
(UC, Berkeley) 

Solution: 

From the relation dU = TdS + HdM, we have (g)s = (g) , 
M 
so that 
a(T, S) 
8 ( H , M ) = -l* 
Therefore 
and T = exp(aH2/2b)Tf. This shows that the temperature of the system 
will decrease as H is reduced to zero. 
If Tf = z/2, then Hi = 
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1078 
The thermodynamics of a classical paramagnetic system are expressed 
by the variables: magnetization M, magnetic field B, and absolute temperature 
T. 
The equation of state is 

M = CB/T, where C = Curie constant . 



The system's internal energy is 
The increment of work done by the system upon the external environment 
is dW = MdB. 
(a) Write an expression for the heat input, dQ, to the system in terms 
of thermodynamic variables M and B: 
dQ = ( )dM+ ( )dB . 
(b) Find an expression for the differential of the system entropy: 

dS = ( )dM + ( )dB . 
(c) Derive an expression for the entropy: S = 
( wis co nsin) 
Solution: 

(a) dQ = dU + dW = -d(MB) + MdB = -BdM. 
M2 
2 c 

(c) s=so--. 
(Note: the internal energy and the work done in the problem have been 
given new definitions). 
1079 
The state equation of a new matter is 

p = AT3/V , 
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where p , V and T are the pressure, volume and temperature, respectively, 
A is a constant. The internal energy of the matter is 

U = BT" ln(V/Vo) + f ( T ) , 
where B, n and Vo are all constants, f ( T ) only depends on the temperature. 
Find B and n. 
( C USPEA) 
Solution: 
From the first law of thermodynamics, we have 

d U + p d V = 1 dU [-(-),+$]dV+-(-) 1 au d T . 
T T dV T aT dS = 
We substitute in the above the expressions 
sure p and get 

BTn-' + AT2 dV + ['IF) ~ 

V 
dS = 

for internal energy U and pres- 
From the condition of complete differential, we have 
giving 

2AT - BTn-' = 0 . 
Therefore n = 3, B = 2A. 
1080 
The following measurements can be made on an elastic band: 
(a) The change in temperature when the elastic band is stretched. (In 
case you have not tried this, hold the attached band with both hands, test 
the temperature by touching the band to your lips, stretch the band and 
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check the temperature, relax the band and check the temperature once 
more). 
(b) One end of the band is fixed, the other attached to weight W, and 
(c) With the weight at rest OQ is added, and the equilibrium length L 



Derive the equation by which you can predict the result of the last 
(Princeton) 
the frequency u of small vibrations is measured. 
is observed to change by 6L. 
measurement from the results of the first two. 
Solution: 
When heat 6Q is added with the weight at rest, i.e., with the stress kept 
unchanged, we have 6s = 6Q/T. Therefore, 
The elastic coefficient of the band is k = W ( ~ K Y ) ~ / ~ . 
As L - Lo = W/k, we get 

(%) dLo W dk = dT - kz dT , 
Thus 
where 
1081 
The tension F in an ideal elastic cylinder is given by the equation of 
state 
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where a is a constant, Lo is the length at zero tension, and L(T) is a 
function of temperature T only. 
(a) The cylinder is stretched reversibly and isothermally from L = Lo 
to L = 2Lo. Find the heat transferred to the cylinder, Q, in terms of 
a, TI LO and ao, the thermal expansion coefficient at zero tension, being 
a o= -1 d~Lo(T) 
Lo(T) dT ' 

(b) When the length is changed adiabatically, the temperature of the 
cylinder changes. Derive an expression for the elastocaloric coefficient, 
( d T / a L ) s where S is the entropy, in terms of a , T,L , LO,a o, and Ct , the 
heat capacity at constant length. 
(c) Determine whether CL is a function of T alone, CL(T)o, r whether 
it must also depend on the length, CL(TL, ) , for this system. 
Solution: 
(MITI 

Let @ be the free energy. From d@ = -SdT + FdL, we get 
Thus 
and 
-aTLo 
Fig. 1.26. 
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(a) Q = T [ S ( T , 2 L o )- SO]= -aTLo ( 1+ $Tao). 

a2s = TaLaT 
L; L 

= -aT { + - + T ( 2 g + g) [-- a01 }, Z 0 L2 Lo 

Thus CL = CL (T, L). 
1082 
Information: If a rubber band is stretched adiabatically, its temperature 
increases. 
(a) If the rubber band is stretched isothermally, does its entropy in- 
(b) If the rubber band is stretched adiabatically, does the internal 
crease, decrease, or stay the same? 
energy increase, decrease, or stay the same? 



Solution: 
done on it is 
( wis co nsin) 

(a) We assume that when the rubber band is stretched by dx the work 

dW = kxdx , 
where k, the elastic coefficient, is greater than 0. From the formula dF = 

-SdT + kxdx, we can obtain the Maxwell relation: (g)T = - ( k g ) z = 0 

Hence the entropy of the rubber band stays the same while it is stretched 

isothermally. (EjS = 

(b) According to the formula dU = TdS + kxdx, we have 

kx > 0, that is, its internal energy increases while it is stretched adiabatically. 
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1083 
The tension of a rubber band in equilibrium is given by 
where t = tension, T = absolute temperature, z = length of the band, lo 
= length of the band when t = 0, A = constant. 
When z is the constant length lo, the thermal capacity cx(z,T) is 
observed to be a constant K. 
(a) Find as functions of T and x: , , 

8E 

(1) (a,) where E = internal energy, (2) 
T 

E(z, T), (5) S(z,T), where S = entropy. 
(b) The band is stretched adiabatically from z = lo to z = 1.510. Its 
(CUSPEA) 
initial temperature was TO. What is its final temperature? 
Solution: 
Then as 

(a) From the theory of thermodynamics, we know dE = TdS + tdz. 

cx=T(%) X , 
we have 
Generally, E = E(z, T), and we have 

(g) T dz. 

i.e., dE = c,dT + 
On the other hand, 
dS = -1( dE- tdx) = -CdX T+ T T 
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we obtain 

a2E a2E a2s - a2s 

axaT aTaxl axaT aTax 
From __ -- - 

a2E 
aTax 
Thus (aE/a+ = t - T(at/aT),. 
Substituting the expression for t, we have (aE/az)T = 0. It follows 



that (ac,/az), = 0. Integrating, we get 

E(z, T) = E(T) = 6 dE + E(To) = [ g d T + E(To) 

= Lr KdT + E(To) = K(T - To) + E(To) . 

From 
d S= %dT+T1 [ ( aE, ) , - t ] d z 
T 
we find after integration 

S(z, 2') = K In T - A - + - + const. 

(;l: :) 
(b) For an adiabatic process dS = 0 so that 
After integration we have 

= 0.292AZo , 
Hence fi = TO exp(0.292Alo/K). 
82 ProMema d Solutions on Thermdynamics d Statiatieal Mechanic8 

1084 
Consider a gas which undergoes an adiabatic expansion (throttling 
process) from a region of constant pressure p; and initial volume Vi to a 

region with constant pressure pf and final volume Vf (initial volume 0). 
Fig. 1.27. 
(a) By considering the work done by the gas in the process, show that 
the initial and final enthalpies of the gas are equal. 
(b) What can be said about the intermediate states of the system? 
(c) Show for small pressure differences Ap = pf - pi that the temperature 
difference between the two regions is given by AT = -(Ta - l)Ap, 

V 
CV 

where a = - ( av) and cp = (g) v d T p P 

(d) Using the above result, discuss the possibility of using the process 
to cool either an ideal gas, or a more realistic gas for which p = RT/(V- b ) . 
Explain your result. 
(SUNY, Buffalo) 
Solution: 
which is equal to a reduction of the internal energy: 
(a) The work done by the gas in the throttling process is pfVf - pix, 

ui - Uf = pfvf - piVi . 
Thus Ui + pi& = Uf + pfVf, i.e., Hi = Hf. 
(b) Because the process is quasi-static, the final and initial states can 
be any two intermediate states. Thus the conclusion is still valid for intermediate 
states. 

(c) From dH = TdS + Vdp = 0 and 

d S = ( g ) p d T + ( $ ) T d p = $ d T -C ( g ) d p , 
P 
Thermodynamics a3 
we obtain 



Thus for a small pressure difference Ap, we have approximately 
(d) For an ideal gas, we have pV = NRT and a = 1/T. Hence 

AT = V(TQ - l)Ap/c, = 0 . 
As AT = 0 this process cannot be used to cool ideal gases. For a realistic 
gas for which p = RT/(V - b),a = R/Vp and V(aT - 1) = -b. Hence 
AT = -bAp/c,. As Ap < 0 for a throttling process, AT > 0, such a gas 
cannot be cooled by this process either. 
1085 
(a) Using the equation of state pV = NRT and the specific heat per 
mole C, = 3R/2 for a monatomic ideal gas, find its Helmholtz free energy 
F as a function of number of moles N, V, and T. 
(b) Consider a cylinder separated into two parts by an adiabatic, impermeable 
piston. Compartments a and b each contains one mole of a 
monatomic ideal gas, and their initial volumes are Vai = 10 litres and 
Vbi = 1 litre, respectively. The cylinder, whose walls allow heat transfer 
only, is immersed in a large bath at 0°C. The piston is now moved reversibly 
so that the final volumes are Vat = 6 and Vbf = 5 litres. How much work is 
delivered by (or to) the system? 
(Princeton) 

(a) For an ideal gas, we have dU = NC,dT and U = NC,T + Uo, 
Solution: 
where Uo is the internal energy of the system when T = 0. As 

d S = -NCud T + ;dV , T 

s=3-N R l n T + N R l n V + S h , 
2 
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where SA is a constant. Assuming the entropy of the system is SO when 
T = TO, V = Vo1 we have 

s =3-NR- T V In-+NRln-+So 

2 To VO 
where FO = UO - T O S O . 
(b) The process described is isothermal. When dT = 0,dF = -pdV. 
The work delivered by the system is 
1086 
A Van der Waal's gas has the equation of state 
(a) Discuss the physical origin of the parameters a and b. Why is the 
correction to p inversely proportional to V2? 
(b) The gas undergoes an isothermal expansion from volume Vl to 
(c) From the information given can you calculate the change in internal 
volume V2. Calculate the change in the Helmholtz free energy. 
energy? Discuss your answer. 
( wisco nsifl) 
Solution: 
(a) On the basis of the equation of state of an ideal gas, we introduce 
the constant b when considering the volume of a real gas to allow for the 
finite volumes of the molecules and we introduce the constant a to allow for 
the mutual attraction between molecules of the gas. Now we discuss why 
the pressure correction term is inversely proportional to V2. 
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Each of the molecules of the gas has a certain interaction region. For 
the molecules near the center of the volume, the forces on them are isotropic 
because of the uniform distribution of molecules around them. For the 
molecules near the walls (the distances from which are smaller than the 



interaction distance of molecules), they will have a net attractive force 
directing inwards because the distribution of molecules there is not uniform. 
Thus the pressure on the wall must have a correction Ap. If Ak denotes the 
decrease of a molecule's momentum perpendicular to the wall due to the 
net inward attractive force, these Ap = (The number of molecules colliding 
with unit area of the wall in unit time) ~ 2 A kA. s k is obviously proportional 
to the attractive force, the force is proportional to the number of molecules 
in unit volume, n, i.e., Ak o( n, and the number of molecules colliding with 
unit area of the wall in unit time is proportional to n too, we have 

Ap o( n2 o( 1/V2 . 
(b) The equation of state can be written as 
kT a 
p = -V- - - b V 2 ' 
In the isothermal process, the change of the Helmholtz free energy is 
a 

pdV = -k: kT - -dV 

V - b V2 
V2 - b 

= -kTln (m)+ a ($ - 4) . 
(c) We can calculate the change of internal energy in the terms of T 
and V: 
For the isothermal process, we have 
d U = ( g ) d V . 
T 

The theory of thermodynamics gives 

(g)T= T (g) V -Pa 
86 
Use of the equation of state then gives 
a 

dU = -dV . V2 
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Integrating, we find 
1087 
A 100-ohm resistor is held at a constant temperature of 300 K. A 
current of 10 amperes is passed through the resistor for 300 sec. 
(a) What is the change in the entropy of the resistor? 
(b) What is the change in the entropy of the universe? 
( c ) What is the change in the internal energy of the universe? 
(d) What is the change in the Helmholtz free-energy of the universe? 
( Wisconsin) 
Solution: 
(a) As the temperature of the resistor is constant, its state does not 
change. The entropy is a function of state. Hence the change in the entropy 
of the resistor is zero: AS1 = 0. 
(b) The heat that flows from the resistor to the external world (a heat 
source of constant temperature) is 
PRt = 3 x loG J 
The increase of entropy of the heat source is AS, = 3 x 1OG/3O0 = lo4 J/K. 



Thus the total change of entropy is AS = AS1 + AS2 = lo4 J/K. 
(c) The increase of the internal energy of the universe is 
AU=3x1O6 J 
(d) The increase of the free energy of the universe is 
AF = AU - TAS = 0 . 
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1088 
Blackbody radiation. 
(a) Derive the Maxwell relation 
(b) From his electromagnetic theory Maxwell found that the pressure 
p from an isotropic radiation field is equal to - the energy density u(T) : 
where V is the volume of the cavity. Using the first 
and second laws of thermodynamics together with the result obtained in 
part (a) show that u obeys the equation 
1 
3 
1 
3 3v 
p = -u(T) = - 
1 du 1 
3 dT 3 
u = -T- - -U 

(c) Solve this equation and obtain Stefan’s law relating u and T. 
( was co nsin) 

Solution: 
(a) From the equation of thermodynamics dF = -SdT-pdV, we know 

= - s , (%) = - p . (%)v T 

we get 
Noting a 2F d 2F ~ -- 
avaT aTav’ 
(b) The total energy of the radiation field is U(T,V) = u(T)V. Substituting 
it into the second law of thermodynamics: 

(!g)T = T (g)T -P=T ($) V - P 7 

T du 1 
3 dT 3 
we find u = -- - -u. 

du 
(c) The above formula can be rewritten as T- = 4u, whose solution 
dT 
is u = aT4, where a is the constant of integration. This is the famous 
Stefan’s law of radiation for a black body. 
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1089 
A magnetic system of spins is at thermodynamic equilibrium at temperature 
T. Let p be the magnetic moment of each spin; and let M be the 
mean magnetization per spin, so -p < M < p. The free energy per spin, 
for specified magnetization M, is F ( M ) . 
(1) Compute the magnetization M as a function of external magnetic 
field strength B, given that 
where X is a constant. 
(2) Suppose, instead, that someone gives you 



F ( M ) = Al(M/P)4 - (M/d2I 9 

you should respond that this is unacceptable - this expression violates a 
fundamental convexity principle of thermodynamics. (a) State the principle. 
(b) Check it against the above expression. (c) Discuss, by at least one 
example, what would go wrong with thermodynamics if the principle is not 
satisfied. 
(Princeton) 
Solution: 

(1) From dF = -SdT + HdM, we have 
Hence 
M 

'7 
-M- 5 - -1. 
LC 2 
1 
F a , 
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(2) (a) The convexity principle of free energy says that free energy is a 
concave function of T while it is a convex function of M, and if 
exists then (:;-)T=. 

(-Z> , 
(b) Supposing F(M) = X [ ( f ) 4 - (f)’], we have 

2X 6M2 
(s)T=* &-l) 

(s)T = l / X T < 0 , 

M a2F 

When I - I < 8,( s<) 0, i.e ., F is not convex. 

c1 T 
(c) If the convexity principle is untenable, for example if 

that is, (g) < 0, then the entropy of the equilibrium state is a minimum 

and the equilibrium state will be unstable. 
T 

1090 
A certain system is found to have a Gibbs free energy given by 

G( p ,7 ’) = R TI&(I[ n - 

where a and R are constants. Find the specific heat at constant pressure, 
Solution: 
The entropy is given by 
5 



S=-(g)= i R - R l n [ ~ (RG5j2] ’ 
P 

The specific heat a.t constant pressure is 
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1091 
Consider a substance held under a pressure p and at a temperature T. 
Show that (a (heat emitted)/ap)T = T(aV/aT),. 
Solution: 
( was co ns in) 

FYom Maxwell’s relation 
we find 
- 

a( heat emitted) 
1092 
A given type of fuel cell produces electrical energy W by the interaction 
of 0 2 fed into one electrode and H2 to the other. These gases are fed in at 
1 atmosphere pressure and 298 K, and react isothermally and isobarically 
to form water. Assuming that the reaction occurs reversibly and that the 
internal resistance of the cell is negligible, calculate the e.m.f. of the cell. 
Given: one Faraday = 96,500 coulombs/g mole. 
hydrogen, and water are respectively 17,200, 8,100 and -269,300. 
hydrogen, and water are respectively 201, 128 and 66.7. 
Enthalpies in joules/g.mole at 1 atmospheric and 298 K for oxygen, 
Entropies in joules/mole.K at 1 atmosphere and 298 K for oxygen, 

( Wisconsin) 

Solution: 
The chemical equation is 
1 

2 H2 + - 0 2 = H2O . 
In the reversible process at constant temperature and pressure, the decrease 
of Gibbs function of the system is equal to the difference between the total 
external work and the work the system does because of the change of 
volume. Thus 

-Ag = EAq , 
Thermodynamics 91 
or 
- z ( A h i - TASi) = EAq . 
If 1 mole of water forms, there must have been electric charges of 2F flowing 
in the circuit, i.e., Ag = 2F. Thus the e.m.f. is 
1 

As given , So = 201 J/mol.K, SH = 128 J/mol K , 
SW = 66.7 J/mol.K, iZ0 = -17200 J/mol 

hH = 8100 J/mol, hw = -269300 J/mol , and T = 298 K, 
We have E = 1.23 V. 
1093 
It is found for a simple magnetic system that if the temperature T is 

held constant and the magnetic field H is changed to H + A H , the entropy 

S changes by an amount AS, 
where C is a constant characteristic of the system. From this information 
determine how the magnetization M depends on the temperature and 
sketch a plot of M versus T for small H. 
( wis co ns in) 



Solution: 

We are given that (g) =-- CH 

T 2 ' 
From dG = -SdT - MdH, we have 

, C H that is M = -. CH 

T Thus (z) = -- 

H T2 
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The diagram of M vs T is shown in Fig. 1.28. 
T 
Fig. 1.28. 
1094 
A certain magnetic salt is found to obey Curie's law, and to have a heat 
capacity per unit volume (at constant magnetic field) inversely proportional 

t.0 the square of the absolute temperature, i.e., x = b / T , c H = aV/T2, 

where or = b + aH2, a and b being constants, and x is the susceptibility. 

A sample of this salt at temperature Tj is placed in a magnetic field of 
strength H. The sample is adiabatically demagnetised by slowly reducing 
the strength of the field to zero. What is the final temperature, T, of the 
salt? 
(Columbia) 
Solution: 
This process can be taken as reversible adiabatic. Then 
d S = ( g ) , d T + ( g ) T d H = O . 

fiom CH = T (g) and dG = -SdT - poMVdH, we can write 

H (gJT =poV (%) H * 

(g)= p oVH dX (s) = p0VH- . Therefore, 

dT 
As M = xH, we have 
for the above adiabatic process, we have 
H 

dH H 
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The final temperature is obtained by integration to be 
1095 
Explain the principles of cooling by adiabatic demagnetization. What 
factors limit the temperature obtained with this method? 
( wis co ns in) 
Solution: 
The fundamental equation of the thermodynamics of a magnetic medium 

is dU = TdS + HdM. The Gibbs function is G = U - TS - HM, 



giving dG = -SdT - MdH. From the condition of complete differential 
and 

and the definition of specific heat, CH = T (%) we obtain 

If we assume the magnetic medium satisfies Curie’s law 

cv 
T 
M=---H, 
and substitute it into the above formula, we have 
We can see that if the magnetic field is decreased adiabaticaily, the 
temperature of the magnetic medium will decrease also. This is the principle 
of cooling by adiabatic demagnetization. 
94 Problem d Sdutiom on Thermcdyamica 8 Statiaticd Mechanica 

Adiabatic demagnetization can produce temperatures as low as 1 K to 
K, 
the interactions between the paramagnetic ions cannot be neglected. The 
interactions are equivalent to a magnetic field. It thus limits the lowest 
temperature obtainable with this method. 
K; but when the temperature is of the order of magnitude of 
1096 
A flask of conical shape (see figure) contains raw milk. The pressure 
is measured inside the flask at the bottom. After a sufficiently long time, 
the cream rises to the top and the milk settles to the bottom. [You may 
assume that the total volume of liquid remains the same.] Does the pressure 
increase, decrease, or remain the same? Explain. 
Soh tion: 
Let the volume of the cream be VI, its thickness be HI, and its density 
be p1; and let the volume of the milk be Vz, the thickness be Hz and the 
density be p2 PO stands for the density of raw milk. 
( M W 
milk 
pressure 
gauge 
1097 
Assume the atmosphere to be an ideal gas of constant specific heat 
ratio 7 = Cp/Cv. Also assume the acceleration due to gravity, g, to be 
constant over the range of the atmosphere. Let z = 0 at sea level, To,po, 
PO be the absolute temperature, pressure, and density of the gas at z = 0. 
(a) Assuming that the thermodynamic variables of the gas are related 
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in the same way they would be for an adiabatic process, find p ( z ) and p ( z ) . 
(b) Show that for this case no atmosphere exists above a zmaX given 

by zmax - 2 (7,) wh ere R is the universal gas constant per gram. 

Solution: 
7 - 1 
(SUNY, Buflulo) 
(a) When equilibrium is reached, we have 
By using the adiabatic relation pp-7 = pOpO7, we obtain, 

p 7 - 2 ( ~ ) d p (=~ )- -dSzP ; . 
7PO 
With the help of the equation of state p = pRT, we find 
and 
7 / ( 7 - 1 ) 



p ( 2 ) = p o [1 - -- 7;1;;0] 

(b) In the region where no atmosphere exists, p(z,,,) = 0. Thus 

z, = -7 . -m o . 
7 - 1 9 
1098 
Consider simple models for the earth’s atmosphere. Neglect winds, 
convection, etc, and neglect variation in gravity. 
(a) Assume that the atmosphere is isothermal (at 0°C). Calculate an 
expression for the distribution of molecules with height. Estimate roughly 
the height below which half the molecules lie. 
(b) Assume that the atmosphere is perfectly adiabatic. Show that 
the temperature then decreases linearly with height. Estimate this rate of 
temperature decrease (the so-called adiabatic lapse rate) for the earth. 
(GUSPEA) 
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Solution: 
(a) The molecular number density at height h is denoted by n(h). From 
the condition of mechanical equilibrium dp = -nmgdh and the equation of 
state p = nkT, we find 

-1d p mg = --dh . 
P kT 

Thus n(h) = no exp(-mgh/kT). Let Jf n(h)dh/JT n(h)dh = -, then 
1 
2 
The average molecular weight of the atmosphere is 30. We have 
8.31 x lo7 x 273 
30 x 980 

H = x In2 M 8 x lo5 cm = 8 km . 
1 mg 
P kT (b) -dp = --dh is still correct and the adiabatic process follows 
p('-7)/7T = const 

where 7 = 5 w 7/2 (for diatomic molecules). Therefore -dT ~7 - 

CU T 7-1 
-m_g d h . Integrating we get 
kT 
T - To = -(7 - l)mg(h - ho)/7k . 
Furthermore, 
dT -- 
- 

mg NN -0.1 K/m . 
dh 7 k 
1099 
The atmosphere is often in a convective steady state at constant entropy, 
not constant temperature. In such equilibrium pV7 is independent 
of altitude, where 7 = Cp/Cu. Use the condition of hydrostatic equilibrium 
in a uniform gravitational field to find an expression for dT/dz, where z is 
the altitude. 
(UC, Berkeley) 
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Solution: 
In the atmosphere, when the gas moves, pressure equilibrium can be 
quickly established with the new surroundings, whereas the establishment 



of temperature equilibrium is much slower. Thus, the process of formation 
of gas bulk can be regarded as adiabatic. Resulting from many times of 
mixing by convection, the temperature distribution of the atmosphere can 
be considered such that there is no temperature difference between the 
compressed or expanded gas bulk and its new surroundings. This is the so 
called “convective steady state at constant entropy”. Fkom dp/dz = -nmg 
(where n is the molecular number density and z the altitude) and the 
equation of state of an ideal gas p = nkT, we get 
Together with the equation of adiabatic process 

Tr = const.p7-’ , 
we find 

_dT - 7 - 1 mg 

dz 7 k - 
It can be seen that the temperature decreases linearly. The temperature 
drops w l0C when the height increases by 100 metres. 
1100 
The gas group that is slowly and adiabatically arising and unrestricted 
near the ground cannot continuously rise; neither can it fall (the atmosphere 
almost does not convect). If the height z is small, the pressure 
and temperature of the atmosphere are respectively p = po(1 - az) and 

T = To(1 - pz), where po and TO are respectively the pressure and temperature 

near the surface. Find a and p as functions of the temperature 
To, gravitational acceleration near the surface, g, and the molecular weight 

M. Suppose that air consists of -Na and - 0 2 , and that TO is low enough 
so that the molecule oscillations cannot be excited, but is high enough so 
that the molecule rotation can be treated by the classical theory. 
(CUSPEA) 
4 1 
5 5 
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Solution: 
Near the ground, we have 

d p / d z = -ape . 
Dynamic considerations give d p l d z = -pg. 
Thus a = pog/po, where po is the density of air near the ground. Treating 
air as an ideal gas, we have 

PO = RTo/Vo = RTopo/M , 
where R is the gas constant, Vo is the volume and M the molecular weight 

(: 1 ’28 + ‘32 = 29 . Thus we have a = Mg/RT. 
The slow rising of the gas group can be taken as a quasi-static process. 
It has the same p and p as the atmosphere surrounding it. Thus the same 
is also true of the temperature T. In the adiabtic process, 

F p l - 7 = const , 
with 

7 = Cp/Cv = (Cv + R)/Cv = 715 . 
Differentiating we have 
_d T -- 7- -- 1 d p 
T 7 P 
On the ground, d T / T = - p d z and d p / p = - a d z . We substitute them into 
above formula and obtain 

p = - 7 - 1 a = -2a . 



7 7 
1101 
Suppose that the earth’s atmosphere is an ideal gas with molecular 
weight p and that the gravitational field near the surface is uniform and 
produces an acceleration g. 
(a) Show that the pressure p varies as 
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where z is the height above the surface, T is the temperature, and R is the 
gas constant. 
(b) Suppose that the pressure decrease with height is due to adiabatic 
expansion. Show that 
(c) Evaluate dT/dz for a pure N2 atmosphere with y = 1.4. 
(d) Suppose the atmosphere is isothermal with temperature T. Find 
(e) Suppose that at sea level, p = po and T = To. Find p ( z ) for an 
p(z) in terms of T and PO, the sea level pressure. 
adiabatic atmosphere. 
(Columbia) 
Solution: 
(a) Mechanical equilibrium gives dp = -npgdz, where n is the mole 
number of unit volume. Thus using the equation of state of an ideal gas 
p = nRT, we find 

d p = --pgPd Z , RT 
or 
dP -- --1- 19 d z 
P RT * 

(b) The adiabatic process satisfies T7/(1-7)p= const. Thus 
(c) Comparing the result of (b) with that of (a), we deduce 
dT 
dz 

For NZ, 7 = 1.4, we get dT/dz = -4.7 K/km. 
(d) From (a) we find 
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(e) From (a) and (b) we have 
Thus pg 1--L 

R To 
p - l l 7 d p = - -po 7 dz , 
Integrating, we get 
This is, of course, valid only if 
1102 
A fully ionized gas containing a single species of ion with charge Z / e ( 
and atomic weight A is in equilibrium in a uniform gravitational field g. 
The gas is isothermal with temperature T and there is thermal equilibrium 
between the ions and the electrons. The gas has a low enough density that 
local interactions between the particles can be neglected. 
(a) Show that to avoid charge separation there must be a uniform 
electric field E given by 
where mp and 
(b) Show 
me are the proton and electron masses respectively. 
that the above equation is also valid if the plasma is not \ , 

isothermal. (Hint: Treat each component i as an ideal gas subject to the 
equation of hydrostatic equilibrium 
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where p; is the partial pressure of the ith component, n, is its number 
density, and F,, is the total force per particle in the z direction.) 



(c) The equation in (a) is also valid throughout the sun where E and 
g are now directed radially. Show that the charge on the sun is given 
approximately by 
A GMm, 

l + Z leJ ’ Q=-- 

where M is the mass of the sun. 
(d) For the sun M = 2 x grams. If the composition of the sun 
were pure hydrogen, what would be Q in coulombs? Given this value of Q, 
is the approximation that there is no charge separation a good one? 
Solution: 
(a) Take an arbitrary point in the gravitational field as the zero potential 
point. The number density at this point is n and the height is taken 
opposite to the direction of g. Suppose there exists an uniform electric 
field E in the direction opposite to g. The electron and ion distributions 
as functions of height are respectively 
(MITI 

ne(h) = no, exp[-(m,gh + Elelh)/kT] , 
nI(h) = n,Iexp[-(Am,gh - EZlelh)/kT] . 
To avoid charge separation, the following condition must be satisfied: 

nI(h)/n,(h) = nO1/noe . 

Am,g - EZlel= m,g + Elel , 
This gives 
from which we get 

(b) -dPI = nI(-Am,g + ZlelE), 
dh 
At equilibrium, the partial pressure for each type of particles (at the same 
height) should be the same. Thus 
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i.e., 

-Am,g + ZjelE = -m,g - lelE . 
Am, - m, 

(1 + z)lel Hence E = ' . 
Q r GM r 

r2 r g = r2 r (c) AS E = --, , we have 

GMAm,-me GM Am, 
Q/r2 = - Mr2 

(I+ .Z)lel r2 (I+ Z)lel . 
GMAm, 
Hence Q = 

(1 + Z) 14. 
(d) For hydrogen, one has A = 1, Z = 1, giving 
GMm, 

QW- 1.5 x lo3 oc . 
214 
1103 
Consider a thermally isolated system consisting of two volumes, V 
and 2V of an ideal gas separated by a thermally conducting and movable 
partition. 
Fig. 1.30 
The temperatures and pressures are as shown. The partition is now allowed 



to move without the gases mixing. 
When equilibrium is established what is the change in the total internal 
energy? The total entropy? 
What is the equilibrium temperature? Pressure? 
(SUN Y, Buffalo) 
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Solution: 
Let the molar numbers of the gas in the two sides be nl and n2 respectively. 
From the equations 6pV = nlRT and pV = nzRT, we obtain 
nl = 6n2. As this is an isolated system of ideal gas, the final temperature 
is Tf = T since both the initial temperatures are equal to T. The final 
pressure pf is 

pf = (nl + n2)RT/3V = 
3 
We calculate the change of the state function S by designing a quasi-static 
isothermal process. Then 
Vl nl 18 

Since Vl + VZ = 3V and -v2 = - = 6,Vl = 6V2 = -V. Hence n2 7 

AS = n lRl n 9- + n2Rln -3 PV M - 7 7 T 
1104 
A thermally insulated cylinder, closed at both ends, is fitted with a 
frictionless heat-conducting piston which divides the cylinder into two parts. 
Initially, the piston is clamped in the center, with 1 litre of air at 200 K 
and 2 atm pressure on one side and 1 litre of air at 300 K and 1 atm on 
the other side. The piston is released and the system reaches equilibrium 
in pressure and temperature, with the piston at a new position. 
(a) Compute the final pressure and temperature. 
(b) Compute the total increase in entropy. 
Be sure to give all your reasoning. 
(SUNY, Buflulo) 
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Solution: 
(a) The particle numbers of the two parts do not change. Let these be 
N1 and N2, the final pressure be p , and the final temperature be T. Taking 
air as an ideal gas, we have 

pivo = NikT1 , p2Vo = N2kT2 , 
where p1 = 2 atm, TI = 200 K,p 2 = 1 atm, T2 = 300 K , V0 - l l . 
The piston does not consume internal energy of the gas as it is frictionless, 
so that the total internal energy of the gas is conserved in view of 
the cylinder being adiabatical. Thus 

PNlkT1 + PNzkT = p(Nl+ N2)kT , 
where p is the degree of freedom of motion of an air molecule. Hence 

P2 TI + -NT22 1+- 

Nl = p1 TI = 225 K 
-N+2 1 l+-P2- ' -Tl- 
Nl PI T2 
T = 
By V1+ V2 = 2V0, we find 
and hence 

(Ni + N2) 
2VO P= 



(b) Entropy is a state function independent of the process. To calculate 
the change of entropy by designing a quasi-static process, we denote the 
entropies of the two parts by S1 and S2. Then 

AS = AS1 + AS2 = 
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where nl and n2 are the molar numbers of the particles in the two parts, 
c, is the molar specific heat at constant volume, and R is the gas constant. 
Thus 
3 
2 
Taking c, = -R as the temperature of the system is not high, we have 
AS = 0.4 J/cal. 
1105 
A cylindrical container is initially separated by a clamped piston into 
two compartments of equal volume. The left compartment is filled with one 
mole of neon gas at a pressure of 4 atmospheres and the right with argon 
gas at one atmosphere. The gases may be considered as ideal. The who$ 
system is initially at temperature T = 300 K, and is thermally insulated 
from the outside world. The heat capacity of the cylinder-piston system is 
C (a constant). 
piston / 
argon 
Fig. 1.31. 
The piston is now unclamped and released to move freely without friction. 
Eventually, due to slight dissipation, it comes to rest in an equilibrium 
position. Calculate: 
(a) The new temperature of the system (the piston is thermally conductive). 
(b) The ratio of final neon to argon volumes. 
(c) The total entropy change of the system. 
(d) The additional entropy change which would be produced if the 
piston were removed. 
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(e) If, in the initial state, the gas in the left compartment were a mole 
of argon instead of a mole of neon, which, if any, of the answers to (a), (b) 
and (c) would be different? 
(UC, Berkeley) 
Solution: 
(a) The internal energy of an ideal gas is a function dependent only on 
temperature, so the internal energy of the total system does not change. 
Neither does the temperature. The new equilibrium temperature is 300 K. 
(b) The volume ratio is the ratio of molecular numbers, and is also the 
ratio of initial pressures. Thus 
VN, : V A=~ 4~ : 1 = 1: n . 
where n = 1/4 is the mole number of the argon gas. 
(c) The increase of entropy of the system is 
4 1 
- R - 
2 2 

= R In 5 + - ln 4 = 2.0 J/K . 
-1 4 -1 
(d) The additional entropy change is 

AS' = Rln(1 + n) + nRln 
(e) If initially the gas on the left is a mole of argon, the answers to (a), 
(b) and (c) will not change. As for (d), we now have AS' = 0. 
4. CHANGE OF PHASE AND PHASE EQUILIBRIUM 



(1 106- 1147) 
1106 
Is the melting point of tungsten 350, 3500, 35,000, or 350,000°C? 
(Columbia) 
Solution: 
The answer is 3500°C. 
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1107 
Assuming that 1/20 eV is required to liberate a molecule from the 
surface of a certain liquid when T = 300 K, what is the heat of vaporization 
in ergs/mole? 
[le V = 1 . 6 ~ 1 0 - 'e~rg ] 
(Wisconsin) 
Solution: 
The heat of vaporization is 
1 
20 
Lvapor = - x 1.6 x x 6.023 x 

= 4.8 x lo1' ergs/mol. 
1108 
Twenty grams of ice at 0°C are dropped into a beaker containing 
120 grams of water initially at 70°C. Find the final temperature of the 
mixture neglecting the heat capacity of the beaker. Heat of fusion of ice is 
80 cal/g. 
( wis c 0 nsin) 
Solution: 
We assume the temperature of equilibrium to be T after mixing. Thus 
We substitute MI = 20 g, M2 = 120 g, To = 70"C, Lfusion = 80 cal/g 
and Cp,wate=r 1 cal/g, and obtain the final temperature T = 48.57"C. 
1109 
The entropy of water at atmospheric pressure and 100°C is 0.31 
cal/g.deg, and the entropy of steam at the same temperature and pressure 
is 1.76 cal/g.deg. 
(a) What is the heat of vaporization at this temperature? 

(b) The enthalpy (H = U + PV) of steam under these conditions is 
640 cal/g. Calculate the enthalpy of water under these conditions. 
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(c) Calculate the Gibbs functions (G = H - TS) of water and steam 
(d) Prove that the Gibbs function does not change in a reversible 
(UC, Berkeley) 
under these conditions. 
isothermal isobaric process. 
Solution: 
(a) Heat of vaporization is 
L = TAS = 540 cal/g. 

(b) From dH = TdS + Vdp, we get 

Hwater= Hstealn- TAS = 100 cal/g. 
(c) Since G = H - TS, 
Gwater = Hwater - TSwater = -16 cal/g 7 

Geteam = Hsteam - TSsteam = -16 cal/g 

(d) From dG = -SdT + Vdp, we see that in a reversible isothermal 

isobaric process, G does not change. 
1110 
Given 1.0 kg of water at 100°C and a very large block of ice at 0°C. 



A reversible heat engine absorbs heat from the water and expels heat to 
the ice until work can no longer be extracted from the system. At the 
completion of the process: 
(a) What is the temperature of the water? 
(b) How much ice has been melted? (The heat of fusion of ice is 
80 cal/g) 
(c) How much work has been done by the engine? 
( was co win) 
Solution: 
(a) Because the block of ice is very large, we can assume its temperature 
to be a constant. In the process the temperature of the water gradually 
decreases. When work can no longer be extracted from the system, the 
efficiency of the cycle is zero: 
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Therefore, the final temperature of the water is 0°C. 
(b) The heat absorbed by the ice block is 

9 2 = / [ I - rl(t)]dQ= mCv L:I3 Y d T = 8.5 x lo4 cal . 
This heat can melt ice to the amount of 
MI- Q2 -- 8.5 x lo4 
&ion 80 

= 1.06 kg . 
(c) The work done by the engine is 

W = Q1 - Q2 = 1000 x 100 x 1 - 8.5 x lo4 = 1.5 x lo4 cal . 
1111 
What is the smallest possible time necessary to freeze 2 kg of water at 
0°C if a 50 watt motor is available and the outside air (hot reservoir) is at 
27OC? 
( Wisconsin) 
Solution: 
When 2 kg of water at 0°C becomes ice, the heat released is 

9 2 = 1.44 x 2 x 103/18 = 1.6 x lo2 kcal . 
The highest efficiency of the motor is 
Thus, 
If we use the motor of P = 50 W, the smallest necessary time is 
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With TI = 300 K, Tz = 273 K, we find 

= 1.3 x lo3 . 
1112 
Compute the theoretical minimum amount of mechanical work needed 
to freeze 1 kilogram of water, if the water and surroundings are initially at 
a tempera.ture To = 25°C. The surroundings comprise the only large heat 
reservoir available. 

(Lice = 80 cal/g, C, = 1 cal/g . O C) . 
(UC, Berkeley) 
Solution: 
The minimum work can be divided into two parts W1 and Wz: W1 is 
used to lower the water temperature from 25OC to O"C, and W2 to transform 
water to ice. We find 
W1 = - (To - T)MC,dT/T 
ITo 



= MCpTo ln(To/Tr) - MC,(To - Z) 
= 1.1 x lo3 cal , 
W2 = (TO - Tf)LM/Tf = 7.3 x lo3 cal , 

W = W1 + W2 = 8.4 x lo4 cal = 3.5 x lo4 J . 
111s 
An ideal Carnot refrigerator (heat pump) freezes ice cubes at the rate 
of 5 g/s starting with water at the freezing point. Energy is given off to 
the room at 3OoC. If the fusion energy of ice is 320 joules/gram, 
(a) At what rate is energy expelled to the room? 
(b) At what rate in kilowatts must electrical energy be supplied? 
(c) What is the coefficient of performance of this heat pump? 
( wzs co nsin) 
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Solution: 
(a) The rate that the refrigerator extracts heat from water is 

9 2 = 5 x 320 = 1.6 x lo3 J/s . 
The rate that the energy is expelled to the room is 
1 - -TlQ 2 = (303/273) x 1.6 x lo3 
-T2 
= 1.78 x 10 J/s . 
(b) The necessary power supplied is 

W = Q1- Q 2 = 0.18 kW . 
(c) The coefficient of performance is 
273 

& = - - - T2 - = 9.1 . 
Ti - Tz 30 
1114 
A Carnot cycle is operated with liquid-gas interface. The vapor pressure 
is pv, temperature T, volume V. The cycle is operated according to 

the following p - V diagram. 
The cycle goes isothermally from 1 to 2, evaporating n moles of liquid. 
This is followed by reversible cooling from 2 to 3, then there is an isothermal 
contraction from 3 to 4, recondensing n moles of liquid, and finally a 
reversible heating from 4 to 1, completes the cycle. 

I I I 1 pv, T , V Pv-AP pp=p3 --r ,, 

b ' 1 I I 1 L 

"I v2 
( a ) ( b ) 
Fig. 1.32. 

(a) Observe that V2 - V1 = V, - Vt where V, = volume of n moles of 
gas, Vt = volume of n moles of liquid. Calculate the efficiency in terms of 
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Ap, V, - Ve, and L, = latent heat vaporization of a mole of liquid. Treat 
Ap and AT as small. 
(b) Recognizing that any two Carnot engines operating between T and 
T - AT must have the same efficiency (why?) and that this efficiency is a 



function of T and T alone, use the result of part (a) to obtain an expression 
for dp,/dT in terms of V, - Ve, n, L, and T. 
(CUSPEA) 
Solution: 
(a) The temperature T in the process from 1 to 2 is constant. Because 
the total volume does not change, V2 - Vl = V, - Ve. The engine does work 
Ap(V2 - Vl) on the outside world in the cyclic process. The heat it absorbs 
is nL,. Therefore, the efficiency is 
(b) The efficiency of a reversible Carnot engine working between T and 
T - A T i s 
AT Ap(V, - Ve) 
I]=-= T L, n I 

Thus -dPV = nL, 
dT T(V, - Ve) 
1115 
Many results based on the second law of thermodynamics may be 
obtained without use of the concepts of entropy or such functions. The 
method is to consider a (reversible) Carnot cycle involving heat absorption 

Q at (T + dT) and release at T such that external work (W + dW) is 

done externally at (T + dT) and -W is done at T. Then Q = AU + W, 
where AU is the increase in the internal energy of the system. One must 
go around the cycle so positive net work dW is performed externally, where 
dW/dT = Q/T. In the following problems devise such a cycle and prove 
the indicated relations. 
(a) A liquid or solid has vapor pressure p in equilibrium with its vapor. 
For 1 mole of vapor treated as a perfect gas, V (vapor) >> V (solid orJiquid), 
let 1 be the 1 mole heat of vaporization. Show that 

dlnp/dT = l/RT2 . 
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(b) A liquid has surface energy density u and surface tension r. 
dr 
i) Show that u = r - T-. 
dT 
ii) If - < 0, and - > 0, will T increase or decrease for an 
(Columbia) 
Solution: 
(a) Consider the following cycle: 1 mole of a liquid vaporizes at temperature 

T + dT, pressure p + dp, the vapor expands adiabatically to T,p 
and then condenses at T, p and finally it arrives adiabatically at its initial 

state. Thus we have Q = 1, dW = ( p + dp)V - pV = Vdp, where V is the 
molar volume of the vapor, and 
dr d2r 
adiabatic increase in area? 
dT dT2 

-Vd-P 4 - 

dT T ' 

From the equation of state of an ideal gas V = RT/p, we have 
d l n p - 1 
dT RT2 ' 

(b)(i) Consider the following cycle: A surface expands by one unit 

area at T + dT, and then expands adiabatically to T, it contracts at T, and 



comes back adiabatically to its initial state. For this cycle: 
Q = u - r , 
dr 
dT 

dW = -r(T + dT) + T ( T )= --dT 
Thus 
or 

- _-d r - 
_u -_r dW 
dt dT T ' -- 
dr 
dT 
u = r - T - . 
(ii) From conservation of energy, we have 

d(Au) = dQ + r(T)dA , 
where A is the surface area. As dQ = 0 in the adiabatic process, 

(U - 7)dA + Adu = 0 , 
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or 
From (i) we have \ I 

-d u =-T($). 
d T 
With d r / d T < 0 and d 2 r / d p > 0, the above equations give 
Hence when the surface area increases adiabatically, its temperature increases 
also. 
1116 
The heat of melting of ice at 1 atmosphere pressure and O°C is 
1.4363 kcal/mol. The density of ice under these conditions is 0.917 g/cm3 
and the density of water is 0.9998 g/cm3. If 1 mole of ice is melted under 
these conditions, what will be 
(a) the work done? 
(b) the change in internal energy? 
(c) the change in entropy? 
( wisco ns in) 

Solution: 
(a) The work done is 

= 1.013 x lo5 x [(&)-(&)] 
= -0.1657 J = -0.034 cal . 
(b) The heat absorbed by the 1 mole of ice is equal to its heat of fusion: 

Q = 1.4363 x lo3 cal . 
Thus the change in internal energy is 
AU = Q - W CJ Q = 1.4363 x lo3 cal 
Thermodynamics 
(c) The change in entropy is 
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A s = - = 1'4363 lo3 = 5.26 cal/K . T 273 
1117 
10 kg of water at 20°C is converted to ice at -10°C by being put in 
contact with a reservoir at -10°C. This process takes place at constant pressure 
and the heat capacities at constant pressure of water and ice are 4180 

and 2090 J/kg deg respectively. The heat of fusion of ice is 3 . 3 4 ~lo 5 J/kg. 



Calculate the change in entropy of the universe. 
( was co nsin) 

Solution: 
The conversion of water at 2OoC to ice at -10°C consists of the following 

processes. Water at 20" c -% water at ooc -+ ice at ooc 5 ice at 
-lO°C, where a and c are processes giving out heat with decreases of entropy 
and b is the process of condensation of water giving off the latent heat 
with a decrease of entropy also. As the processes take place at constant 
pressure, the changes of entropy are 
b 
273 

AS, = /,,, F d T = MC,ln (g) = -2955 J/K , 

IQI 10 x 3.34 x 105 

As2 = -- = - = -1.2234 x lo4 J /K , 
To 273 
263 

AS3 = l:r Mt 273 

2dT = MC,ln - = -757 J/K . 
In the processes, the increase of entropy of the reservoir due to the 
absorbed heat is 

10 x (4180 x 20 + 3.34 x lo5 + 2090 x 10) 
263 
AS, = 

= 16673 J/K . 
Thus, the total change of entropy of the whole system is 

AS = AS, + AS2 + AS, + AS, = 727 J/K . 
1118 
Estimate the surface tension of a liquid whose heat of vaporization is 
(Columbia) 
10" ergs/g (250 cal/g). 
Solution: 
The surface tension is the free energy of surface of unit area; therefore 
the surface tension is a = Qrp, where Q is the heat of vaporization, r 

is the thickness of the surface (r = lov8 cm) and p is the liquid density 
(p = 1 g/cm3). Thus 
1119 
Put letters from a to h on your answer sheet. After each put a T or 
an F to denote whether the correspondingly numbered statement which 
follows is true or false. 
(a) The liquid phase can exist at absolute zero. 
(b) The solid phase can exist at temperatures above the critical tem- 
(c) Oxygen boils at a higher temperature than nitrogen. 
(d) The maximum inversion temperature of He is less than 20 K. 
(e) 7 of a gas is always greater than one. 
(f) A compressor will get hotter when compressing a diatomic gas than 
perature. 
wheacompressing a monatomic gas at the same rate. 
(g) The coefficient of performance of a refrigerator can be greater than 



one. 
(h) A slightly roughened ball is thrown from north to south. As one 
looks down from above, the ball is seen to be spinning counterclockwise. 
The ball is seen to curve toward east. 
( wis c 0 ns in) 
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1120 
One gram each of ice, water, and water vapor are in equilibrium together 
in a closed container. The pressure is 4.58 mm of Hg, the temperature 
is 0.01OC. Sixty calories of heat are added to the system. The total 
volume is kept constant. Calculate to within 2% the masses of ice, water, 
and water vapor now present in the container. Justify your answers. 
(Hint: For water at O.0loC, the latent heat of fusion is 80 cal/g, the 
latent heat of vaporization is 596 cal/g, and the latent heat of sublimation 
is 676 cal/g. Also note that the volume of the vapor is much larger than 
the volume of the water or the volume of the ice.) 
Solution: 
It is assumed that the original volume of water vapor is V, it volume 
is also V after heating, and the masses of ice, water, and water vapor are 
respectively x, y and z at the new equilibrium. We have 

( Wisconsin) 

-1+- -x 
Pice Pwater 

RT 
PP 

v,=-. 
Z V=-RT 
PP 
(3) 
(4) 
(5) 
where p = 18 g/mole,p = 4.58 mmHg,T = 273.16 K, R = 8.2 x lo8 
m3 . atm/mol . K, Pice = Pwater = 1 g/cm3, Lsub = 676 cal/g, and Lvap = 

596 cal/g. Solving the equations we find 

x = 0.25 g , y = 1.75 g , z = 1.00 g . 
That is, the heat of 60 cal is nearly all used to melt the ice. 
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1121 
Define (a) critical point and (b) triple point in phase transformation. 
Helium boils at 4.2 K under the atmospheric pressure p = 760 mm of 
mercury. What will be the boilding temperature of helium if p is reduced 
to 1 mm of mercury? 
(UC, Berkely) 
Solution: 
Critical point is the terminal point of the vaporization line. It satisfies 
equations 

( a p ) T = o , (3)= o . av av2 
Triple point is the coexistence point for solid, liquid, and gas. When 
p' = 1 mmHg, the boilding temperature is 2.4 K. 
1122 
(a) State Van der Waals' equation of state for a real gas. 
(b) Give a physical interpretation of the equation. 
(c) Express the constants in terms of the critical data Tc,Vc,a nd p c . 



( Wisconsin) 

Solution: 
(a) Van der Waal's equation of state for a real gas is 

(p + -3 ( V - b ) = n R T . 

(b) On the basis of the state equation for an ideal gas, we account 
for the intrinsic volumes of real gas molecules by introducing a constant b, 
and for the attractive forces among the molecules by introducing a pressure 
correction a JV2. 
(V - b) = nRT, we have 
p = - - p 
nRT a 
so that 

2nRT _ -6 a 
(%)T = (V-b)3 v4 * 
Therrnodynamica 119 
dP d2P 
dV av2 T 

At the critical point, we have (-)T = 0, (-) 
a 8a 
- 276 
= 0, so that 

V, = 36, p - - nRT - - . 
- 27b2 ' 
namely, a = 3pCV,2b, = Vc/3. 
1123 
The Van der Waals equation of state for one mole of an imperfect gas 
reads 

(p + - v "z) ( V - b ) = R T . 

[Note: part (d) of this problem can be done independently of part (a) to 
(c1.1 
(a) Sketch several isotherms of the Van der Waals gas in the p-V plane 
(V along the horizontal axis, p along the vertical axis). Identify the critical 
point. 
(b) Evaluate the dimensionless ratio pV/RT at the critical point. 
(c) In a portion of the p-V plane below the critical point the liquid and 
gas phases can coexist. In this region the isotherms given by the Van der 
Waals equation are unphysical and must be modified. The physically correct 
isotherms in this region are lines of constant pressure, po(T). Maxwell 
proposed that p o ( T ) should be chosen so that the area under the modified 
isotherm should equal the area under the original Van der Waals isotherm. 
Draw a modified isotherm and explain the idea behind Maxwell's construction. 
P 
Fig. 1.33. 
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(d) Show that the heat capacity at constant volume of a Van der Waals 
gas is a function of temperature alone (i.e., independent of V ) . 
(MIT) 
Solution: 
= 0, we get 
(a) As shown in Fig. 1.33, from (dp/dV)T=T, = 0 and (azp/dV2)r=r, 
3a (Vc - b)3 

T - - - v,4 



so 
a 8a 

27b2’ ‘- 27bR 
Vc = 3 b , p , = - T - - 
(b) pcVciRTc = 318. 
(c) In Fig. 1.33, the horizontal line CD is the modified isotherm. The 
area of CAE is equal to that of EBD. The idea is that the common points, 
i.e., C and D of the Van der Waals isotherm and the physical isotherm have 
the same Gibbs free energy. Because of G = G(T,p), the equality of T’s 
and p’s respectively will naturally cause the equality of G. In this way, 
That is, 

LEV dp - LcV dp = /DB Vdp - LBV dp, or A S ~ A E= ASEBD 

For a Van der Waals gas, the equation of state gives 
so that 
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1124 
Determine the ratio (pV/RT) at the critical point for a gas which obeys 
the equation of state (Dieterici's equation) 

p(V - b) = RTexp(-a/RTV) . 
Give the numerical answer accurately to two significant figures. 
(UC, Berkeley) 
Solution: 
The critical point satisfies 
From the equation of state, we get 
a(V - b) 

e RTV , [ RTV2 

($)T = RT (V - b)2 
a(V - b) 
RTV2 
Consequently, - 1 = o . 
Using this result, we get 
a a 
4b 
Thus, -- 2 = 0. Then, V = 26, RT = -. RTV 
Substituting these back in the equation of state, we find -PV = 0.27. RT 
1125 

Find the relation between the equilibrium radius r, the potential 4, 
and the excess of ambient pressure over internal pressure Ap of a charged 
soap bubble, assuming that surface tension can be neglected. 
( wi3 c 0 f l 3 in) 
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Solution: 
We assume that the air inside the bubble is in a-phase, the air outside 
the bubble is in P-phase, and the soap bubble itself is in 7-phase. We 
can solve this problem using the principle of minimum free energy. If the 
temperature is constant, we have 
6F" = - p a 6 V a , 6FP = - p P 6 V P l and 6F7 = q ( a 4 / d r ) 6 r , 
4 
3 
where V" = -m36,V " = 4.rrr26r,6VP = - 6 V " . 



The condition of minimum free energy demands 

With 4 = q / r , we have A p = -Y 

4 7 4 ' 

1126 
Consider a spherical soap bubble made from a soap film of constant 
surface tension, a, and filled with air (assumed to be a perfect gas). Denote 
the ambient external pressure by po and temperature by T. 
(a) Find a relation between the equilibrium radius r of the soap bubble 
(b) Solve the relation of part (a) for the radius r in the limit that the 
and the mass of air inside it. 
bubble is =large". Define precisely what is meant by "large". 
W I T ) 
Solution: 
(a) Let d r be an infinitesimal area of soap bubble surface, p l .and po 
be the pressures inside and outside the soap bubble, and p1,p2 be their 

chemical potentials. We have dU = T d S - pldV1 - podV2 + adr + p l d N 1 + 
P2 dN2. 
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From the condition of equilibrium: dU = 0,dS = Olpl = p2, dVl = 
-dV2 and d(N1+N2) = 0, we get (p1-po)dVl = udr, or p l - p o = udr/dVl, 
dr 2 
where - = - Hence pi - po = 2u/r. 
dV1 r 
m 
is the molecular weight of air, we have 

Since plV1 = -RT, where m is the mass of air inside the bubble, M M 
4T M 

3 RT m= --r3 (Po+ F) . 
4rMpor3 
3RT 
(b) When po >> 2u/r, Le., r >> 2a/po, we have rn = 
1127 
Derive the vapor pressure equation (Clausius-Clapeyron equation): 
(UC, B e r k e l e y ) 

d p l d T =? 
Solution: 
Conservation of energy gives 
where V1 is the volume of the vapor, and V2 is the volume of the liquid. In 
phase transition from liquid to vapor, chemical potential is invariant, i.e., 
p1 = p2, so that one has the vapor pressure equation: 
where L is the latent heat of vaporization. 
Usually V2 << Vl, and this equation can be simplified to 
dv L 
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1128 
(a) By equating the Gibbs free energy or chemical potential on the two 
sides of the liquid-vapor coexistence curve derive the Clausius-Clapeyron 

, where q is the heat of vaporization per 

particle and VL is t I, e volume per particle in the liquid and VV is the 

equation: - - 
volume per particle in the vapor. 
Q dP 



dT T Vv - VL) 
(b) Assuming the vapor follows the ideal gas law and has a density 

which is much less than that of the liquid, show that p - exp(-q/kT), 

when the heat of vaporization is independent of T. 
( wis co nsin) 
Solution: 
(a) From the first law of thermodynamics 

dp 1 -SdT + Vdp 
and the condition that the chemical potential of the liquid is equal to that 
of the vapor at equilibrium, we obtain 
It follows that 
_d P -- s v - SL 
dT Vv - VL ’ 

With q = T(Sv - SL), we have 
which is the Clausius-Clapeyron equation. 
(b) If the vapor is regarded as an ideal gas, we have 
Because the density of vapor is much smaller than that of liquid, we can 
neglect VL in the Clausius-Clapeyron equation and write 

The solution is p - exp(-q/kT). 
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1129 
A gram of liquid and vapor with heat of vaporization L is carried 
around the very flat reversible cycle shown in Fig. 1.34. Beginning at point 
A, a volume Vl of liquid in equilibrium with a negligible amount of its 
saturated vapor is raised in temperature by AT and in pressure by Ap so 
as to maintain the liquid state. Then heat is applied at constant pressure 
and the volume increases to Vz leaving a negligible amount of liquid. Then 
the pressure is lowered by Ap and the temperature decreased by AT so 
that essentially all the material remains in the vapor state. Finally, heat is 
removed, condensing essentially all the vapor back into the liquid state at 
point A. 
Consider such a Carnot cycle and write the change of boiling point 
with pressure, dTldp, for the liquid in terms of the heat of vaporization 
and other quantities. 
( wis co nsin) 

I i I I 

V1 v2 v 
Fig. 1.34. 
Solution: 
In this cycle, the process at constant pressure is isothermal. We assume 
the net heat absorbed by the system is Q. Then its efficiency is r] = Q L. 

For the reversible Carnot cycle, the efficiency is r] = -, giving Q = -L. 
Q must be equal to the external work W of the system in the cycle, W = 
Ap(V2 - Vl), so that 

AT A d 
T T 

Z L = Ap(V2 - vl) . 



T 
Therefore, 
AT - T(Vz - Vl) 
dT/dp= lim - - 
Ap-0 Ap L * 
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1130 
(a) Deduce from the 1st and 2nd laws of thermodynamics that, if a 
substance such as H 2 0 expands by 0.091 cm3/g when it freezes, its freezing 
temperature must decrease with increasing pressure. 
(b) In an ice-skating rink, skating becomes unpleasant (i.e., falling 
frequently) if the temperature is too cold so that the ice becomes too hard. 
Estimate the lowest temperature of the ice on a skating rink for which ice 
skating for a person of normal weight would be possible and enjoyable. 
(The latent heat of ice is 80 cal/g). 
Solution: 
(SUNY, Bufalo) 
Denote the liquid and solid phases by 1 and 2 respectively. 
(a) The condition for coexistence of the two phases is 

p2 = 1-11, so that dp2 = dp1 , 
giving 

Vidpi - SldT1 = Vzdpz - S2dT2 . 
As pa = p i = p and T2 = TI = T on the coexistence line, we have 
For regions whose temperatures are higher than those of phase transformation 
we have 1-1-11 < p2, and for the regions whose temperatures are 
lower than those of phase transformation we have p1 > p2. This means 
that 
i.e., for any temperature, S1 > 272. 

1 ' ( < 0. phase line 

For substances such as water, V2 > V1, so 
(b) The lowest temperature permitted for enjoyable skating is the temperature 
at which the pressure on the coexistence line is equal to the 
pressure exerted by the skater on ice. The triple point of water is at 
To = 273.16 K, po = 1 atm. For a skater of normal weight p N 10 atm, 
so that 

( P - Po)/(Trnin - TO) = -h/TminAv . 
Thermodynamic 8 

With h = 80 cal/g, AV = 0.091 cm3/g, we have 
127 

TO = (1 - 2.5 x 10-3)T0 = -0.06"C . 
(P - PO) AV Tniin = 
h 
1131 
The following data apply to the triple point of H20. 
Temperature: 0.01"C; Pressure: 4.6 mmHg 
Specific volume of solid: 1.12 cm3/g 
Specific volume of liquid: 1.00 cm3/g 
Heat of melting: 80 cal/g 
Heat of vaporization: 600 cal/g. 
(a) Sketch a p - T diagram for H20 which need not be to scale but 
which should be qualitatively correct. Label the various phases and critical 
points. 



(b) The pressure inside a container enclosing H20 (which is maintained 

at T = -1.O"C) is slowly reduced from an initial value of lo5 mmHg. Describe 
what happens and calculate the pressure at which the phase changes 
occur. Assume the vapor phase behaves like an ideal gas. 
(c) Calculate the change in specific latent heat with temperature dL/dT 
at a point (p, T) along a phase equilibrium line. Express your result in terms 
of L and the specific heat C,, coefficient of expansion a, and specific volume 

V of each phase at the original temperature T and pressure p. 

(d) If the specific latent heat at 1 atm pressure on the vaporization 
curve is 540 cal/g, estimate the change in latent heat 10°C higher than the 
curve. Assume the vapor can be treated as an ideal gas with rotational 
degrees of freedom. 
(MITI 
Solution: 
(a) The p - T diagram of H20 is shown in Fig. 1.35. 
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I mm 
critical 
ice point 
vapor 
T 
27216 
( K ) 
Fig. 1.35. 

(b) The Clausius-Clapeyron equation gives 

= -2.4 cal/cm3 . - L K . 
ice-water T(Vwater - Vice) 

) (‘ > O water-vapor 

When the pressure, which is slowly reduced, reaches the solid-liquid 
phase line, heat is released by the water while the pressure remains unchanged 
until all the water is changed into ice. Then at the vapor-solid 
line, the ice absorbs heat until it is completely changed into vapor. Afterwards 
the pressure begins to decrease while the vapor phase is maintained. 
The pressure at which water is converted to ice is given by 
T - To 
.~ = 6.3 x 103cmHg 
L 

Pwater-ice = PO + Vwater - h e TO 
where we have used the values T = 272.15 K, TO = 273.16 K and po = 

4.6 mmHg. As Vvapor = - > Kce, we have 

kT 
Pm 

-dP- -- L - mLp 
dT TVvapor T2k a 

The pressure at which ice is converted to vapor is 

Pice-vapor FJ PO exP [ L-: ( - io- -k )] = 4.4 mmHg 

where rn is the molecular mass of water. 
Thermodynamic a 129 

(c) From L = T(S1 - S2), we have 



As dS1 = -CdPT 1 - alVldp, where a1 = - (s) , we have 

T Vl 
TJsing 
L dP - 

dT T(V1 - V2) ' 
_- 
we obtain 
dL L L 
dT Vl - v2 

- = T 1- (CPI - C,,) - (alvl - a2V2)- . 
(d) Let 1 and 2 stand for water and vapor respectively. 
From V2 >> V1, we know 
where 012 = 1/T, so AL = (Cpl - C,,)AT. 
2 
9 
Letting C,, = 1 cal/g "C, C,, = -R cal/g.OC, AT = 10°C, we get 
AL = 6 cal/g. 
1132 
(a) Derive an expression for the dependence of the equilibrium vapor 
pressure of a material on the toal pressure (i.e., how does the equilibrium 
partial pressure of a material depend on the addition of an overpressure of 
some inert gas?). 
(b) Use this result to discuss qualitatively the difference between the 
triple point and the ice point of water. 
( was co nsin) 
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Solution: 
x << 1. Thus the mole chemical potential of the solution is 
(a) We assume the mole concentration of the solute in the solution is 

1.11 (P, T) = 1.1; (P, T) - XRT , 
where py(p,T) is the mole chemical potential of the pure solvent. If the 
mole chemical potential of the vapor phase is &(p,T), the equilibrium 
vapor pressure of the solvent, P O , is determined by 

1.1; (Po, To) = 1.1; (Po, To) . 
When the external pressure (the total pressure) is p , the condition of 
equilibrium of vapor and liquid is 
Making use of Taylor’s theorem, we have from the above two equations 

Using the thermodynamic relation dp = -SdT + Vdp, we can write the 
above as 

P - Po = [(S2 - S,)(T - To) - XRT]/(V2 - Vl) , 
or 

PO = P - [L(T- To)/T - zRT]/(V2- V I ), 
where V is the mole volume, S is the mole entropy, and L is the latent 
heat, L = T(S2 - S1). 
(b) The triple point of water is the temperature TO at which ice, water 

and vapor are in equilibrium. The ice point is the temperature T at which 
pure ice and air-saturated water are in equilibrium at 1 atm. Utilizing the 
result in (a) we have 



T - To = T(V2 - Vi)(p - po)/L + xRT2/L , 
where V, and V1 are respectively the mole volumes of ice and water. From 
V2 > Vl and L < 0, we know the ice point is lower than the triple point. 
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The first term of the above formula comes from the change of pressure, the 
second term appears because water is not pure. The quantitative result of 
the first term is -0.0075 K, of the second term is -0.0023 K. 
1133 
Some researchers at the Modford Institute of Taxidermy claim to have 
measured the following pressure-temperature phase diagram of a new substance, 
which they call "embalmium". Their results show that along the 
phase lines near the triple point 

< (')sublimation < (-') fusion < (')vaporization 

as indicated in the diagram. If these results are correct, "embdmiumn has 
one rather unusual property and one property which violates the laws of 
thermodynamics. What are the two properties? 
(MIT) 
P I 

I - T 
Fig. 1.36. 

Solution: 

The property (g) < 0 is unusual as only a few substances like 
fu ' n 

water behaves in this way. yhe Clausius-Clapeyron equation gives 

1(' -- (Sgas - Sliquid) vaporization Vgas 

(') sublimation Vgas 

- (Sgas - Ssolid) - 

means Ssolid > S1iquid, i.e., the mole 

entropy of the solid phase is greater than that of the liquid phase, which vi- (') vaporization > (') sublimiation 

olates the second law of thermodynamics, since a substance absorbs heat to 
transform from solid to liquid and the process should be entropy increasing. 
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1134 
The latent heat of vaporization of water is about 2 . 4 4 ~ 1 0J/~k g and 
the vapor density is 0,598 kg/m3 at 100OC. Find the rate of change of the 
boiling temperature with altitude near sea level in "C per km. Assume the 
temperature of the air is 300 K. 
(Density of air at O°C and 1 atm is 1.29 kg/m3). 
( wis co nsin) 
Solution: 
The Boltzmann distribution gives the pressure change with height: 
where p ( 0 ) is the pressure at sea level z = 0, m is the molecular weight of 
air, and To = 300 K is the temperature of the atmosphere. The Clausius- 
Clapeyron equation can be written as 
dv L L (Y 



with p1 = 1000 kg/m3, p2 = 0.598 kg/m3 and L/M = 2.44 x 106 J/kg, we 
have 

( Y = Lp1p2 = 1.40 x lo6 J/m3 . 
W P l - P2) 
So the rate of change of the boiling point with height is 
Using the equation of state for ideal gas p = pkTo/rn, we have near 
the sea level 
where p = 1.29 kg/m3 is the density of air, g = 9.8 m/s2 and T(0) = 100OC. 
d T 
d z 
Thus - = -0.87OC/km. 
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1135 
A long vertical cylindrical column of a substance is at temperature 
T in a gravitational field g. Below a certain point along the column the 
substance is found to be a solid; above that point it is a liquid. When the 
temperature is lowered by AT, the position of the solid-liquid interface is 
observed to move upwards a distance 1. Neglecting the thermal expansion 
of the solid, find an expression for the density p1 of the liquid in terms of the 
density ps of the solid, the latent heat L of the solid-liquid phase transition, 
g and the absolute temperature T and AT. 
Assume that AT/T << 1. 
(Prince ton) 

Soh t ion: 
The Clausius-Clapeyron equation gives 
do L L 
In the problem, dT = -AT, dp = -glp,. Hence 
1136 
(a) Use simple thermodynamic considerations to obtain a relation between 

--, the logarithmic rate of variation of melting point with 
change of pressure, the densities of the solid and liquid phases of the substance 
in question and the latent heat of melting. (You may find it convenient 
to relate the latent heat to the entropy change.) 
(b) Use simple hydrostatic considerations to relate the pressure gradient 
within the earth to the earth’s density and the acceleration of gravity. 
(Assume that the region in question is not at great depth below the surface.) 
(c) Combine the foregoing to calculate the rate of variation of the 
melting point of silicate rock with increasing depth below the earth’s surface 
1 dT, 
Tm dP 
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in a region where the average melting point of the rock is 1300°C. Assume 
a density ratio 
Pliquid/Psolid e 0.9 
and a latent heat of melting of 100 cal/g. Give your answer in degrees C 
per kilometer. 
(UC, Berkeley) 
Soh tion: 
(a) During the phase transtion, pr = pa, where 1 and 3 represent liquid 
phase and solid phase respectively. By thermodynamic relation 

dp = -SdT + VdP , 
we have (S1 - S,)dT, = (V, - Va)dP, so 

V, - Va v, - v, - - 1 dT, 
Tni dp Trn(Si - Sa) L 



Substituting V = l / p into the equation above, we get 
dP 
dz 
(b) Denote the depth as z, we have - = pg. 
(c) From the above results, we have 

= 37 x "C/cm = 3.7"C/km . 
1137 
The vapor pressure, in mm of Hg, of solid ammonia is given by the 
The vapor pressure, in mm of Hg, of liquid ammonia is given by the 
relation: lnp = 23.03 - 3754/T where T = absolute temperature. 
relation: lnp = 19.49 - 3063/T. 
(a) What is the temperature of the triple point? 
(b) Compute the latent heat of vaporization (boiling) at the triple 
point. Express your answer in cal/mole. (You may approximate the beThermcdymmica 
135 
havior of the vapor by treating it as an ideal gas, and may use the fact that 
the density of the vapor is negligibly small compared to that of the liquid.) 
(c) The latent heat of sublimation at the triple point is 7508 cal/mole. 
(UC, Berkeley) 
What is the latent heat of melting at the triple point? 
Solution: 
- 3754/To = 19.49 - 3063/TO, which gives TO = 195 K. 
(a) The temperature T of the triple point satisfies the equation 23.03 
(b) From the relation between the vapor pressure and temperature of 
liquid ammonia 

lnp = C - 3063/T , 
we get dp/dT = 3063p/T2. 
The Clausius-Clapeyron equation -dP = -L then gives 
dT TV 
L = 3063pV/T = 3063R = 2.54 x lo4 J/mol 

= 6037 cal/mol . 
(c) Denote S,,Sl and S, as the entropy for vapor, liquid and solid at 
triple point. Then the latent heat of vaporization is To(Sg - Sl), that of 
sublimation is To(S, - Sa), and that of melting is 
T(S1 - S8) = T ( S , - St) - T(Sg - 5’1) 

= 7508 - 6037 = 1471 cal/mol . 
1158 
The high temperature behavior of iron can be summarized as follows. 
(a) Below 900°C and above 140OOC a-iron is the stable phase. 
(b) Between these temperatures T-iron is stable. 
(c) The specific heat of each phase may be taken as constant: C, = 

0.775 J/g . K; C, = 0.690 J/g . K. 
What is the latent heat at each transition? 
(UC, Berkeley) 
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Solution: 
Referring to Fig. 1.37, we regard the whole process as isobaric. 
dS 
Choose the entropy at TI as zero for the a-phase. Since T- = C, 
dT 
one has 

S = C In T + const. : Sa = C, In , S, = S1 + C, In 
The changes in chemical potential are 



Since Ap' = Ap,, we have 
= 1.60 x J/g.K 
Therefore 

= (C, - C.,)T:! In (g) - SIT2 

= 23.7 J/g . 
S l 
Fig. 1.37. 
Thermodynamic a 137 
1139 
Liquid helium-4 has a normal boiling point of 4.2 K. However, at a 
pressure of 1 mm of mercury, it boils at 1.2 K. Estimate the average latent 
heat of vaporization of helium in this temperature range. 
(UC, Berkeley) 
Solution: 
state for ideal gas 
According to the Clausius-Clapeyron equation and the equation of 
L 
M- , pVg=RT, 
L 
dT T(Vg -Vl) TV, 
_dP -- 
and assuming L to be constant, we get 
L = R l n PPo/ ( & - $ ) . 
Therefore L = 93 J/mol. 
1140 
(a) The pressure-volume diagram shows two neighbouring isotherms in 
the region of a liquid-gas phase transition. By considering a Carnot cycle 

between temperatures T and T + dT in the region shown shaded in the 
diagram, derive the Clausius-Clapeyron equation relating vapor pressure 
and temperature, dp/dT = L/ (TAV) ,w here L is the latent heat of vaporization 
per mole and AV is the volume change between gas and liquid per 
mole. 
(b) Liquid helium boils at temperature TO = 4.2 K when its vapor 
pressure is equal to po = 1 atm. We now pump on the vapor and reduce 
the pressure to a much smaller value p. Assuming that the latent heat L 
is approximately independent of temperature and that the helium vapor 
density is much smaller than that of the liquid, calculate the approximate 
temperature T,,, of the liquid in equilibrium with its vapor at pressure 
p. Express your answer in terms of L, To, pol pm, and any other required 
constants. 
(CUSPEA) 
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Solution: 
(a) From the p - V diagram, we can see that the work done by the 
working material on the outside world is dW = dpAV in this infinitesimal 
Carnot cyce. The heat absorbed in the process is Q = L. The formula for 
dW dT 
the efficiency of a Carnot engine gives - = - L T' 
Thus -dP = -L dT TAV' 
(b) Since 
Hence 
Therefore 



TO 
L Prn 

Tm = ( 1+- RTOlnP0) 
I L 

Fig. 1.38. v 
1141 
When He3 melts the volume increases. The accompanying plot is a 
sketch of the He3 melting curve from 0.02 to 1.2 K. Make a sketch to 
show the change in entropy which accompanies melting in this temperature 
range. 
( wis c 0 nsin) 
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Fig. 1.39. 

Solution: 
From the Clausius-Clapeyron equation, we have 

d p AS and so AS = AV-d P . dT - AV’ dT 
When He3 melts, the volume increases, i.e., AV > 0. 

When 0.02 K< T < 0.32 K, because - < 0,AS < 0. 

When 0.32 K < T < 1.2 K, because - > 0,AS > 0. 

When T = 0.32 K, AS = 0. The results are shown in Fig. 1.39(b). 
dP 
dP 
dT 
dT 
1142 
The phase transition between the aromatic (a) and fragrant (f) phases 
of the liquid mythological-mercaptan is second order in the Ehrenfest scheme, 
that is, AV and AS are zero at all points along the transition line p,-f(T). 
Use the fact that AV = V,(T,p)-Vf(T,p) = 0, where V, and Vf are the 
molar volumes in phase a and phase f respectively, to derive the slope of the 
transition line, dp,-t(T)/dT, in terms of changes in the thermal expansion 
coefficient, a, and the isothermal compressibility, kT at the transition. 
(MIT) 
Solution: 
Along the transition line, one has 
Va(T1 P ) = &(TIP) 
Thus dV,(T,p) = dVf(T,p). 
Since 
140 
we have 
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or 
T 
Fig. 1.40. 
1143 
State Curie's law for the magnetization of a paramagnetic gas. Why 
does the magnetization depend on temperature? What modification of the 
law is necessary as T -+ O? 
( wis co nsin) 
Solution: 
Curie's law states that the magnetization of a paramagnetic substance 
in a magnetic field is inversely proportional to the absolute temperature: 
M = CH/T, where C is the Curie constant. As the temperature changes, 
so does the distribution of the directions of spins of the atoms and ions; 



thus the magnetization is dependent on T. 
At low temperatures the paramagnetic phase changes into the ferromagnetic 
phase. At this time, the external magnetic field B, produces a 
certain magnetization M, which in turn produces an exchange magnetic 

field BE = XM (A is a constant). From M = x(Ba + BE) = x(Ba + AM) 

and x = C/T (Curie's law), we have 

M C x = -B=,- T - Tc 
where TC = CX is the Curie temperature. 
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1144 
A substance is found to have two phases, N and S. In the normal state, 
the N phase, the magnetization M is negligible. At a fixed temperature 
T < T,, as the external magnetic field H is lowered below the critical field 

Hc(T) = Ho [l- (31 , 
the normal state undergoes a phase transition to a new state, the S phase. 
In the S state, it is found that B = 0 inside the material. The phase 
diagram is shown below. 
(a) Show that the difference in Gibbs free energies (in cgs units) between 

the two phases at temperature T < T, is given by 

1 Gs(T,H) - GN(T,H) = K[H' - H:(T)] . 
(You may express your answer in another system of units. The Gibbs 
free energy in a magnetic field is given by G = U - TS - HM.) 
(b) At H I: Ho, compute the latent heat of transition L from the N 
to the S phase. (Hint: one approach is to consider a "Clausius-Clapeyron" 
type of analysis.) 
(c) At H = 0, compute the discontinuity in the specific heat as the 
material transforms from the N to the S phase. 
(d) Is the phase transition first or second order at H = O? 
(UC, Berkeley) 
H 
L 

A/ nhnca 

Ho h G 

( T :const < T, I 
Fig. 1.41. Fig. 1.42 

Solution: 
(a) Differentiating the expression for Gibbs free energy, we find .dG = 

-SdT - MdH, where B = H + 47rM in cgs units. Referring to Fig. 1.42, 
we have 
N phase: M = 0, GN = Go(T), 
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S phase: B = 0, M = -H/4a. 
Integrating dG = -MdH, we obtain 

Gs = H2/87r + const 

Noting that Gs (H,, 7') = Go(T) at the transition point, we have 
1 
871. 



Gs = Go(T) + - ( H 2 - H:) . 
It follows that 

Gs - GN = -1(H 2 2 - H,) . a71. 

(b) Since s=-(g) H , 

we have 
a2Hc 

= 4a [ ( s)2 + H, ( aii)] 

- -H; -T [3 (f)2 - 11 - 

2a T," 
When H = 0, Cs - CN = H;/aT, 
(d) At H = 0, L = 0, Cs - CN # 0, therefore the phase transition is 
second order. 
1145 
The phase boundary between the superconducting and normal phases 
of a metal in the He - T plane (He = magnitude of applied external field) 
is given by Fig. 1.43. 
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The relevant thermodynamic parameters are T,p, and He. Phase equilibrium 
requires the generalized Gibbs potential G (including magnetic 
paramters) to be equal on either side of the curve. Consider state A in 
the normal phase and A' in the superconducting phase; each lies on the 
phase boundary curve and has the same T, p and He but different entropies 
and magnetizations. Consider two other states B and B' arbitrarily close 
to A and A'; as indicated by PA = p g . 
(a) Use this information to derive a Clapeyron-Clausius relation (that 
is, a relation between the latent heat of transition and the slope dHe/dT 
of the curve). What is the latent heat at either end of the curve? (For a 
long rod-shaped superconducting sample with volume V oriented parallel 
to the field, the induced magnetic moment is given by Mfi = -VHe/4r; in 
the normal state, set MH = 0.) 
(b) What is the difference in specific heats at constant field and pressure 
(Cp , ~ ,fo)r the two phases? What is the discontinuity in C p , ~act 
H,=O,T=T,? AtT=O,H,=H,? 
(Prince ton) 
Solution: 
Fig. 1.43. 

(a) dG = -SdT + Vdp - MHdH,. 
The condition of phase equilibrium is 
Thus dG = dG'. 
With dp = 0, one obtains for the superconducting sample 
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where L = T(S - S') is the latent heat of phase transition. At the two ends 
of the curve: He(T,) = 0 at T = T, gives L = 0; dHe/dT = 0 at T = 0 
gives L = 0 also. 
(b) From the above equation, we have 



S' - s = -VH, . -dH, 
41r dT * 

As C = T(dS/dT) 
At T = T,; He = 0, we have 
At T = 0, He = H,, we have 

A C = -VHT, [ F ]d 2H, = o 
47r T = O 

1146 
A simple theory of the thermodynamics of a ferromagnet uses the free 
energy F written as a function of the magnetization M in the following 

form: F = -HM + FO + A(T - Tc)M2 + BM4, where H is the magnetic 

field, Fo, A, B are positive constants, T is the temperature and T, is the 
critical temperature. 
(a) What condition on the free energy F determines the thermody- 

(b) Determine the equilibrium value of M for T > T, and sketch a 
(c) Comment on the physical significance of the temperature depennamically 
most probable value of the magnetization M in equilibrium? 
graph of M versus T for small constant H. 
dence of M as T gets close to T, for small H in case (b). 

( Wisconsin) 
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Solution: 
According to the problem F denotes the Gibbs function. 
(a) F = minimum is the condition to determine the most probable 
value of M in equilibrium. Thus M is determined from ( ~ F / ~ M ) T=, 0H. 

(b) ( ~ F / ~ M ) T=, -HH + 2A(T - Tc)M+ 4BM3 = 0. (*) 
If 2A(T - T,)M >> 4BM3, that is, if T is far from T,, we have 
H 
2A(T - T,) ' 

M = 
This is the Curie-Weiss law. The change of M with T is shown in 
Fig. 1.44. 
(c) If H = 0, the equation (*) has solutions 

M = 0 , M = i J A ( T , - T ) / 2 B . 
For stability consider 

(%) = ZA(T - T,) + 12BM2 . T,H 

When T > T,, the only real solution, M = 0, is stable; 
'C 

Fig. 1.44 

when T < T,, the M = 0 solution is unstable, while the 
when T = T,,M = 0, T, is the point of phase transition of the second 
order. (If T > T,, the substance is paramagnetic; if T < T,, the substance 
is ferromagnetic.) 

If H # 0, (*) requires M # 0. Then as long as M2 > A(Tc - T.)/6B, 
the system is stable. When T + TC,2A(T - T,)M << 4BM2, and (*) 
has the solution M = (H/4B):. Thus T, is the point of first-order phase 
transition. 
M = i J A ( T c - T)/ZB solution is stable; 
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1147 



In the absence of external magnetic fields a certain substance is superconducting 
for temperatures T < TO. In the presence of a uniform field B 
and for T < Td, the system can exist in two thermodynamic phases: 
For B < B,(T), it is in the superconducting phase and in this phase 
the magnetization per unit volume is 
(Superconducting phase) M = -B/4s. 
For B > B,(T), the system is in the normal phase and here (Normal 
phase) M = 0. 
The two phases can coexist in equilibrium along the curve B = B,(T) 
in the B - T plane. 
Evidently there is a discontinuity in magnetization across the coexistence 
curve. There is also a discontinuity in entropy. Let SN(T) and 
Ss(T) be the entropies per unit volume respectively for the normal and 
superconducting phases along the coexistence curve. Given that B,(T) = 

Bo 1 - - , compute A S = SN( T )- Ss (T)a s a function of T and the 
other parameters. 
( CUSPEA) 

( 3 
Solution: 
Comparing this magnetic system with a p-V system, we have -B -+ P 
and M -+ V. From the Clausius-Clapeyron equation of the p - V system, 
dp AS 
dT - AV ' 
-- - 
we have for the magnetic system, on the line of two-phase coexistence, 
-dB= - -AS 
dT AM a 

where A S = SN - Ss,A M = MN - Ms = B/4s. 
Therefore 
2s T: 
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5. NONEQUILIBRIUM THERMODYNAMICS (1148-1159) 
1148 
A tube of length L contains a solution with sugar concentration at 
time t = 0 given by 
7rx 1 3TX 1 

n(z, 0) = n o + n1 cos - + - cos - + - cos - { L 9 L 2 5 L 
Assume that n(x, t) obeys a one-dimensional diffusion equation with 
(a) Write down the diffusion equation for n(z, t). 
(b) Calculate n(x, t) for t > 0. 
diffusion constant D. 
(MITI 
0 L 
Fig. 1.45. 
Solution: 
(a) The diffusion equation is 
and the condition for existence of solutions are 
(b) Let n(z, t) = X ( z ) T ( t ) . We then have 

X"(2) + XX(2) = 0, 



T'(t) + DXT(t) = 0, with X # 0 and X'(0) = X'(L) = 0 . 

The conditions require X = ( ICT/L)k~ ,= 1 , 2 , 3 , .. . . The general solution 
is 
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The coefficients ck are obtained from the given concentration at t = 0, n(z, 0) 
Hence 
1149 
(a) With neglect of viscosity and heat conductivity, small disturbances 
in a fluid propagate as undamped sound waves. Given the relation p = 
p(p,S), where p is pressure, p is the mass density, S is the entropy, derive 
an expression for the sound wave speed v. 
(b) As an example of such a fluid, consider a system of identical, noninteracting 
spin 1/2 particles of mass m at the absolute zero of temperature. 
The number density is n. Compute the sound speed t~ in such a system. 
(Princeton) 
(a) The equations of continuity and momentum in a fluid are respec- 
Solution: 
tively 
aP 

- + v ’ (pv) = 0 , at 

a -(pv) + ( v . V)(pv) + VP = 0 

a t 
For a fluid at rest, v = 0, p = PO, p = PO, Consider small disturbances, 

the corresponding quantities are v = v’,p = po + p’, p = po + p‘. We 
substitute them into the equations above, taking into consideration only 
first-order terms, and obtain 

a P’ 

- + pov .v‘ = 0 , a t 

av’ 
P o -a+t+ p ’=o . 
Hence 

-P p-’ - V2p’ = v2 [ (2) PI] = (2) . V2P‘ 

at2 S 
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Compare it with wave equation = v2V2p', we have v2 = (EL ~ 

a2 
at2 

(Note: An assumption has been made here that the pressing of the fluid 
created by the disturbances is adiabatic for which S = const. Generally 
speaking, such approximation is reasonable as the heat conductivity is negligible.) 
(b) At T = 0 K, for a system of spin 1/2 Fermioii gas we have 
2 NPo 
P = i v 
1150 
Gas, in equilibrium at pressure po and mass density PO, is confined to 
a cylinder of length L and cross sectional area A. The right hand end of 
the cylinder is closed and fixed. At the left hand end there is a frictionless 
and massless movable piston. In equilibrium the external force that 
must be exerted on the piston is of course fo = poA. However, suppose 



a small additional force is supplied by an external agency: the harmonic 
force f ( t ) = fo cos(wt). This produces small motions of the piston and thus 
small amplitude disturbances in the gas. Let c be the speed of sound in the 
gas; neglect viscosity. Let v ( t ) be the velocity of the piston. Compute v ( t ) . 

(CUSPEA) 
piston 
/ 

. ,.* . . *. . . . . . X 

-LFig. 
1.4F. 

Solution: 
whose origin is the equilibrium point (as shown in Fig. 1.46). 
Consider the gas as an ideal fluid. We choose a coordinate system 
Let the 
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velocity of the macroscope motion of the gas be u(x, t) and the pressure 
of the gas be p(x, t). Because the displacement of the piston is very small, 

we can solve u(z, t) and p(x, t ) approximately in the region 0 5 x 5 L 
and consider u ( 0 , t ) . The boundary conditions are p ( 0 , t ) = f ( t ) / A and 
u(L, t) = 0. As f ( t ) is a sinusoidal function of t and the frequency is w, the 
resulting u ( z , t) and p(z, t ) must be waves of frequency w and wave vector 
k = w/c. In fact, u(z, t) and p(z, t) both satisfy the wave equation with 
propagating velocity c. We can write 

f(g) = Refoexp(iwt) , 
p = Re$(z) exp(iwt) , 
u = Reij(z) exp(iwt) . 
Thus, to satisfy the boundary condition of p , we have 

$(x) = -fo cos(kz) + Xsin(ks) , A 
where X is to be determined. 
equation 
On the other hand, the macroscope motion of fluid satisfies the Euler 

au ap 
Po- at = --ax 
where po is the average density, u is the velocity and p is the pressure. Then 

G( x ) = -i(k-p osinkx+Xcoskz), where po = -f.o 
WPO A 
Using the boundary condition u(L) = 0, we have 

X = po tan(kL) . 
Thus 
ik % P O WL 

c(x = 0) = -PO tan kL = -- tan - . WP3 c PO C 

~ ( t=) R e(6(0)eiwt)= - (“tan C 
CPO 

Thermoddynamics 151 
1151 
Under normal conditions the temperature of the atmosphere decreases 
steadily with altitude to a height of about 12 km (tropopause), above which 
the temperature rises steadily (stratosphere) to about 50 km. 
(a) What causes the temperature rise in the stratosphere? 
(b) The warm stratosphere completely surrounds the earth, above the 
cooler tropopause, maintained as a permanent state. Explain. 
(c) Sound waves emitted by a plane in the tropopause region will travel 



to great distances at these altitudes, with intensity decreasing, approximately, 
only as 1/R. Explain 
(Columbia) 
Solution: 
(a) The concentration of ozone in the stratosphere formed by the action 
of the sun's ultraviolet radiation on the oxygen of the air increases with 
altitutde. The ozone absorbs the sun's ultraviolet radiation and raises the 
temperature of surrounding air. 
(b) In the stratosphere, the ozone absorbs the ultraviolet radiation of 
the sun while the carbon dioxide COZ there radiates infrared radiation, 
resulting in an equilibrium of energy. 
(c) Sound waves tend to deflect towards the region of lower velocity 
of propagation, i.e., of lower temperature. In the tropopause, temperature 
increases for both higher and lower altitudes. Hence the sound waves there 
are confined to the top layer of the troposphere, spreading only laterally in 
1 
fan-shape propagation so that the intensity decreases approximately as - R 
1 

instead of I. 
R2 
1152 
Since variations of day and night in temperature are significantly 
damped at a depth of around 10 cm in granite, the thermal conductivity 
of granite is 5 x 
(Columbia) 

lo-', lo2, lo5) cal/s.cm°C. 
Solution: 
Assume that the temperature at the depth of 10 cm below the surface 
of granite is constant at 2'0°C. When the temperature is the highest in a 
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day, the temperature of the ground surface is assumed to be TI M To+lO°C. 
The intensity of the solar radiation on the ground is 

Q = 1400 W/m2 M 3.3 x calls. cm2 . 
Q is completely absorbed by the earth within the first 10 cm below surface. 
Then from the Fourier law of heat conduction, we obtain an estimate 
of the thermal conductivity of granite: 
Ax Ax 
AT TI - To 
K = Q . - = Q . - 
= 3.3 x lop2 x (10/10) = 3.3 x cal/s . cm . "C , 
If we take into account reflection of the radiation from the earth's surface, 
the value of K will be smaller than the above estimate. Therefore we must 

choose the answer 5 x calls . cm . "C. 
1153 
The heat transferred to and from a vertical surface, such as a window 
pane, by convection in the surrounding air has been found to be equal 
to 0 . 4 1~0 -4(At)5/4 cal/sec.cm2, where At is the temperature difference 
between the surface and the air. If the air temperature is 25OC on the 
inside of a room and -15OC on the outside, what is the temperature of 
the inner surface of a window pane in the room? The window pane has a 
thickness of 2 mm and a thermal conductivity of 2 x cal/sec. cm.OC. 
Heat transfer by radiation can be neglected. 
( Wisconsin) 
Solution: 
inner and outer surfaces to be respectively t1OC and t2'C. Thus we have 
We consider an area of 1 cm', and assume the temperatures of the 



1 
0.2 

0.4 x 1 0 - ~ ( +t ~ i q5l4= 2 x 1 0 -~x -(tl - t 2 ) 

= 0.4 x 10-4(25 - t1)5/4 
The solution is tl = 5OC. 
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The water at the surface of a lake and the air above it are in thermal 
equilibrium just above the freezing point. The air temperature suddenly 
drops by AT degrees. Find the thickness of the ice on the lake as a function 
of time in terms of the latent heat per unit volume L/V and the thermal 
conductivity A of the ice. Assume that AT is small enough that the specific 
heat of the ice may be neglected. 
(MITI 
Solution: 
Consider an arbitrary area AS on the surface of water and let h(t) be 
the thickness of ice. The water of volume ASdh under the ice gives out 
heat LASdhlV to the air during time dt and changes into ice. So we have 
L AT 
ASdh V- = A-AhS dt 
that is 

Hence h(t) = [ ~ $3 1’2. 

1155 
A sheet of ice 1 cm thick has frozen over a pond. The upper surface of 
the ice is at -20°C. 
(a) At what rate is the thickness of the sheet of ice increasing? 
(b) How long will it take for the sheet’s thickness to double? 
The thermal conductivity of ice K is 5~ 
heat of ice L is 80 cal/g. The mass density of water p is 1 g/cm3 
cal/cm. sec.OC. The latent 
(SUNY, BufluIo) 
Solution: 
(a) Let the rate at which the thickness of the sheet of ice increases be 

vl a point on the surface of ice be the origin of z-axis, and the thickness of 
ice be z. 
The heat current density propagating through the ice sheet is J’ = 
-K ___ and the heat released by water per unit time per unit area 
T - To 
z 
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dz dz dz 
dt dt dt 
is pL-. Hence we obtain the equation pL- = - j , giving q = - = 

- j / p L = n(T - T o ) / p L z . 
(b) The above expression can be written as 
dt = pL zdz. 
n(T - To) 
t = p L ( ~-i z f ) /2n(T- To) . 
If we take z1 = 1 cm and 22 = 2 cm, then At = 1.2 x lo3 s = 20 min. 
1156 
Consider a spherical black asteroid (made of rock) which has been 
ejected from the solar system, so that the radiation from the sun no longer 



has a significant effect on the temperature of the asteroid. Radioactive elements 
produce heat uniformly inside the asteroid at a rate of q = 3 x 
cal/g.sec. The density of the rock is p = 3.5 g/cm3, and the thermal conductivity 
is k = 5 x The radius of the asteroid is 
R = 100 km. Determine the central temperature T, and the surface temperature 
T,, of the asteroid assuming that a steady state has been achieved. 
(UC, Berkeley) 
cal/deg.cmsec. 
Solution: 
The surface temperature satisfies 
4rR3 
4rR20T,4 = Q = -3 P Q 1 

80 

T, = (z)' = 22.5 K . 

The equation of heat conduction inside the asteroid is 

V .( -kVT) = Qp . 
Using spherical coordinates, we have 
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and so 
The central temperature is 
T --9RP 2 + T S = 3 7 2 K . 
- 6k 
1157 
Let H be the flow of heat per unit time per unit area normal to the 
isothermal surface through a point P of the body. Assunze the experimental 
fact 
H=-kVT, 
where T is the temperature and k is the coefficient of thermal conductivity. 
Finally the thermal energy absorbed per unit volume is given by cpT, where 
c is the specific heat and p is the density. 
(a) Make an analogy between the thermal quantities HI k, T, c, p and 
(b) Using the results of (a) find the heat conduction equation. 
(c) A pipe of inner radius rl, outer radius r2 and constant thermal 
conductivity k is maintained at an inner temperature TI and outer temperature 
T2. For a length of pipe L find the rate the heat is lost and the 
temperature between rl and r2 (steady state). 
the corresponding quantities El J, V, p of steady currents. 
(SVNY, Bufiulo) 
Solution: 
(a) By comparison with Ohm's law J = aE = -0 grad V(V is voltage) 

and conservation law of charge dp/at = -V . J, we obtain the analogy 
cpT u p;H J; grad T grad V ; k tl u. 
(b) By the above analogy and charge conservation law, we have 

cp- = -grad. (-k grad T )= kV2T . aT 
at 
Then the heat conduction equation is 
aT k 
_ _ _ -V2T = 0 . 
at pc 
156 Problems €4 Sdutiom on Thermodynam'ca €4 Statistical Mechanics 

(c) When equilibrium is reached, aT/dt = 0; hence V2T = 0. 



The boundary conditions are T(r1) = TI and T(r2) = T2. 
Choosing the cylindrical coordinate system and solving the Laplace 
equation, we obtain the temperature between rl and 7-2: 

1 T(r) = -rl In - 
r2 

r 
r2 

TI In - - T2 In - 
we obtain the rate at which the heat is lost: 
7-2 

rl 

q = 2wLH = 27rk(T1 - T2)L/ln - . 
1158 

A uniform non-metallic annular cylinder of inner radius rl , outer radius 
r2, length lo is maintained with its inner surface at 100°C and its outer 
surface at 0°C. 
(a) What is the temperature distribution inside? 
(b) If it is then placed in a thermally insulated chamber of negligible 
heat capacity and allowed to come to temperature equilibrium, will its 

entropy increase , decrease or remain the same? Justify your answer. 

( Wisconsin) 
Fig. 1.47. 
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Solution: 
(a) Because the material is uniform, we can assume the heat conductivity 
is uniform too. According to the formulas dQ = -k(dT/dr)sdt and 
s = 27rlor, we have 

dQ/dt = -27rlorkdT/dr . 
Since dQ/dt is independent of r, we require dT/dr = A/r, where A is a 

constant. Then T(r) = Alnr + B. 
F'rom the boundary conditions, we have 
T2-T1, 
In -r2 In -r2 

rl rl 
A=- - - - B = TI In r2 - T2 In r l 3 

where TI = 373 K and T2 = 273 K, so that 
1 

T(r) = In rl - In r2 [(TI - T2) In r + T2 In rl - TI In r2] 

(b) This is an irreversible adiabatic process, so that the entropy increase 
s. 
1159 
When there is heat flow in a heat conducting material, there is an 
increase in entropy. Find the local rate of entropy generation per unit volume 
in a heat conductor of given heat conductivity and given temperature 
gradient. 
(UC, Berkeley) 
Solution: 
then du = TdS. The heat conduction equation is 
If we neglect volume expansion inside the heat conducting material, 

duldt + V .q = 0 . 
Hence 

dS/dt = -V . q/T = -V . (q/T) + 9. V(l/T) , 



where q/T is the entropy flow, and 9. V (i) is the irreversible entropy 

increase due to the inhomogeneous temperature distribution. Thus, the 
local rate of entropy generation per unit volume is 
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According to Fourier's heat conduction law, q = -kVT, the above 
gives 
2 

S=k(y.) 

PART I1 
STATISTICAL PHYSICS 
 
1. PROBABILITY AND STATISTICAL ENTROPY (2001-2013) 
2001 
A classical harmonic oscillator of mass m and spring constant k is 
known to have a total energy of E, but its starting time is completely 
unknown. Find the probability density function, p(x), where p(z)ds is the 
probability that the mass would be found in the interval dx at x. 
(MITI 
Solution: 
From energy conservation, we have 
where 1 is the oscillating amplitude. So the period is 
Therefore we have 
p(z)dz = - = - 
2002 
Suppose there are two kinds of E. coli (bacteria), “red” ones and 
“green” ones. Each reproduces faithfully (no sex) by splitting into half, 
red-+red+red or green+green+green, with a reproduction time of 1 hour. 
Other than the markers “red” and “green”, there are no differences between 
them. A colony of 5,000 “red” and 5,000 “green” E. coli is allowed 
to eat and reproduce. In order to keep the colony size down, a predator 
is introduced which keeps the colony size at 10,000 by eating (at random) 
bacteria. 
(a) After a very long time, what is the probability distribution of the 
number of red bacteria? 
161 
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(b) About how long must one wait for this answer to be true? 
(c) What would be the effect of a 1% preference of the predator for 
eating red bacteria on (a) and (b)? 
(Princeton) 
Solution: 
(a) After a sufficiently long time, the bacteria will amount to a huge 
number N >> 10,000 without the existence of a predator. That the 
predator eats bacteria at random is mathematically equivalent to selecting 
n = 10,000 bacteria out of N bacteria as survivors. N ,> n means that 
in every selection the probabilities of surviving “red” and “green” E. coli 
are the same. There are 2n ways of selection, and there are Cg ways to 
survive m “red” ones. Therefore the probability distribution of the number 
of “red” E. coli is 
1 1 fl! 



-C” = - . , m=0,1, ..., n 
2n 2n m!(n - m)! 

(b) We require N >> n. In practice it suffices to have N/n = lo2. As 

N = 2tn,t = 6 to 7 hours would be sufficient. 
(c) If the probability of eating red bacteria is 

eating green is (i - p ) , the result in (a) becomes 

c: (;+?I)” (;-P)n-m 

--n! n-m -- 

m!(n - m)! 

The result in (b) is unchanged. 
200s 
(a) What are the reduced density matrices in position and momentum 
(b) Let us denote the reduced density matrix in momentum space by 
spaces? 
q5(pl, pz). Show that if q5 is diagonal, that is, 
d4Pl)PZ) = f ( P l ) L m > 
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then the diagonal elements of the position density matrix are constant. 
(SUNY, Buflalo) 
Solution: 
(a) The reduced density matrices are matrix expressions of density 
operator $(t) in an orthogonal complete set of singlet states, where the 
density operator $(t) is defined such that the expectation value of an arbitrary 

operator 6 is (6) = tr[b$(t)]. We know that an orthogonal complete 
set of singlet states in position space is {Ir)}, from which we can obtain 
the reduced density matrix in position space (r’l;(t)lr). Similarly, the reduced 
density matrix in momentum space is (p’($(t)(pw)h, ere {(p))i s an 
orthogonal complete set of singlet states in momentum space. 
P’ P 
P 

1 
V 
Then the diagonal elements (rI$(t)lr) = --Cpf(p) are obviously constant. 
2004 
(a) Consider a large number of N localized particles in an external 
magnetic field H. Each particle has spin 1/2. Find the number of states 
accessible to the system as a function of M,, the z-component of the total 
spin of the system. Determine the value of M, for which the number of 
states is maximum. 
(b) Define the absolute zero of the thermodynamic temperature. Explain 
the meaning of negative absolute temperature, and give a concrete 
example to show how the negative absolute temperature can be reached. 
(SUNY, Buflalo) 
Solution: 
(a) The spin of a particle has two possible orientations 1/2 and -1/2. 
Let the number of particles with spin 1/2 whose direction is along H be 
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NT and the number of particles with spin -1/2 whose direction is opposite 
to H be Ni; then the component of the total spin in the direction of H is 

M, = -(NT - NL). By NT + Ni = N , we can obtain Nt = - + M, and 

Ni = - - M,. The number of states of the system is 
1 N 



2 2 
N 
2 
Using Stirling’s formula, one obtains 
N! 
Nt !N L! In Q = In ___ 

BY a In Q 

- = - I n N t + I n ( N - N t ) = O , a Nt 
N 
2 

we get NT = -, i.e., M, = 0 when the number of states of the system is 
maximum. 
(b) See Question 2009. 
2005 
There is an one-dimensional lattice with lattice constant a as shown 
in Fig. 2.1. An atom transits from a site to a nearest-neighbor site every 
7 seconds. The probabilities of transiting to the right and left are p and 
q = 1 - p respectively. 
Fig. 2.1. 
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(a) Calculate the average position Z of the atom at the time t = NT, 
(b) Calculate the mean-square value (z - %)2 at the time t. 
where N >> 1; 
(MITI 
Solution: 
the z-axis directing to the right. We have 
(a) Choose the initial position of the atom as the origin z = 0, with 
(2n - N)apnqN-n 
N N ! 
- 

= 1 n!(N - n)! 

= 2aPG( n ! (NN -! n) !p n q N P n ) - N a 
n=O 

a N 

n=O a 
a P 

= 2ap-(p + q)N - Na = Na(p - q) . 
2006 
(a) Give the definition of entropy in statistical physics. 
(b) Give a general argument to explain why and under what circumstances 
the entropy of an isolated system A will remain constant, or increase. 
For convenience you may assume that A can be divided into subsystems 
B and C which are in weak contact with each other, but which 
themselves remain in internal thermodynamic equilibrium. 
(UC, Berkeley) 
Solution: 
(a) S = klnfl, where Ic is Boltzmann's constant and fl is the total 
number of microscopic states of the given macroscopic state. 
(b) Assume that the temperatures of the two subsystems are TB and 
Tc respectively, and that TB 2 Tc. According to the definition of entropy, 
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if there is a small energy exchange A > 0 between them (from B to C), 
then 
When TB > Tc, there is no thermal equilibrium between the subsystems, 
and AS > 0; 

When To = T,, i.e., the two subsystems are in equilibrium, AS = 0. 
2007 
Give Boltzmann’s statistical definition of entropy and present its physical 
meaning briefly but clearly. A two-level system of N = nl +n2 particles 
is distributed among two eigenstates 1 and 2 with eigenenergies El and E2 
respectively. The system is in contact with a heat reservoir at temperature 
T. If a single quantum emission into the reservoir occurs, population 

changes n2 --+ n2 - 1 and n1 -+ nl+ 1 take place in the system. For nl >> 1 

and n2 >> 1, obtain the expression for the entropy change of 
(a) the two level system, and of 
(b) the reservoir, and finally 
(c) from (a) and (b) derive the Boltzmann relation for the ratio nl/nz. 

(UC, Berkeley) 
Solution: 
Physically entropy is a measurement of the disorder of a system. 
S = k In R, where R is the number of microscopic states of the system. 
(a) The entropy change of the two-level system is 
N! N! 
ASl = kln - lcln - 

(n2 - l ) ! ( n l+ I)! nl!n2! 
n2 n2 

= kln ~ kln - 

nl + 1 nl 

(b) The entropy change of the reservoir is 
Statistical Physica 167 

(c) From AS, + AS, = 0, we have 

-n2 = exp (- E2 k-T El ) . 
nl 
2008 
Consider a system composed of a very large number N of distinguishable 
atoms, non-moving and mutually non-interacting, each of which has 
only two (non-degenerate) energy levels: 0,s > 0. Let E/N be the mean 
energy per atom in the limit N -+ 00. 

(a) What is the maximum possible value of E/N if the system is not 
necessarily in thermodynamic equilibrium? What is the maximum attainable 
value of E/N if the system is in equilibrium (at positive temperature, 
of course)? 
(b) For thermodynamic equilibrium, compute the entropy per atom, 
(Prince ton) 

SIN, as a function of E/N. 
Solution: 
(a) If the system is not necesssarily in thermodynamic equilibrium, 
the maximum possible value of E/N is E; and if the system is in equilibrium 
(at positive temperature), the maximum possible value of E/N is s/2 

corresponding to T + co. 
(b) When the mean energy per atom is E / N , E / s particles are on the 



level of energy E and the microscopic state number is 

N! Q= (f)! ( N - :)! * 

So the entropy of the system is 
N! 

S = kln- (f)! ( N - f)! ' 
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If E/& >> 1, N - E/& >> 1, we have 
N 
r 1 

= k ICE\. -In-+ "E" ( 1-- :E) ln- ' E l ' 

1-- EN 
2009 
Consider a system of N non-interacting particles, each fixed in position 
and carrying a magnetic moment p, which is immersed in a magnetic field 
H. Each particle may then exist in one of the two energy states E = 0 or 
E = 2pH. Treat the particles as distinguishable. 
(a) The entropy, S, of the system can be written in the form S = 
klnR(E), where k is the Boltzmann constant and E is the total system 
energy. Explain the meaning of R(E). 
(b) Write a formula for S(n), where n is the number of particles in the 
upper state. Crudely sketch S(n). 
(c) Derive Stirling's approximation for large n: 
Inn! = nlnn - n 
by approximating In n! by an integral. 
(d) Rewrite the result of (b) using the result of (c). Find the value of 
(e) Treating E as continuous, show that this system can have negative 
(f) Why is negative temperature possible here but not for a gas in a 
(CUSPEA) 
(a) R(E) is the number of all the possible microscopic states of the 
n for which S(n) is maximum. 
absolute temperature. 
box? 
Solution: 
system when its energy is E, where 
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(b) As the particles are distinguishable, 
N! 
= n!(N - n)! * 

N! 
n!(N - n)! 
Hence S = lcln 
We note that S(n = 0) = S(n = N) = 0, and we expect S,,, to appear 

= S(n) . 
at n = N/2 (to be proved in (d) below). The graph of S(n) is shown in 
Fig. 2.2. 
n 

(c) Inn! = C 1nm M lnzdz = n l n n - n + 1 M n l n n - n, (for 
m= 1 



large n). 
S N n 
(d) k m N l n - - n l n - 
N - n N - n 
dS 
- = 0 gives 
dn 
n 

1 - I n n - - + ln(N - n) = 0 -_N . 
N - n N - n 
Therefore, S = S,,,,, when n = N/2. 
N/2 N 
Fig. 2.2. 

1 1 as (e) As E = nc, S = S,,,,, when E = -NE. When E > -NE, - < 0 

2 2 aE 
1 dS 
T dE’ 

(see Fig. 2.2). Because - = - we have T < 0 when E > N E / ~ . 
(f) The reason is that here the energy level of a single particle has an 
upper limit. For a gas system, the energy level of a single particle does not 
have an upper limit, and the entropy is an increasing function of E; hence 
negative temperature cannot occur. 
From the point of view of energy, we can say that a system with negative 
temperature is “hotter” than any system with a positive temperature. 
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2010 
A solid contains N magnetic atoms having spin 1/2. At sufficiently 
high temperatures each spin is completely randomly oriented. At sufficiently 
low temperatures all the spins become oriented along the same direction 
(i.e., Ferromagnetic). Let us approximate the heat capacity as a 
function of temperature T by 

C( T )= [ c1 (%- 1) i fTL/ 2< T < TI 

l o otherwise , 
where TI is a constant. Find the maximum value c1 of the specific heat 
(use entropy considerations). 
(UC, Berkeley) 
Solution: 
dS 
dT 

From C = T - , we have 

S(o0)- S(0) = l-- dT = c l ( 1 - ln2) . 
On the other hand, we have from the definition of entropy S(0) = 0, S(o0) = 
Nk In 2, hence 
Nkln2 
1 - I n 2 
c1=-. 
2011 
The elasticity of a rubber band can be described in terms of a onedimensional 
model of polymer involving N molecules linked together endto- 
end. The angle between successive links is equally likely to be 0' or 
180'. 



(a) Show that the number of arrangements that give an overall length 
of L = 2md is given by 
2 N! 

g(N,m) = , where m is positive (; + (; - m)! 
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Indicate clearly the reasoning you used to get this result. 
(b) For m << N, this expression becomes 

g(N, m) w g(N, 0) exp(-2m2/N) . 
Find the entropy of the system as a function of L for N >> 1, L < Nd. 
(c) Find the force required to maintain the length L for L << Nd. 
(d) Find the relationship between the force and the length, without 
using the condition in (c), i.e., for any possible value of L, but N >> 1. 
(UC, Berkeley) 
N molecules 
[ N = constant ) 

d = length of one link 

___a 
Fig. 2.3. 

Solution: 
angle then 
N+ - N- = 2m, 
Therefore N N 
N + = - + m , N - = - - m . 
2 
(a) Assume that there are N+ links of 0' angle and N- links of 180' 

N+ + N- = N . 
This corresponds to N!/(N+!N-$ arrangements. Note that for every 
arrangement if the angles are reversed, we still get the overall length of 
2md. Thus 
2N! 
g = (;+m)!(;-m)! 
(b) When m << N, g(N, m) w g(N, 0) exp(-2m2/N), the entropy of 
the system becomes 
kL2 

S = klng(N,m) = kIng(N,O) - 2 ~ d 2. 

(c) From the thermodynamic relations dU = TdS + fdL and F = 
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U - TS we obtain dF = -SdT + fdL. Therefore (g),= - (g )T= NkdL2 , 
kTL 
Nd2+' 
f=- 

As f = 0 when L = 0, 
f=- kTL 
Nd2 ' 
(d) Consider only one link. When an external force f is exerted, the 
probability that the angle is 0' or 180' is proportional to ea or ePa respectively, 
where a = fd/lcT. The average length per link is therefore 
The overall length of the polymer is then 



L = Ni = Ndtanh(fd/kT) . 
2012 
Consider a one-dimensional chain consisting of n >> 1 segments as illustrated 
in the figure. Let the length of each segment be a when the long 
dimension of the segment is parallel to the chain and zero when the segment 
is vertical (i.e., long dimension normal to the chain direction). Each 
segment has just two states, a horizontal orientation and a vertical orientation, 
and each of these states is not degenerate. The distance between the 
chain ends is nx. 
(a) Find the entropy of the chain as a function of x. 
(b) Obtain a relation between the temperature T of the chain and the 
tension F which is necessary to maintain the distance nz, assuming the 
joints turn freely. 
(c) Under which conditions does your answer lead to Hook's law? 
(Princeton) 
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nx 
Fig. 2.4. 

Solution: 
parallel to the chain; so the microscopic state number is 
(a) When the length of the chain is nz, there are rn = nx/a segments 
n! 
m!(n - m)! 

n=c" = in 

We have 
S = k l n n 
n! 
= kln 
(:n>! ( n - En)! * 

(b) Under the action of stress F, the energy difference between the 
vertical and parallel states of a segment is Fa. The mean length of a 
segment is 
aeFalkT 

1 + eFa/kT 

I = 
so that 
(c) At high temperatures, 

L = n x = n a ( a + a g ) , 
which is Hooke's Law. 
201s 
Consider an idealization of a crystal which has N lattice points and 
the same number of interstitial positions (places between the lattice points 
where atoms can reside). Let E be the energy necessary to remove an atom 
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from a lattice site to an interstitial position and let n be the number of 
atoms occupying interstitial sites in equilibrium. 
(a) What is the internal energy of the system? 
(b) What is the entropy S? Give an asymptotic formula valid when 
(c) In equilibrium at temperature T, how many such defects are there 
(Princeton) 
n>> I? 
in the solid, i.e., what is n? (Assume n >> 1.) 
Solution: 
(a) Let Uo be the internal energy when no atom occupies the interstitial 
sites. When n interstitial positions are occupied, the internal energy is then 



U = U o + n E . 
(b) There are C," ways of selecting n atoms from N lattice sites, and 
C," ways to place them to N interstitial sites; so the microscopic state 

number is n = ( C z ) 2 .H ence 
N! 
n!(N - n)! 
S = k l n n = 2kln 
When n >> 1 and (N - n) >> 1, we have ln(n!) = nlnn - n, so that 

S = 2k[N In N - n In n - (N - n) In(N - n)] . 
(c) With fixed temperature and volume, free energy is minimized at 

From F = Uo + nE - TS and a F / a n = 0, we have 
equilibrium. 
N 
,El 2 k T + 1 . n = 
2. MAXWELL-BOLTZMANN STATISTICS (2014-2062) 
2014 
(a) Explain Boltzmann statistics, Fermi statistics and Bose statistics, 
especially about their differences. How are they related to the indistinguishability 
of identical particles? 
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(b) Give as physical a discussi6n as you can, on why the distinction 
between the above three types of statistics becomes unimportant in the limit 
of high temperature (how high is high?). Do not merely quote formulas. 
(c) In what temperature range will quantum statistics have to be applied 
to a collection of neutrons spread out in a two-dimensional plane with 

the number of neutrons per unit area being - 1012/cm2? 

(SVNY, Buflafo) 
Solution: 
(a) Boltzmann statistics. For a localized system, the particles are distinguishable 
and the number of particles occupying a singlet quantum state 
is not limited. The average number of particles occupying energy level EL is 

al = w1 exp(-a - Pel) , 
where wl is the degeneracy of 2-th energy level. 
Fermi statistics. For a system composed of fermions, the particles are 
indistinguishable and obey Pauli's exclusion principle. The average number 
of particles occupying energy level €1 is 
Wl 

a1 = 

ea+l)tl + 1 * 

Bose statistics. For a system composed of bosons, the particles are 
indistinguishable and the number of particles occupying a singlet quantum 
state is not limited. The average number of particles occupying energy level 
EI is 
Wl a1 = ea+B#r - 1 ' 
(b) We see from (a) that when ea >> 1, or exp(-a) << 1, 
three types of statistics vanishes. 

, (n is the particle density), we see that 
2rmkT 
n2/3h2 

the above condition is satisfied when T >> -. So the distinction 
among the three types of statistics becomes unimportant in the limit of 
high temperatures. 
It can also be understood from a physical point of view. When ea >> 1, 



we have q / w l << 1, which shows that the average number of particles in 
27rmk 
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any quantum state is much less than 1. The reason is that the number 
of microstates available to the particles is very large, much larger than the 
total particle number. Hence the probability for two particles to occupy the 
same quantum state is very small and Pauli’s exclusion principle is satisfied 
naturally. As a result, the distinction between Fermi and Bose statistics 
vanishes. 
(c) The necessity of using quantum statistics arises from the following 
two points. One is the indistinguishability of particles and Pauli’s exclusion 

principle, because of which ePa = n (-) is not very much smaller 

than 1 (degenerate). The other is the quantization of energy levels, i.e., 
AEIkT, where AE is the spacing between energy levels, is not very much 
smaller than 1 (discrete). 
h2 
2.rrmkT 
For a two-dimensional neutron system, 
h2 - AE 
kT 2mkTLZ 
-- 

Taking L w 1 cm, we have T rn K. So the energy levels are quasicontinuous 
at ordinary temperatures. Hence the necessity of using quantum 
statistics is essentially determined by the strong-degeneracy condition 

e-a = n (-) h2 21 . 2~mkT 
Substituting the quantities into the above expression, we see that quantum 
statistics must be used when Ts1Ov2 K. 
2015 
(a) State the basic differences in the fundamental assumptions under- 
(b) Make a rough plot of the energy distribution function at two different 
temperatures for a system of free particles governed by MB statistics 
and one governed by FD statistics. Indicate which curve corresponds to 
the higher temperature. 
(c) Explain briefly the discrepancy between experimental values of the 
specific heat of a metal and the prediction of MB statistics. How did FD 
statistics overcome the difficulty? 
lying Maxwell-Boltzman (MB) and Fermi-Dirac (FD) statistics. 
( wzs co nsin) 
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Solution: 
tions: 
distinguished from one another. 
a quantum state. 
st at ist ics. 
(a) FD, as compared with MB, statistics has two additional assump- 
1) The principle of indistinguishability: identical particles cannot be 
2) Pauli’s exclusion principle: Not more than one particle can occupy 
In the limit of non-degeneracy, FD statistics gradually becomes MB 
(b) P ( E ) gives the number of particles in unit interval of energy or at 
energy level E. Figure 2.5 gives rough plots of the energy distributions ((a) 
MB, (b) FD). 
P ( & ) h - P ( E ) l ft& 



72 ’ T1 
I 

E &F 
(a) MB statistics (b) FD statistics 
Fig. 2.5. 

(c) According to MB statistics (or the principle of equipartition of 
energy), the contribution of an electron to the specific heat of a metal 
should be 1.5 K. This is not borne out by experiments, which shows that 
the contribution to specific heat of free electrons in metal can usually be 
neglected except for the case of very low temperatures. At low temperatures 
the contribution of electrons to the specific heat is proportional to the 
temperture 7’. FD statistics which incorporates Pauli’s exclusion principle 
can explain this result. 
2016 
State which statistics (classical Maxwell-Boltzmann; Fermi-Dirac; or 
Bose-Einstein) would be appropriate in these problems and explain why 
(semi-quantit atively) : 
(a) Density of He4 gas at room temperature and pressure. 
(b) Density of electrons in copper at room temperature. 
(c) Density of electrons and holes in semiconducting Ge at room tem- 
(VC, Berkeley) 
perature (Ge band-gap w 1 volt). 
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Solution: 
(a) Classical Maxwell-Boltzmann statistics is appropriate because 
h2 3/2 

nX 3 P x 3 x l o r 6 << 1 . =-.(-----) 
kT 21rmkT 
(b) Fermi-Dirac statistics is appropriate because electrons are Fermions 
and the Fermi energy of the electron gas in copper is about 1 eV which 
is equivalent to a high temperature of 104K. At room temperature (low 
temperature), the electron gas is highly degenerate. 
(c) Classical Maxwell-Boltzmann statistics is appropriate because at 
room temperature the electrons and holes do not have sufficient average 
energy to jump over the 1 eV band-gap in appreciable numbers. 
2017 
Show that X = exp(p/kT) = nVQ for an ideal gas, valid where X << 1; 
here p is the chemical potential, n is the gas density and 
VQ = (h’/21rmkT)~/~ 
is the quantum volume. Even if you cannot prove this, this result will be 
useful in other problems. 
(UC, Berkeley) 
Solution: 
In the approximation X << 1, Fermi-Dirac and Bose-Einstein statistics 
both tend to Maxwell-Boltzmann statistics: 
The density of states of an ideal gas (spin states excluded) is 
2lr 
h3 
D(+ = - ( 2 m ) 3 / 2 f i d e . 
Therefore, 
That is, X = nVQ. 
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2018 
A long, thin (i.e., needle-shaped) dust grain floats in a box filled with 



gas at a constant temperature T. On average, is the angular momentum 
vector nearly parallel to or perpendicular to the long axis of the grain? 
Explain. 
(MITI 
Solution: 
Let the long axis of the grain coincide with the z-axis. The shape of 
the grain indicates that the principal moments of inertia satisfy I, < I,, I,. 
When thermal equilibrium is reached, we have 
-1I #; = -1 I,w,2 = z1I ,W, 2 1 2 2 
1 /2 1 I2 

so that Iw,I = ($) Iw,I = (t ) lwyl . Therefore 

So the angular momentum vector is nearly perpendicular to the long axis 
of the grain. 
2019 
A cubically shaped vessel 20 cm on a side constains diatomic H2 gas at 
a temperature of 300 K. Each H2 molecule consists of two hydrogen atoms 

with mass of 1 . 6 6~1 0 - ’~g each, separated by - lop8 cm. Assume that 

the gas behaves like an ideal gas. Ignore the vibrational degree of freedom. 
(a) What is the average velocity of the molecules? 
(b) What is the average velocity of rotation of the molecules around an 
axis which is the perpendicular bisector of the line joining the two atoms 
(consider each atom as a point mass)? 
(c) Derive the values expected for the molar heat capacities C, and C, 
for such a gas. 
(Columbia) 
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Solution: 
have 
(a) The number of the translational degrees of freedom is 3. Thus we 

so w 0 = w 2 x 103 m/s. M 

(b) The number of the rotational degrees of freedom is 2. Hence 
1 2 

-IG2 = -kT , 
2 2 

. 1 where I = m . 2 = -mr2 is the moment of inertia of the molecules 
Ha, rn is the mass of the atom H and r is the distance between the two 
hydrogen atoms. Thus we get 

(;I2 2 

(c) The molar heat capacities are respectively 
5 
7 
C - - R = 2 1 J / m o l . K , 

C - -R = 29 J/mol. K . 
v - 2 
p - 2 
2020 
The circuit shown is in thermal equilibrium with its surroundings at 
a temperature T. Find the classical expression for the root mean square 
current through the inductor. 



(MIT) 
Fig. 2.6. 
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Solution: 
Fluctuations in the motion of free electrons in the conductor give rise 
to fluctuation currents. If the current passing through the inductor is I ( t ) , 

then the average energy of the inductor is w = - I 2 , where iz is the meansquare 

current. According to the principle of equipartition of energy, we 
L- 
2 
1 

have w = - kT. Hence 

2 
2021 
Energy probability. 
Find and make careful sketch of the probability density, p(E), for the 
energy E of a single atom in a classical non-interacting monatomic gas in 
thermal equilibrium. 
(MITI 
Solution: 
When the number of gas atoms is very large, we can represent the states 
of the system by a continuous distribution. When the system reaches thermal 
equilibrium, the probability of an atom having energy E is proportional 
to exp(-E/kT), where E = p2/2m, p being the momentum of the atom. 

So the probability of an atom lying between p and p + dp is 

Aexp(-p2/2mkT)d3p . 
From 

A 1 exp(-p2/2rnkT)d3p = 1 , 
A = ( 2 ~ m k T ) - ~. f ~ 
we obtain 
Therefore, 
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giving 
2022 
Suppose that the energy of a particle can be represented by the expression 
E(z) = az2 where z is a coordinate or momentum and can take 
on all values from -00 to $00. 

(a) Show that the average energy per particle for a system of such 

particles subject to Boltzmann statistics will be E = kT/2. 
(b) State the principle of equipartition of energy and discuss briefly its 
relation to the above calculation. 
Solution: 
its distribution function is 
(a) From Boltzmann statistics, 
( wis co ns in) 
whether z is position or momentum, 
So the average energy of a single particle is 
- 
E= 



+m L 
1 
= -kT. 
2 
Inserting E(z) = az2 in the above, we obtain 
(b) Principle of equipartition of energy: For a classical system of particle 
in thermal equilibrium at temperature T, the average energy of each 
degree of freedom of a particle is equal to -kT. 1 
2 
There is only one degree of freedom in this problem, so the average 
1 
2 
energy is -kT. 
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2023 
A system of two energy levels Eo and El is populated by N particles 
at temperature T. The particles populate the energy levels according to 
the classical distribution law. 
(a) Derive an expression for the average energy per particle. 
(b) Compute the average energy per particle vs the temperature as 
(c) Derive an expression for the specific heat of the system of N par- 
(d) Compute the specific heat in the limits T + 0 and T -+ 00. 

T + 0 and T + 00. 

ticles. 
( was co nsin) 
Solution: 
(a) The average energy of a particle is 
Assuming El > Eo > 0 and letting AE = El - Eo, we have 

EO + E1e-BAE 

1 + e-BAE 
U= 

(b) When T + 0, i.e., p = l / k T -+ 00, one has 

u M (EO + Ele-OAE)(l - e - o A E ) = Eo + AEe-BAE , 

When T -+ co, or p + 0, one has 

P 
4 
1 

u CJ -2 (Eo + El - PElAE) + El ) - - (AE) 2 . 
(c) The specific heat (per mole) is 
184 Problems d Solutions on Thermodynamics d Statisticd Mechanics 

When T -+ 00, 

CM-.R( %) 2 . 
4 
2024 
Consider a glass in which some fraction of its constituent atoms may 
occupy either of two slightly different positions giving rise to two energy 
levels A; > 0 and -A, for the ith atom. 
(a) If each participating atom has the same levels A and -A, calculate 
the contribution of these atoms to the heat capacity. (Ignore the usual 



Debye specific heat which will also be present in a real solid.) 
(b) If the glass has a random composition of such atoms so that all 
values of A, are equally likely up to some limiting value A0 > 0, find the 
behavior of the low temperature heat capacity, i.e., kT << Ao. (Definite 
integrals need not be evaluated provided they do not depend on any of the 
parameters.) 
(Princeton) 
Solution: 

(a) The mean energy per atom is Z = A tanh (&). Its contribution 

to the specific heat is 
1 d? 2 

c, = - = 4k (&) dT (eA/kT + e - A / k T ) 2 

Summing up the terms for all such atoms, we have 
1 2 

cv = 4Nk (&) . (eA/kT + e - A / k T ) 2 ' 

(b) The contribution to the specific heat of the ith atom is 
1 2 

ci = 4k (2) (eA,/kT + e - A , / k T ) 2 * 

When kT << A,, we have 
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Summing up the terms for all such atoms, we have 
where p(A) is the state density of distribution of A;. 
2025 
The three lowest energy levels of a certain molecule are El = 0, Ez = 
E , E3 = 1 0 ~ .S how that at sufficiently low temperatures (how low?) only 
levels El, E2 are populated. Find the average energy E of the molecule at 
temperature T. Find the contributions of these levels to the specific heat 
per mole, C,, and sketch C, as a function of T. 
( Wisconsin) 
Solution: 
levels for low temperatures. 
according to the Boltzmann statistics, we have 
We need not consider energy levels higher than the three lowest energy 
Assuming the system has N particles and 

NI + N2 + N3 = N , 
hence 
N 
N3 = 1 + eQcfkT + elOa/kT * 

When N3 < 1, there is no occupation at the energy level E3. That is, when 
T < Tc, only the El and E2 levels are occupied, where T, satisfies 

If N >> 1, we have 
lo€ 
klnN ’ 
T, w - 
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The average energy of the molecule is 
The molar specific heat is 



where 
For high temperatures, kT >> E, 

= l / k T and NA is Avogadro's number. 
For low temperatures, kT << E, 

The variation of C, with T is shown in Fig. 2.7 
T 
Fig. 2.7. 
2026 
Given a system of two distinct lattice sites, each occupied by an atom 
whose spin (3 = 1) is so oriented that its energy takes one of three values 
E = 1,0, -1 with equal probability. The atoms do not interact with each 

other. Calculate the ensemble average values and ? for the energy U 
of the system, assumed to be that of the spins only. 
(UC, Berkeley) 
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Solution: 
For a single atom, we have 
For the system, we have 

Since = q' GI it follows 
2027 
Obtain the temperature of each system: 
(a) 6.0 x atoms of helium gas occupy 2.0 litres at atmospheric 
pressure. What is the temperature of the gas? 
(b) A system of particles occupying single-particle levels and obeying 
Maxwell-Boltzmann statistics is in thermal contact with a heat reservoir at 
temperature T. If the population distribution in the non-degenerate energy 
levels is as shown, what is the temperature of the system? 
Energy (eV) population 

30.1 x lob3 3.1% 
21.5 x 8.5% 
1 2 . 9 ~ 23% 

4.3 x 10-3 63% 
(c) In a cryogenic experiment, heat is supplied to a sample at the 
constant rate of 0.01 watts. The entropy of the sample increases with time 
as shown in the table. What is the temperature of the sample at t = 500 sec? 
Time: 100 200 300 400 500 600 700 (sec) 
Entropy: 2.30 2.65 2.85 3.00 3.11 3.20 3.28 (J/K) 
(UC, Berkeley) 
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Solution: 
(a) Using the equation of state for an ideal gas, we get 

T = pV/nk = 241 K . 
(b) The population distribution is given by 
Therefore 
Using the given n1 and n2, we get T as follows: 

99.2; 99.5; 99.0; 99.5; 100.2; 98.8 K . 
The mean value is T = 99.4 K. 
(c) The rate of heat intake is q = - = T-, giving 
dQ dS 
d t d t 
T =- 9 

(%) 
dS 



dt 
We estimate - by the middle differential at t = 500s, and get 
= 1.0 x 10-3J/sec.K 
@ = (3.20 - 3.00) 
dt 600 - 400 
Therefore T = 10K. 
2028 
Assume that the reaction H*p+e occurs in thermal equilibrium at 
T = 4000 K in a very low density gas (no degeneracy) of each species with 
overall charge neutrality. 
(a) Write the chemical potential of each gas in terms of its number 
density [HI, [p], or [el. For simplicity you may ignore the spectrum of 
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excited bound states of H and consider only the ground state. Justify this 
assumption. 
(b) Give the condition for thermal equilibrium and calculate the equilibrium 
value of [el as a function of [HI and T. 
(c) Estimate the nucleon density for which the gas is half-ionized at T 
= 4000 K. (Note that this is an approximate picture of the universe at a 
redshift z = lo3.) 
(UC, Berkeley) 
Solution: 
(a) From Boltemann statistics, we have for an ideal gas without spin 

n = . ( 2 ~ m k T / h ~.) ~ / ~ 
Both the proton and electron have spin 1/2, therefore 
[p] = 2 ( 2 ~ m , k T / h ~ ) ~ / ~ e ~ p / ~ ~ 

[el = 2 ( 2 ~ r n , k T / h ~ ) ~ / ~.e ~ ' . / ~ ~ 

For the hydrogen atom, p and e can form four spin configurations with 
ionization energy Ed. Hence 

(HI = 4 ( 2 r m ~ k T / h ~ ) ~ / ~ e x p ( Eedx/pk(pTH)/ kT) . 
The chemical potentials p,, p(le and p~ are given by the above relations with 
the number densities. 
(b) The equilibrium condition is p~ = pe +pp. Note that as p 7 2 ~M mp 
and [el = [p] we have 

[el = m.( 2 ~ t n , k T / h ~ .) e~x/p~(- Ed/2kT) . 
(c) When the gas is half-ionized, [el = [PI = [HI = n. Hence 

n = ( Z ~ r n , l c T / h ~ ). e~x/p~( -Ed/kT) = 3.3 x 10l6 rn-' . 
2029 
A piece of metal can be considered as a reservoir of electrons; the work 
function (energy to remove an electron from the metal) is 4 eV. Considering 
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only the 1s orbital (which can be occupied by zero, one, or two electrons) 
and knowing that the hydrogen atom has an ionization energy of 13.6 eV 
and an electron affinity of 0.6 eV, determine for atomic hydrogen in chemical 
equilibrium at T = 300 K in the vicinity of a metal the probabilities of 

finding H+ , Ho and H- . Give only one significant figure. 
What value of the work function would give equal probabilities to Ho 
and H-? 
(UC, Berkeley) 
Solution: 
We have (see Fig. 2 . 8 ) 



e + H + ~ H , 

e + H s H - . 
Fermi sea 
Fig. 2.8. 

The chemical potential of the electron gas is pe = -W. From classical 
statistics, we can easily obtain 
where the factor 2 arises from the internal degrees of freedom of spin. For 
the hydrogen atom, electron and proton spins can have four possible spin 
states, hence 
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For H-, both electrons are in their ground state with total spin 0 (singlet), 
as the space wave function is symmetric when the particles are interexchanged. 
Therefore, the spin degrees of freedom of H- correspond only 
to the two spin states of the nucleon; hence 
The conditions for chemical equilibrium are 
so that 
Thus, the relative probabilities of finding H+, Ho and H- are 
If PH = PH-,o r [HO] = [H-I, we have 

w = -pe = ---€a + kT In 2 w 0.6 eV . 
2030 
The potential energy V between the two atoms ( m =~ 1 .672x g) 
in a hydrogen molecule is given by the empirical expression 

v = D{e-za(r--ro) - 2 e - a ( r - r ~ )1 . 
where r is the distance between the atoms. 
D = 7 x erg, 
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a = 2 x 10' cm-' 

ro = 8 x lo-' cm. 

Estimate the temperatures at which rotation (TR)a nd vibration (Tv)be gin 
to contribute to the specific heat of hydrogen gas. Give the approximate 
values of C, and C, (the molar specific heats at constant volume and at 
constant pressure) for the following temperatures: 
Neglect ionization and dissociation. 
Solution: 
librium distance. From 
Ti = 25 K, T2 = 250 K, T3 = 2500 K, T4 = 10000 K. 
(UC, Berkeley) 
The average distance between the two atoms is approximately the equi- 

(%) r=d = 0 , 
we obtain d = ro. The frequency of the radial vibration of the two atoms 
is r 
where p = m ~ / i2s the reduced mass and 
so 

w = J?. 
The characteristic energy of the rotational level is 
then 
= 7 5 K . A2 on = ~ kmH ri 
The characteristic energy of vibration is kOv = Aw, then 
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Thus, rotation begins to contribute to the specific heat at T = 75 K, and 



vibration does so at T = 6250 K. 
When TI = 25 K, only the translational motion contributes to C, then 
3 5 
C v = -2 R = 12.5 J/K, 2 C, = -R = 20.8 J/K 
When Tz = 250 K, only translation and 'rotation contribute to C, then 
5 7 
2 

Cv = i R == 20.8 J/K, C, = -R = 29.1 J/K . 
When T3 = 2500 K, the result is the same as for T2 = 250 K. 
When T4 = 10000 K, vibration also contributes to C, then 

C - -7 R 9 = 29.1 J/K, C - -R = 37.4 J/K . 
v - 2 p - 2 
2051 
Derive an expression for the vibrational specific heat of a diatomic gas 
as a function of temperature. (Let hwo/k = 0). For full credit start with 
an expression for the vibrational partition function, evaluate it, and use the 
result to calculate Cvib. 

Describe the high and low T limits of Cvib. 

( wi3 CO fMitL) 

Solution: 
The vibrational energy levels of a diatomic gas are 

E" = hwo(w + 1/2)] u = 0,1,2, * . . . 
The partition function is 
where z = Phwo. The free energy of 1 mole of the gas is 
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and the internal energy is 
The molar specific heat is 

C = -dU= R x 2e x x=--h-w=o - 6 ’ dT (e5 - 1)2 ’ kT T ‘ 
(a) In the limit of high temperatures, T >> 0, or z << 1, we have 

C,=R. 
(b) In the limit of low temperatures, T << 6 , or x >> 1, we have 

C, w R(6/T)2e xp(-B/T) . 
2032 
A one-dimensional quantum harmonic oscillator (whose ground state 
energy is hw/2) is in thermal equilibrium with a heat bath at temperature 
T. 
(a) What is the mean value of the oscillator’s energy, (E), as a function 
(b) What is the value of AE, the root-mean-square fluctuation in en- 
( c ) How do (E) and AE behave in the limits kT << hw and kT >> hw 
of T? 
ergy about (E)? 
(MIT) 
Solution: 
The partition function is 
(a) The mean energy is 

( E )= kT2-a Inz = -hw coth (g) 
aT 2 
195 
(b) The root-mean-square fluctuation is 



(c) When kT << hw, 
When kT >> hw, 
(E) -+ kT, AE -+ kT . 
2033 
Consider a system of No non-interacting quantum mechanical oscillators 
in equilibrium at temperature T. The energy levels of a single oscillator 
are 

Em = (rn + 1/2)7/V with rn = 0, 1 , Z . . . etc. 

(7 is a constant, the oscillators and volume V are one dimensional.) 
(a) Find U and C, as functions of T. 
(b) Sketch U(T) and C,(T). 
(c) Determine the equation of state for the system. 
(d) What is the fraction of particles in the m-th level? 
(SUNY, Bufulo) 
Solution: 
(a) The partition function is 
The internal energy is 

a coth -7P ap 2v 2v 
U = -No - In z = 
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The specific heat at constant volume is 

c, = (g) = Nok ( 2 - ) a c s c h 2 (L) 
V 2V kT 2VkT ' 

(b) As shown in Fig. 2.9. 
Fig. 2.9. 

(c) The equation of state is 

p = -NPo - -aav 1nz = -No'Yc oth (&) , 2v2 

where p is the pressure. 
(d) The fraction of particles in the m-th level is 
2034 
The molecules of a certain gas consist of two different atoms, each with 
zero nuclear spin, bound together. Measurements of the specific heat of this 
material, over a wide range of temperatures, give the graph shown below. 
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(The values marked on the vertical scale correspond to the height of 
the curve in each of the 'plateau" regions.) 
regions: above T3; between T2 and T3; between Ti and Tz; below Ti, 
(a) Account for each of the different results found in the temperature 
(b) Given that the first excited state of the rotational spectrum of 
this molecule is at an energy kTe above the ground rotational state, and 
T, = 64 K, calculate from basic theory the rotational contribution to the 
specific heat capacity of this gas at 20K at 100K, at 300K. 
(UC, Berkeley) 
Solution: 
(a) When T > T3, the translational, rotational and vibrational motions 
are all excited, and C, = 7k/2. When T2 < T < T3, the vibrational motion 

is not excited and C, = 5k/2. When TI < T < T2, only the translational 
motion contributes to the specific heat and C, = 3k/2. When T < TI,a 

phase transition occurs, and the gas phase no longer exists. 
(b) When T = 20 K, neglect the higher rotational energy levels and 
consider only the ground state and the 1st excited state. We have 



When T = 100 K, consider the first two excited states and we have 
When T = 300 K, all the rotational energy levels are to be considered and 
C, = 1.0 k 
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2035 
The quantum energy levels of a rigid rotator are 

E? = j(j + l)h2/8w2rna2 , 

where j = 0 , 1 , 2 , . . . The degeneracy of each level is gj = 2 j + 1. 
(a) Find the general expression for the partition function, and show 
that at high temperatures it can be approximated by an integral. 
(b) Evaluate the high-temperature energy and heat capacity. 
(c) Find the low-temperature approximations to z, U and C,. 
(S VNY, BufuIo) 
Solution: 
(a) The partition function is 
00 03 

j = O j = O 

(b) At high temperatures A, E (h2/8n2rna2kT)1/2 < 1, 
where 
Hence 

~j = (j + -3 A,, A E=~ ~ j +-l ~j = A, . 
(a,) = 8w2ma2kT/h2 . 
The internal energy is 

a U = kT2-lnz = kT 8T 
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(c) For low temperatures, we need only take the first two terms of z, 

i.e., z = 1 + 3e-'lT, where 6 = h2/4a2ma2k. 
so 
2036 
The quantum energy levels of a rigid rotator are 

e j = j ( j+ l)h2/8n2ma2, 
where j = 0,1,2,. . . , m and a are positive constants. The degeneracy of 

each level is gJ = 2 j + 1. 
(a) Find the general expression for the partition function 20. 
(b) Show that at high temperatures it can be approximated by an 
(c) Evaluate the high-temperature energy U and heat capacity C,,. 
(d) Also, find the low-temperature approximations to zo, U and C,. 
integral. 

( s UN Y, Bufulo) 
Solution: 
(a) The partition function is 
where, 
h2 
8a2ma2k * 

6 = 
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(b) At high temperatures BIT << 1 and exp[-Oj(j + 1)/T) changes 

slowly as j changes, so that we can think of ( 2 j + 1) exp[-Oj(j + 1)/T] as 



a continuous function of j . Let x = j ( j + l), then dx = 2 j + 1, and we can 
write zo as an integral: 
(c) At high temperatures, the internal energy is 

a 
aB 
U = --lnzo = IcT. 
The heat capacity is 
C , = k . 

(d) At low temperatures, we have T << 6, and exp[-6j(j + 1)/T] is 
very small. We need only take the first two terms of zo, SO 

2037 
The energy levels of a three-dimensional rigid rotor of moment of inertial 
I are given by 

EJ,M = h2J(J + 1 ) / 2 I , 

where J = 0 , 1 , 2 , .. . ; M = - J , - J + 1 , . . . , J. Consider a system of N 
rotors: 
(a) Using Boltzmann statistics, find an expression for the thermody- 
(b) Under what conditions can the sum in part (a) be approximated 
namical internal energy of the system. 
by an integral? In this case calculate the specific heat C, of the system. 
( wis co nsin) 
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Solution: 
(a) The partition function of the system is 
03 

z = c ( 2 J + 1) exp[-h2J(J + 1)/2IkT] . 
J=O 

The internal energy is 
d l n z 
dT 
U = NkT2- 
(b) In the limit of high temperatures, kT >> h2/21, and the above sum 

can be replaced by an integral. Letting 3: = J ( J + l), we have 
~ = ~ ~ e x h2p { - ~ 2 iI k T) d z = ~ , 
U = N k T . 
Thus the molar specific heat is C, = NAk = R. 
2038 
Consider a heteronuclear diatomic molecule with moment of inertia 
I. In this problem, only the rotational motion of the molecule should be 
considered. 
(a) Using classical statistical mechanics, calculate the specific heat 
C(T) of this system at temperature T. 
(b) In quantum mechanics, this system has energy levels 
h2 . . 

E . - -3 (3 + 1) , j = 0,1,2, . . . . 
- 21 

Each j level is (2j + 1)-fold degenerate. Using quantum statistics, derive 

expressions for the partition function z and the average energy (E) of this 
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system, as a function of temperature. Do not attempt to evaluate these 
expressions. 



(c) By simplifying your expressions in (b), derive an expression for the 
specific heat C(T) that is valid at very low temperatures. In what range of 
temperatures is your expression valid? 
(d) By simplifying your answer to (b), derive a high temperature approximation 
to the specific heat C(T). What is the range of validity of your 
approximat ion? 
(Prince ton) 
Solution: 
(a) For a classical rotator, one has 
E = - 1 1 
21 

z = / e - pEd p a d p , dOd p = p8r21 , 
a 1 (E) = --lnz = - = kT. 
ap @ 
Thus C(T) = k. 
(b) In quantum statistical mechanics, 
@h h2 
(c) In the limit of low temperatures, - >> 1, or -- >> kT, so only 21 21 
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the first two terms j = 0 and j = 1 are important. Thus 

z = 1 + 3exp (-T) . 

3h2 exp (-$) 
(E) = - ' 

I 1+3exp (-T) ' 

Hence 
2 

= 3k 
(&)2 

[3 + exp ( &)I2 
h2 

21 
(d) In the limit of high temperatures, -ph2 << 1 or kT >> -, so the 21 
sum can be replaced by an integral, that is, 
21 

z = /0,(2z + 1) exp 21 

( E ) = - - l n z = k T . a 
aB 
Thus C(T) = k. 
2039 
At the temperature of liquid hydrogen, 20.4K, one would expect molecular 
HZ to be mostly (nearly 100%) in a rotational state with zero angular 
momentum. In fact, if H2 is cooled to this temperature, it is found that 
more than half is in a rotational state with angular momentum h. A catalyst 



must be used at 20.4K to convert it to a state with zero rotational 
angular momentum. Explain these facts. 
( Columbia) 
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Solution: 
The hydrogen molecule is a system of fermions. According to Pauli’s 
exclusion principle, its ground state electron wave function is symmetric. 
So if the total nuclear spin 1 is zero, the rotational quantum number of 
angular momentum must be even and the molecule is called parahydrogen. 
If the total nuclear quantum spin I is one, the rotational quantum number 
of angular momentum must be odd and it is called orthohydrogen. Since 
the spin I has the 21+ 1 orientation possibilities, the ratio of the number 
of orthohydrogen molecules to the number of parahydrogen molecules is 
3:l at sufficiently high temperatures. As it is difficult to change the total 
nuclear spin when hydrogen molecules come into collision with one another, 
the ortho- and parahydrogen behave like two independent components. In 
other words, the ratio of the number of orthohydrogen molecules to that of 
parahydrogen molecules is quite independent of temperature. So there are 
more orthohydrogen molecules than parahydrogen molecules even in the 
liquid state. A catalyst is needed to change this. 
2040 
A gas of molecular hydrogen H2, is originally in equilibrium at a temperature 
of 1,000 K. It is cooled to 20K so quickly that the nuclear spin 
states of the molecules do not change, although the translational and rotational 
degrees of freedom do readjust through collisions. What is the 
approximate internal energy per molecule in terms of temperature units 
K? 
Note that the rotational part of the energy for a diatomic molecule is 

A1(1+ 1) where 1 is the rotational quantum number and A - 90K for H2. 

Vibrational motion can be neglected. 
(MITI 
Solution: 
Originally the temperature is high and the para- and orthohydrogen 
molecules are in equilibrium in a ratio of about 1:3. When the system is 
quickly cooled, for a rather long period the nuclear spin states remain the 
same. The ratio of parahydrogen to orthohydrogen is still 1:3. Now the 
para- and orthohydrogen are no longer in equilibrium but, through collisions, 
each component is in equilibrium by itself. At the low temperature 

of 20 K, exp(-PA) - exp(-90/20) << 1, so that each is in its ground state. 
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Thus Er,p = 0, Er,o = A ( l + 1) 1 = 2A = 180 K, giving 
From equipartition of energy, we have 
- 3 

Et = -kT = 30 K . 
2 
The average energy of a molecule is 
- 

E = E, + E, = 165 K . 
2041 
The graph below shows the equilibrium ratio of the number of orthohydrogen 
rnolecules to the number of parahydrogen molecules, as a function 



of the absolute temperature. The spins of the protons are parallel in orthohydrogen 
and antiparallel in parahydrogen. 
(a) Exhibit a theoretical expression for this ratio as a function of the 
temperature. 
(b) Calculate the value of the ratio for 100 K, corresponding to the 
The separation of the protons in the hydrogen 
(UC, Berkeley) 
point F on the graph. 
molecule is 0.7415k 
Fig. 2.11. 
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Solution: 
(a) The moment of inertia of the hydrogen molecule is 
and its rotational energy level is 

with degeneracy (21 + 1),1 = 0 , 1 , 2 , . . . .For ortho-H, 1 = 1 , 3 , 5 , . . . ; for 

para-H, 1 = 0 , 2 , 4 , 6 , . . . . Thus in hydrogen molecules, the ratio of the 
number of ortho-H to that of para-H is 
where the coefficient 3 results from spin degeneracy and 
(b) When T = 100 K, A = 0.88, since as 1 increases the terms in the 
summations decrease rapidly, we need consider only the first two terms. 
Hence 
s e - 2 ~+ ~ ~ - 1 2 ~ 

1 + 5e-GA 
f = 3 = 1.52 
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2042 
In hydrogen gas at low temperatures, the molecules can exist in two 
states: proton spins parallel (orthohydrogen) or anti-parallel (parahydrogen). 
The transition betwen these two molecular forms is slow. Experiments 
performed over a time scale of less than a few hours can be considered 
as if we are dealing with two separate gases, in proportions given by 
their statistical distributions at the last temperature at which the gas was 
allowed to come to equilibrium. 
(a) Knowing that the separation between protons in a hydrogen 
molecule is 7 . 4 l~o- ’ cm, estimate the energy difference between the ground 
state and the first excited rotational state of parahydrogen. Use degrees 
Kelvin as your unit of energy. Call this energy k60, so that rrors in (a) do 
not propagate into the other parts of the question. 
(b) Express the energy difference between the ground and first excited 
rotational states of orthohydrogen, kO1, in terms of k00. In an experiment to 
measure specific heats, the gas is allowed to come to equilibrium at elevated 
temperature, then cooled quickly to the temperature at which specific heat 
is measured. What will the constant-volume molar specific heat be at: 
(c) temperatures well above 00 and 01, but not high enough to excite 
(d) temperatures much below 00 and 01 [include the leading temperature- 
dependent term]? 
(e) T = 60/2? 
vibrational levels? 
(ZJC, Berkeley) 
Solution: 
The hydrogen nucleus is a fermion. The total wave function including 
the motion of the nucleus is antisymmetric. The symmetry of the total wave 
function can be determined from the rotational and spin wave functions. 
For orthohydrogen, the spin wave function is symmetric when the nuclei 
are interchanged. Therefore, its rotational part is antisymmetric, i.e. 1 is 
odd. Similarly, for parahydrogen, 1 i.e. even. Then we have 



, l = l , 3 , 5 ,... 
, 1= 0 , 2 , 4 , ... 
1(1+ l)h2 

l ( 1 + l)h2 
21 
21 
orthohydrogen: El = 

parahydrogen: El = 

where I is the moment of inertia of the nucleus about the center of separa208 
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tion. 
m 
(a) I = ; d 2 , 

;x (2 + 1) h2 h2 - = 3- 

I I ' 
k6o = 
2 
6h 
md2 
then k6o = - - 7 . 3 x J, 60 = 530 K. 
As the hydrogen gas had reached thermal equilibrium at high temperature 
before the experiment, the ratio of the number of the para- to that of the 
orthohydrogen in the experiment is 1:3, which is the ratio of the degrees of 
freedom of the spins. 
(c) When T >> 60,01, the rotational energy levels are completely excited. 

From equipartition of energy, E = nkT, or C, = nk, where n is the 
total number of the hydrogen molecules. (Note that here we only consider 
the specific heat associated with rotation.) 

(d) When T << 00,01 , there are almost no hydrogen atoms in the highly 
excited states. Therefore, we consider only the 1st excited state for paraand 
orthohydrogen. Noting the degeneracy of the energy levels, we have 
for orthohydrogen 
Similarly we have for parahydrogen 
2 

Cip) x n p k . 5 ($) e-OoIT . 
Note that 
3 1 
no = zn, np = i n , 
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(e) When T = 00/2, the partition functions for ortho- and parahydrogen 
are 
where X = h2/4.1r2md2kT. It does not appear possible to solve these and 
calculate C, accurately, but we can estimate them using the approximate 
results of (d). 
2043 
Molecular hydrogen is usually found in two forms, orthohydrogen 
(“parallel” nuclear spins) and parahydrogen (“anti-parallel” nuclear spins). 
(a) After coming to equilibrium at “high” temperatures, what fraction 
of H2 gas is parahydrogen (assuming that each variety of hydrogen is mostly 
in its lowest energy state)? 
(b) At low temperatures orthohydrogen converts mostly to parahydrogen. 
Explain why the energy released by each converting molecule is much 



larger than the energy change due to the nuclear spin flip. 
( was co ns in) 
Solution: 
(a) For the two kinds of diatomic molecules of identical nuclei, the 
vibrational motion and the degeneracy of the lowest state of electron are 
the same for both while their rotational motions are different. The identical 
nuclei being fermions, antisymmetric nuclear spin states are associated with 
rotational states of even quantum number 1, and symmetry nuclear spin 
states are associated with rotational states of odd quantum number 1 (the 
reverse of bosons). Thus 
where s is the half-integer spin of a nucleon (for the hydrogen nucleus, s = 
1/2), s ( 2 3 + l ) is the number of antisymmetric spin states and ( s + 1 ) ( 2 s + l ) 
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is the number of symmetric spin states. 
where 6 = h2/87r21k, I being the rotational moment of inertia. For high 
temperatures, we have Zpara = Zortilo, and npara/nH2 = 1/4. According to 
the condition given in the problem (the temperature is not too high), only 
states 1 = 0 and 1 = 1 exist. The fraction of parahydrogen is then 
(b) When T << 6, orthohydrogen changes into parahydrogen. The 
energy corresponding to the change in nuclear spin direction is the coupling 
energy of the magnetic dipoles of the nuclei and the electrons AEsj N 

lo8 Hz. Since the rotational states are related to the nuclear spin states, 
the rotational states change too, the corresponding energy change being 

w lo1’ Hz h2 . 
8r21 
AER= - 
When orthohydrogen converts to parahydrogen, the total energy change is 

AE = AER + A,, w AER. Thus the released energy is much greater than 

AEsJ. 
2044 
A ”14 nucleus has nuclear spin I = 1. Assume that the diatomic 
molecule N2 can rotate but does not vibrate at ordinary temperatures and 
ignore electronic motion. Find the relative abundances of the ortho- and 
para-molecules in a sample of nitrogen gas. (Ortho = symmetric spin state; 
Para = antisymmetric spin state). What happens to the relative abundance 
as the temperature is lowered towards absolute zero? (Justify your 
answers!) 
(SVNY, Bufialo) 
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Solution: 
The wave function of N2 is symmetric as "14 is a boson. The spin 
wave functions of N2 consist of six symmetric and three antisymmetric 
functions. We know that the rotating wave function is symmetric when the 
spin wave function is symmetric, and the rotating wavefunction is antisymmetric 
when the spin wave function is antisymmetric. Hence, the partition 
function of ortho-N2 is 
and I is the rotational moment of inertia of N2. Similarly, A2 where B, = - 
2kT' 
Zpara = 3(21+ l)e-or'(i+l)/T . 
I = 1,3,5.. . . 
As B,/T << 1 at ordinary temperatures, the sums can be replaced by integrals: 
3T 
e-erx/Tdx = - 
20, 



Therefore , the relative abundance is given by 
At equilibrium, portho = pparat,h e above ratio is 2. 

B,/T B l,exp[-B,l(I + 1)/T] << 1. Hence 
When the temperature is lowered towards the absolute zero, we have 
The relative abundance is 

Northo = (:) exp(2Br/T) 
Npara 
212 Problems 8 Solutions on Thermodynamics d Statistical Mechanics 

When T --+ 0, the relative abundance -+ 00. All the para-molecules become 
ortho-molecules. 
2045 
(a) Write down a simple expression for the internal part of the partition 
function for a single isolated hydrogen atom in very weak contact with a 
reservoir at temperature T. Does your expression diverge for T = 0, for 

T # O? 
(b) Does all or part of this divergence arise from your choice of the 
zero of energy? 
(c) Show explicitly any effects of this divergence on calculations of the 
(d) Is the divergence affected if the single atom is assumed to be confined 
to a box of finite volume L3 in order to do a quantum calculation of 
the full partition function? Explain your answer. 
(UC, Berkeley) 
average thermal energy U. 
Solution: 

degeneracy 2n2,w here n = 1,2,3,.. . . Therefore 
(a) The internal energy levels of hydrogen are given by -Eo/n2 with 
00 

z = C 2n2 exp 
n= 1 

When T = 0, the expression has no meaning; when T # 0, it diverges. 
(b) The divergence has nothing to do with the choice of the zero of 
energy. If we had chosen 
then 
which would still diverge. 
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(c) When T # 0, 
213 
n= 1 

That is to say, because of thermal excitation (no matter how low the temperature 
is, provided T # 0), the electrons cannot be bounded by the 
nuclei. 
(d) The divergence has its origin in the large degeneracy of hydrogen’s 
highly excited states. If we confine the hydrogen molecule in a box of 
volume L3, these highly excited states no longer exist and there will be no 
divergence. 
2046 
The average kinetic energy of the hydrogen atoms in a certain stellar 
(a) What is the temperature of the atmosphere in Kelvins? 
(b) What is the ratio of the number of atoms in the second excited 
(c) Discuss qualitatively the number of ionized atoms. Is it likely to 
atmosphere (assumed to be in thermal equilibrium) is 1.0 eV. 
state (n = 3) to the number in the ground state? 



be much greater than or much less than the number in n = 3? Why? 
Solution: 
( wisco nsin) 
(a) The temperature of the stellar atmosphere is 

T = -zE= 2 x 1.6 x 10-19 = 7.7 x lo3 K . 3k 3 x 1.38 x 
(b) The energy levels for hydrogen atom are 

En=( --;;1.3-).6 e v . 

Using the Boltzmann distribution, we get 
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Inserting El = -13.6 eV, E3 = (-13.6/9) eV, and kT = (2/3) eV into the 
above, we have N3/N1 M 1.33 x 
(c) The number of ionized atoms is the difference between the total 
number of atoms and the total number of atoms in bound states, i.e., the 
number of atoms in the level n = 00. Obviously, it is much smaller than 

the number in n = 3. Thus -Nion = exp ($) M 0.1, i.e., Nion is about 

one-tenth of N3. 

N3 
2047 
A monatomic gas consists of atoms with two internal energy levels: a 
ground state of degeneracy g1 and a low-lying excited state of degeneracy 
92 at an energy E above the ground state. Find the specific heat of this 
gas. 
(CUSPEA) 
Solution: 
According to the Boltzmann distribution, the average energy of the 
atoms is 
where Eo is the dissociation energy of the ground state (we choose the 
ground state as the zero point of energy). Thus 
2048 
Consider a system which has two orbital (single particle) states both 
of the same energy. When both orbitals are unoccupied, the energy of the 
system is zero; when one orbital or the other is occupied by one particle, the 
Statistical Physics 215 
energy is E. We suppose that the energy of the system is much higher, say 
infinitely high, when both orbitals are occupied. Show that the ensemble 
average number of particles in the level is 
(UC, Berkeley) 
The probability that a microscopic state is occupied is proportional to 
Solution: 

its Gibbs factor exp[(p - &)TI. We thus have 

2049 
(a) State the Maxwell-Boltzmann energy distribution law. 
(b) Assume the earth's atmosphere is pure nitrogen in thermodynamic 
equilibrium at a temperature of 300 K. Calculate the height above sea-level 
at which the density of the atmosphere is one half its sea-level value. 
Solution: 
(a) The Maxwell-Boltzmann energy distribution law: For a system of 
gas in equilibrium, the number of particles whose coordinates are between 

r and r + dr and whose velocities are between v and v + dv is 
Define 
terms. Discuss briefly an application where the law fails. 



( wisco nsin) 

dN = no (L3/2) e-'l kTdvdr , 27rkT 
where no denotes the number of particles in a unit volume for which the 

potential energy cp is zero, E = ~k + E~ is the total energy, dv = du,duydu,, 
dr = dxdydz. 
It is valid for localized 
systems, classical systems and non-degenerate quantum systems. It does 
not hold for degenerate non-localized quantum systems, e.g., a system of 
electrons of spin 1 / 2 at a low temperature and of high density. 
The MB distribution is a very general law. 
(b) We choose the z-axis perpendicular to the sea level and z = 0 at the 
sea level. According to the MB distribution law, the number of molecules 
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in volume element dxdydz at height z is dN' = noe-mg"/kTdzdydz. Then 
the number of molecules per unit volume at height z is 
Thus 
kT no RT no 
n Pg. n 

z = -1n- = ---In-. 
The molecular weight of the nitrogen gas is 1.1 = 28g/mol. With g = 
9.8m/s2, R = 8.31J/K.mole, T = 300 K, we find z = 6297 m for no/n = 2. 
That is, the density of the atmosphere at the height 6297m is one-half the 
sea level value. 
2050 
A circular cylinder of height L, cross-sectional area A, is filled with a 
gas of classical point particles whose mutual interactions can be ignored. 
The particles, all of mass rn, are acted on by gravity (let g denote the 
gravitational acceleration, assumed constant). The system is maintained 
in thermal equilibrium at temperature T. Let c, be the constant volume 
specific heat (per particle). Compute c, as a function of T, the other 
parameters given, and universal parameters. Also, note especially the result 
for the limiting cases, T -+ 0, T -+ 00. 

( C USPEA) 
Solution: 
of the molecules is 
Let z denote the height of a molecule of the gas. The average energy 

e = 1.5 kT + mgZ , 
where Z is the average height. According to the Boltzmann distribution, 
the probability density that the molecule is at height z is p(z) cx 
exp(-rngz/kT). Hence 
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and 
5 mgL 
e = -kT - emgLlkT - 1 ' 2 
ae 5 k(rngL)2 emgLlkT 
aT 2 (kT)2 (emgLlkT - 1)2 
C" = - = - k - 
5 Tk, for T + O , 
2k, for T + 03 . 



-yL *---- 

Fig. 2.12 
2051 
Ideal monatomic gas is enclosed in cylinder of radius a and length L. 
The cylinder rotates with angular velocity w about its symmetry axis and 
the ideal gas is in equilibrium at temperature T in the coordinate system 
rotating with the cylinder. Assume that the gas atoms have mass rn, have 
no internal degrees of freedom, and obey classical statistics. 
(a) What is the Hamiltonian in the rotating coordinates system? 
(b) What is the partition function for the system? 
(c) What is the average particle number density as a function of r? 
(MIT) 
Solution: 
(a) The Hamiltonian for a single atom is 

h ' = - +PI+2 d - -mw1r 2 2 , 
2m 2 
L 
2 0, r I a , ( z ( < - , 
m, otherwise. 
4 ( W , Z ) = 
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The Hamiltonian for the system is 
(b) The partition function is 
(c) The average particle number density is 

AN/AV = N 1 d3p' exp[-P(pf2/2m + 4 - mw2r2/2)]/z 

2052 
Find the particle density as a function of radial position for a gas of 
N molecules, each of mass M , contained in a centrifuge of radius R and 
length L rotating with angular velocity w about its axis. Neglect the effect 
of gravity and assume that the centrifuge has been rotating long enough 
for the gas particles to reach equilibrium. 
(Chicago) 
Fig. 2.13. 
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Solution: 
r. But in the rotational system S‘, the energy of a particle is 
In the rest system S, the energy E is independent of the radial distance 
1 1 
2 2 
E(r) = - I W ~ = -Mr2w2 
The effect of rotation is the same as that of an additional external field 
acting on the system of 
1 
2 
U( r J )= - - ~ r ~ w ’. 



Using the Boltzmann distribution we get the particle number density 

n(r) = Aexp (-g) = Aexp (Mw2r 2r ) 
where the normalization factor A can be determined by Jn(rJ)dV = N, 
Thus we have 
Mw2r2 

NMw2 (kT) n ( r ) = ~ 2.lrkTL 
2053 
Suppose that a quantity of neutral hydrogen gas is heated to a temperature 
T. T is sufficiently high that the hydrogen is completely ionized, 
but low enough that kT/m,c2 << 1 (me is the mass of the electron). In 
this gas, there will be a small density of positrons due to processes such 

as e-+ e- +-+ e-+e-+ e-+e+ or e-+ p +-+ e-+ p + e-+ e+ in which 
electron-positron pairs are created and destroyed. 
For this problem, you need not understand these reactions in detail. 
Just assume that they are reactions that change the number of electrons 
and positrons, but in such a way that charge is always conserved. 
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Suppose that the number density of protons is 101'/cm3. Find the 
chemical potentials for the electrons and positrons. Find the temperature 
at which the positron density is l/cm3. Find the temperature at which it 
is 101°/cm3. 
(Prince ton) 
Solution: 
For kT/m,c2 << 1, nuclear reactions may be neglected. From charge 

conservation, we have n- = np + n+, where n-, n+ are the number densities 
of electrons and positrons respectively. For a non-relativistic nondegenerate 
case, we have 

n- = 2 (2 Tmh2,k T ) 3/2 exp(p-;Tm'c2) , 
where p- and p+ are the chemical potentials of electrons and positrons 
respectively. From the chemical equilibrium condition, we obtain p- = 
-p+ = p. Hence 

n+/n- = exp(-2p/kT) . 
For n+ = l/cm3, n- fic np = lo1' /cm3, we have exp(p/kT) = lo5 or 
p/kT M 11.5. Substituting these results into the expression of n-, we have 

T M 1 . 2 ~ 1 K0 ,~ s op w 1.6XlO-'erg. For n = 101'/cm3, exp(p/kT) = a, 
p/kT NN 0.4. Substituting these results into the expression of n+, we get 

T w 1.5 x lo8 K, p M 8.4 x lo-' erg. 
2054 
Consider a rigid lattice of distinguishable spin 1/2 atoms in a magnetic 
field. The spins have two states, with energies -poH and +poH for spins up 

(1) and down (l),re spectively, relative to H. The system is at temperature 
T. 
(a) Determine the canonical partition function z for this system. 
(b) Determine the total magnetic moment M = po(N+ - N - ) of the 
(c) Determine the entropy of the system. 
system. 
( wis co nsin) 
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Solution: 
(a) The partition function is 

z = exp(x) + exp(-x) , 
where x = pgH/kT. 
(b) The total magnetic moment is 

a 
aH 
M = po(N+ - N-) = NkT- Inz 

= Npo tanh(x) . 
(c) The entropy of the system is 

S = Nk(ln z - pa In ./a/?) 
= Nk(ln 2 + In(cosh z)) - z tanh(z) . 
2055 
A paramagnetic system consists of N magnetic dipoles. Each dipole 
carries a magnetic moment p which can be treated classically. If the system 
at a finite temperature T is in a uniform magnetic field H, find 
(a) the induced magnetization in the system, and 
(b) the heat capacity at constant H. 
(UC, Berkeley) 
Solution: 
(a) The mean magnetic moment for a dipole is 

Jpcos6exp(xcos6)dfl s exp (x cos 6) dn 

p:s cos 6 exp(z cos 6) sin 6d6 s: exp (z cos 0) sin 6d6 

(’) = 

-- 

= p c[ o t h ~ I:- - , 

where x = pH/kT. Then the induced magnetization in the system is 
( M ) = N ( p ) = Np 
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a(u) - -hT- - Nk(1 - z2csch2z2) . 
aT (b) c = - - dT 
2056 
Consider a gas of spin 1/2 atoms with density n atoms per unit volume. 
Each atom has intrinsic magnetic moment p and the interaction between 
atoms is negligible. 
Assume that the system obeys classical statistics. 
(a) What is the probability of finding an atom with p parallel to the 
applied magnetic field H at absolute temperature T? With p anti-parallel 
to H? 
(b) Find the mean magnetization of the gas in both the high and low 

(c) Determine the magnetic susceptibility x in terms of p. 

temperature limits? 
(SUNY, Bufulo) 
Solution: 
(a) The interaction energy between an atom and the external magnetic 
field is E = -p. H. By classical Boltzmann distribution, the number of 
atoms per unit volume in the solid angle element dfl in the direction (0, p), 



is 

gexp(-PE)dfl= gexp(pHcosO/kT)dfl , 
where 0 is the angle between p and H and g is the normalization factor 
given by 
i.e., 

2?rg ln e-@'sin 6dO = n , 

nCLH 
P H * 

9 = 

47rkT sinh - kT 
Hence the probability density for the magnetic moment of an atom to be 
parallel to H is 
and that for the magnetic moment to be antiparallel to H is 
Statistical Physic8 223 

(b) The average magnetization of the gas at temperature T is 
At high temperatures, -P H << 1. Let -PH = x, and expand kT kT 
x x 
s o x w -wH.2 
3kT 
At low temperatures, x >> 1, then 
1 
coth x - - w 1 
X 

and a w np. 

(c) The magnetic susceptibility of the system is 
- 
np2/3kT, at high temperature 

at low temperature . 
There is spontaneous magnetization in the limit of low temperatures. 
2057 
A material consists of n independent particles and is in a weak external 
magnetic field H. Each particle can have a magnetic moment rnp along 

the magnetic field, where rn = J, J - 1, . . . , -J + 1, - J, J being an integer, 

and p is a constant. The system is at temperature T. 
(a) Find the partition function for this system. 

(b) Calculate the average magnetization, a, of the material. 

(c) For large values of T find an asymptotic expression for M. 
(MITI 
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Solution: 
(a) The partition function is 
J 

= empHIkT = sinh 
m=- J 

(b) The average magnetization is 
-M = - ( g ) T = N k T ( & l n i ) 
T 

= 2 [(2J + 1) coth (2.7 + 1)- - coth 



2 [ 2kT 2kT 

(c) When kT >> p H , using 
c o t h x a2? ( l + % ) , for x < 1 
we get 

M w -1N J ( J + 1)-P 2 H 
- 

3 kT 
2058 
Two dipoles, with dipole moments MI and M2, are held apart at a 
separation R, only the orientations of the moments being free. They are in 
thermal equilibrium with the environment at temperature T. Compute the 
mean force F between the dipoles for the high temperature limit __ kT R3 
1. The system is to be treated classically. 
Remark: The potential energy between two dipoles is: 
MlM2 << 
(3(M1 .R)(M2 .R) - (MI .M2)R2) 
4 = R5 
(Princeton) 
Solution: 
Taking the z-axis along the line connecting'M1 and M2, we hatre 

4=- Ml M2 [2 cos 81 cos e2 - sin 81 sin 82 cos(pl - p2)]. 
R3 
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The classical partition function is 

(2 cos 61 cos 82 - sin 81 sin 62 cos(pl - p2))]d n l d Q 2 . 
As X = pMlM2/R3 << 1, expanding the integsand with respect to A, 
retaining only the first non-zero terms, and noting that the integral of a 
linear term of cos6 is zero, we have 

1 A2 

z = [ 1 + ~ ( cos2 O1 c os e2 - sin 61 sin O2 cos(pl - p2))2d nldn2 

= 1 6 2 + -3A22r 2 + -47P = -4(a327 + 8X 2 ) , 9 9 9 

1 aZ 16X .-M iM 2 u = = 

z a p 37+8X2 R3 
2059 
The molecule of a perfect gas consists of two atoms, of mass rn, rigidly 
separated by a distance d. The atoms of each molecule carry charges q and 
-q respectively, and the gas is placed in an electric field E. Find the mean 
polarization, and the specific heat per molecule, if quantum effects can be 
neglected. 
State the condition for this last assumption to be true. 
(UC, Berkeley) 
Solution: 
field is 0. The energy of a dipole in the field is 
Assume that the angle between a molecular dipole and the external 
226 

Then 
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The condition for classical approximation to be valid is that the quantizah' 



tion of the rotational energy can be neglected, that is, kT >> - 
md2. 
2060 
The response of polar substances (e.g., HC1, H20, etc) to applied electric 
fields can be described in terms of a classical model which attributes 
to each molecule a permanent electric dipole moment of magnitude p. 
(a) Write down a general expression for the average macroscopic polarization 
jj (dipole moment per unit volume) for a dilute system of n molecules 
per unit volume at temperature T in a uniform electric field E. 
(b) Calculate explicitly an approximate result for the average macroscopic 
polarization jj at high temperatures (KT > pE). 
(MITI 
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Solution: 
(a) The energy of a dipole in electric field is 
~ , = - p . E = - p E c o s B , 
The partition function is then 
The polarization is 
PE 1 1 

(b) Under the condition -z = - << 1, coth 2 w --z + -, and we have 
kT 3 x 

ji w np2E/3kT . 
2061 
The entropy of an ideal paramagnet in a magnetic field is given approximately 

by s=so-cu2, 
where U is the energy of the spin system and C is a constant with fixed 
mechanical parameters of the system. 
(a) Using the fundamental definition of the temperature, determine 
(b) Sketch a graph of U versus T for all values of T (-m < T < m). 

(c) Briefly tell what physical sense you can make of the negative temthe 
energy U of the spin system as a function of T. 
perature part of your result. 
Solution: 
( wis co nsin) 
(a) From the definition of temperature, 
1 
we have U = -- 
2CT‘ 
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(b) We assume C > 0. The change of U with T is shown in the 
Fig. 2.14. 
Fig. 2.14. 
(c) Under normal conditions, the number of particles in higher energy 
states is smaller than that in lower energy states. The physical significance 
of a negative temperature is that under such condition the number of particles 
in an excited state is greater than that in the ground state. That 
is, there are more particles with magnetic moments anti-parallel to the 
magnetic field than those with magnetic moments parallel to the magnetic 
field. 
2062 
Consider a system of N non-interacting particles (N >> 1) in which the 
energy of each particle can assume two and only two distinct values, 0 and 
E (E > 0). Denote by no and nl the occupation numbers of the energy 
levels 0 and E, respectively. The fixed total energy’ of the system is U. 



(a) Find the entropy of the system. 
(b) Find the temperature as a function of U. For what range of values 
(c) In which direction does heat flow when a system of negative temperature 
is brought into thermal contact with a system of positive temperature? 
Why? 
(Princeton) 
Solution: 
of no is T < O? 
(a) The number of states is 
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N! 
Hence S = k l n n = klnno! 
nl! 
(b) nl/no = exp(-E/kT), where we have assumed the energy levels 
to be nondegenerate. Thus 
When no < N/2, we get T < 0. 
(c) Heat will flow from a negative temperature system to a positive 
temperature system. This is because the negative temperature system has 
higher energy on account of population inversion, i.e., it has more particles 
in higher energy states than in lower energy states. 
3. BOSE-EINSTEIN AND FERMI-DIRAC STATISTICS 
(2063-2 115) 
2063 
A system of N identical spinless bosons of mass rn is in a box of volume 

V = L3 at temperature T > 0. 
(a) Write a general expression for the number of particles, n(E), having 

an energy between s and E + ds in terms of their mass, the energy, the 
temperature, the chemical potential, the volume, and any other relevant 
quantities. 
(b) Show that in the limit that the average distance, d, between the 
particles is very large compared to their de Broglie wavelength (i.e., d >> 
A) the distribution becomes equal to that calculated using the classical 
(Boltzmann) distribution function. 
(c) Calculate the 1st order difference in average energy between a system 
of N non-identical spinless particles and a system of N identical spinless 
bosons when d >> A. For both systems the cubical box has volume V = L3 
and the particles have mass rn. 
(UC, Berkeley) 
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Solution: 
(a) The number of particles is 
(b) In the approximation of a dilute gas, we have exp(-p/kT) >> 1, 
and the Bose-Einstein distribution becomes the Boltzmann distribution. 
We will prove as follows that this limiting condition is just d >> A. 
Since 
we have 

where X = h / d mis the de Broglie wavelength of the particle’s thermal 

motion, and d = m. 
Thus the approximation exp(-p/kT) >> 1 is equivalent to d >> A. 
(c) In the 1st order approximation 
the average energy is 
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2064 



Consider a quantum-mechanical gas of non-interacting spin zero 
bosons, each of mass m which are free to move within volume V. 
(a) Find the energy and heat capacity in the very low temperature region. 
Discuss why it is appropriate at low temperatures to put the chemical 
potential equal to zero. 
Prove that the energy is proportional to T4. 
Note: Put all integrals in dimensionless form, but do not evaluate. 
Solution: 
(b) Show how the calculation is modified for a photon (mass = 0) gas. 
(UC, Berkeley) 
(a) The Bose distribution 
requires that p 5 0. Generally 
When T decreases, the chemical potential p increases until p = 0, for which 
Bose condensation occurs when the temperature continues to decrease with 
p = 0. Therefore, in the limit of very low temperatures, the Bose system 
can be regarded as having p = 0. The number of particles at the noncondensed 
state is not conserved. The energy density u and specific heat c 
are thus obtained as follows: 
(b) For a photon gas, we have p = 0 at any temperature and E = hw. 
w2 dw 
The density of states is - and the energy density is 
lr2c3 ' 
u=-J 1 hw3 d W = L ( T ) ) ' l , O 3 -x.3 d x 
T2c3 ehw/kT - 1 A2C3 ex - 1 
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2065 
A gas of N spinless Bose particles of mass m is enclosed in a volume 
V 'at a temperature T. 
(a) Find an expression for the density of single-particle states D(&) as 
a function of the single-particle energy E. Sketch the result. 
(b) Write down an expression for the mean occupation number of a 
single particle state, E, as a function of E,T, and the chemical potential 

p ( T ) . Draw this function on your sketch in part (a) for a moderately high 
temperature] that is, a temperature above the Bose-Einstein transition. 
Indicate the place on the &-axis where E = 1.1. 
(c) Write down an integral expression which implicitly determines 
p ( T ) . Referring to your sketch in (a), determine in which direction p ( T ) 
moves as T is lowered. 
(d) Find an expression for the Bose-Einstein transition temperature, 
T,, below which one must have a macroscopic occupation of some singleparticle 
states. Leave your answer in terms of a dimensionless integral. 
(e) What is p ( T ) for T < T,? 
Describe E(E, 7') for T < Tc? 
(f) Find an exact expression for the total energy, U(TIV) of the gas 

for T < Tc. Leave your answer in terms of a dimensionless integral. 
(MITI 
Solution: 
(a) From e = p2/2rn and 
47rV 
D(&)d&= -ph23d p 
we find 
27rv 

h3 D(&)= -(2rn)3/2E1/2 . 
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The result is shown in Fig. 2.15 
(c) With P2 E = - we have N= - 
2m 
or 
dx 
ex-%, - 1 ' 
2T 
h3 
N/V= - (2mkT)3/2 
where xcl. = p/kT 5 0. As N/V remains unchanged when T decreases, 
p ( T ) increases and approaches zero. 
(d) Let n be the number density and T, the critical temperature. Note 
that at temperature T, the chemical potential p is near to zero and the 
particle number of the ground state is still near to zero, so that we have 
= -2(T2 mkT,)3/2 
h3 
where the integral 
= 1 . 3 0 6 6 . 
Hence 
T - - 
(e) For bosons, p < 0. When T 5 T,, p w 0 and we have 

n,>o = exp(iEji;) - 1 ' 
234 
and 
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(f) When T < T,, we have 
2aV O3 x3f2dx 
e 2 - 1 

U = F(2m)3/2(k~)5/2 1 - 

312 

= 0.770NkT (6) . 
2066 
(a) In quantum statistical mechanics, define the one-particle density 
(b) For a system of N identical free bosons, let 
matrix in the r-representation where r is the position of the particle. 
where (Nk) is the thermal averaged number of particles in the momentum 
state k. Discuss the limiting behavior of pl(r) as r -+ 00, when the temperature 

T passes from T > Tc to T < T,, where T, is the Bose-Einstein 
condensation temperature. In the case lim p1 (r) approaches zero, can you 
describe how it approaches zero as r becomes larger and larger? 
Solution: 
(a) The one-particle Hamiltonian is H = p2/2m, and the energy eigenstates 
are IE). The density matrix in the energy representation is then 
p(E) = exp(-E/koT), which can be transformed to the coordinate represent 
at ion 

(rlplr') = C (rIE)(Ele-HIksTI~)(E'lr') 
r+m 

(SVNY, Bufldo) 
E,E' 



= C (PE(r)e-E'kflT6EE!pfE, (r) 
E,E' 

= C p E (r)e-ElkBTpfE(rP. ') 
E 
Statiaticd PhyJics 235 
where kg is Boltzmann’s constant. The stationary one-particle wavefunction 
is 
where E = A2k2/2m. Thus we obtain 
,a k.( r- r’) - hak’/8rr’mk~ T 
k 

p = 0 when the temperature T passes from T > T, to T < T,, hence 
When r -+ 00, we have approximately 
mkgT, 1 
27rA2 r 

w ___-. 
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2067 
Consider a gas of non-interacting, non-relativistic, identical bosons. 
Explain whether and why the Bose-Einstein condensation effect that applies 
to a three-dimensional gas applies also to a two-dimensional gas and to a 
one-dimensional gas. 
(Princeton) 
Solution: 
Briefly speaking, the Bose-Einstein condensation occurs when p = 0. 
For a two-dimensional gas, we have 

If p = 0, the above expression diverges. Hence p # 0 and Bose-Einstein 
condensation does not occur. 
For a one-dimensional gas, we have 
If p = 0, the integral diverges. Again, Bose-Einstein condensation does not 
occur. 
2068 
Consider a photon gas enclosed in a volume V and in equilibrium at 
temperature T. The photon is a massless particle, so that E = pc. 
(a) What is the chemical potential of the gas? Explain. 
(b) Determine how the number of photons in the volume depends upon 
the temperature. 
(c) One may write the energy density in the form 
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Determine the form of p(w), the spectral density of the energy. 

(d) What is the temperature dependence of the energy E? 
(UC, B e r k e l e y ) 
Solution : 
(a) The chemical potential of the photon gas is zero. Since the number 
of photons is not conserved at a given temperature and volume, the average 

photon number is determined by the expression ( $)T,v = 0, then 

(b) The density of states is 87rVp2dp/h3, or Vw2dw/7r2c3. Then the 
number of photons is 
Hence 

and E 0: T4 
2069 
(a) Show that for a photon gas p = U/3V. 
(b) Using thermodynamic arguments (First and Second Laws), and 



the above relationship between pressure and energy density, obtain the 
dependence of the energy density on the temperature in a photon gas. 
(UC, B e r k e l e y ) 
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Solution: 
(a) The density of states is 

D(&)da = a!VE2ds , 
where a! is a constant. 
With 

In E = - 1D ( E )ln (1- e-BC)de , 
we have 
U 
3v 
d E = - . 
(b) For thermal radiation, we have 
U(T,V) = u(T)V . 
Using the following formula of thermodynamics 
T du u 

3dT 3 

we get u = -- - -, i.e. u = 7T4, where 7 is a constant. 
2070 
Consider a cubical box of side L with no matter in its interior. The 
walls are fixed at absolute temperature T , and they are in thermal equilibrium 
with the electromagnetic radiation field in the interior. 
(a) Find the mean electromagnetic energy per unit volume in the frequency 

range from w to w + dw as a function of w and T. (If you wish 
to start with a known distribution function - e.g., Maxwell-Boltzmann, 
Planck, etc. - you need not derive that function.) 
(b) Find the temperature dependence of the total electromagnetic energy 
per unit volume. (Hint: you do not have to actually carry out the 
integration of the result of part (a) to answer this question.) 
(SVNY, Buflulo) 
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Solution: 

p + dp is given by 
(a) The mean electromagnetic energy in the momentum interval p -+ 

V 4 ~ p ' d p h w dE, = 2 . -, (2Th)3 e h w / 2 n k T - 1 ' 
where the factor 2 corresponds to the two polarizations of electromagnetic 
waves and V = L3. 
Making use of p = hw/c, we obtain the mean electromagnetic energy 

in the frequency interval w -+ w + dw: 

Vh w3dw 
dEw = z e h w / 2 n k T - 1 * 

The corresponding energy density is 
(b) The total electromagnetic energy per unit volume is 

(kT)4 O0 00 z 3 d z u = l d u w = - /~ ' ( h c ) ~ - e5. - 1 

Thus u o( T4. 
2071 



A historic failure of classical physics is its description of the electromagnetic 
radiation from a black body. Consider a simple model for an ideal 
black body consisting of a cubic cavity of side L with a small hole in one 
side. 
(a) Assuming the classical equipartition of energy, derive an expression 
for the average energy per unit volume and unit frequency range (Rayleigh- 
Jeans' Law). In what way does this result deviate from actual observation? 
Fig. 2.16. 
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(b) Repeat the calculation, now using quantum ideas, to obtain an 
expression that properly accounts for the observed spectral distribution 
(Planck's Law). 
(c) Find the temperature dependence of the total power emitted from 
(CUSPEA) 
Solution: 
(a) For a set of three positive integers (nl,nz,ns), the electromagnetic 
field at thermal equilibrium in the cavity has two modes of oscillation with 

the frequency u(n1, n 2 , n 3 ) = -(n: + nz + ni)1/2. Therefore, the number 
of modes within the frequency interval Au is 
the hole. 
C 

2L 
Equipartition of energy then gives an energy density 
47r 
1 dE 1 8 
kT. -u'Au. 
u, = -- -- - . Au L3 du L3 

= 87ru2kT/c3 . 
When u is very large, this expression does not agree with experimental 
observations since it implies u, o< u2. 

(b) For oscillations of freqeuncy u, the average energy is 
Ln= 
O 

which is to replace the classical quantity kT to give 
241 
(c) The energy radiated from the hole per unit time is 
00 

ucc 1 u,dvoc T 4 . 

2072 
Electromagnetic radiation following the Planck distribution fills a cavity 
of volume V . Initially w; is the frequency of the maximum of the curve 
of u;(w), the energy density per unit angular frequency versus w. If the 
volume is expanded quasistatically to 2V, what is the find peak frequency 
wf of the uf (w) distribution curve? The expansion is adiabatic. 
(UC, Berkeley) 
Solution: 
As the Planck distribution is given by l/[exp(hw/kT) - 11 and the 
density of states of a photon gas is 

D(w)dw = uw2dw (u = const) , 
the angular frequency w which makes U(W) extremum is w = 7T, where 7 
is a constant. On the other hand, from dU = TdS - pdV and U = 3pV, we 
obtain V4p3 = const when dS = 0. Since p 0: T4, we have 
VT3 = const., 



2073 
A He-Ne laser generates a quasi-monochromatic beam at 632863. The 
beam has an output power of Imw 
radians, and a spectral linewidth of 0.Ol.h. If a black body with an area 
of 1 cm2 were used to generate such a beam after proper filtering, what 
should its temperature be approximately? 
(UC, Berkeley) 
watts), a divergence angle of 
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Solution: 
of photons in the interval dadn: 
Considering black body radiation in a cavity we get the number density 
The number of photons in the laser beam flowing through an area A per 
unit time is dn' = cAdn, and the output power is W = Edn'. 
Introducing E = hc/X and dn = n(dO)2 into the expression, we obtain 
where 
Therefore 
2 n A hc2 dX (do) 
A5 

w, = 

T = -hc- . 1 
Xk l n ( $ + l ) 
Using the known quantities, we get 

WO = 3.60 x lo-' W , T = 6 x lo9 K . 
2074 
(a) Show that the number of photons in equilibrium at temperature T 
in a cavity of volume V is N = V ( k T / f t ~tim) ~es a numerical constant. 
(b) Use this result to obtain a qualitative expression for the heat ca- 
(UC, Berkeley) 
pacity of a photon gas at constant volume. 
Solution: 
(d) The density of states of the photon gas is given by 
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Thus 
where 
(b) The energy density is 
therefore C, rn T3. 
2075 
As you know, the universe is pervaded by 3K black body radiation. In 
a simple view, this radiation arose from the adiabatic expansion of a much 
hotter photon cloud which was produced during the big bang. 
(a) Why is the recent expansion adiabatic rather than, for example, 

(b) If in the next lo1' years the volume of the universe increases by a 
factor of two, what then will be the temperature of the black body radiation? 
(Show your work.) 
(c) Write down an integral which determines how much energy per 
cubic meter is contained in this cloud of radiation. Estimate the result 
within an order of magnitude in joules per (meter)3. 
(Chicago) 
Soh t ion : 
(a) The photon cloud is an isolated system, so its expansion is adiabatic. 
is0 t hermal? 
(b) Th energy density of black body radiation is u = aT4, so that the 
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total energy E o( VT4. From t#he formula TdS = dE + pdV, we have 

T (g)"= (dEE ) ~ 
o cVT3* 

Hence S = VT3. const. 
For a reversible adiabatic expansion, the entropy S remains unchanged. 
Thus when V doubles T will decrease by a factor (2)-'13. So after another 
lo1' years, the temperature of black body radiation will become 
T = 3K/2'I3. 
(c) The black body radiation obeys the Bose-Einstein Statistics: 
where the factor 2 is the number of polarizations per state. Hence 
2076 
Our universe is filled with black body radiation (photons) at a temperature 
T = 3 K. This is thought to be a relic, of early developments 
following the 'big bang". 
(a) Express the photon number density n analytically in terms of T and 
universal constants. Your answer should explicitly show the dependence on 
T and on the universal constants. However, a certain numerical cofactor 
may be left in the form of a dimensionless integral which need not be 
evaluated at this stage. 
(b) Now estimate the integral roughly, use your knowledge of the universal 
constants, and determine n roughly, to within about two orders of 
magnitude, for T = 3 K. 
( C USPEA) 
Solution: 
(a) The Bose distribution is given by 
n(k) = 1/bP(P&(k)) - 11 
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The total number of photons is then 

where E(k) = hkc for photons and p = &. The factor 2 is due to the two 
directions of polarization. Thus 
3 

where 
(b) When T = 3 K, n M 1000/cm3. 
2077 
We are surrounded by black body photon radiation at 3K. Consider 
the question of whether a similar bath of thermal neutrinos might exist. 
(a) What kinds of laboratory experiments put the best limits on how 

(b) The photon gas makes up lowGof the energy density needed to close 
the universe. Assuming the universe is no more than just closed, what 
order of magnitude limit does this consideration place on the neutrino’s 
temperature? 
hot a neutrino gas might be? How good are these limits? 
(c) In a standard big-bang picture, what do you expect the neutrino 
temperature to be (roughly)? 
(Princeton) 
Solution: 
(a) These are experiments to study the neutral weak current reaction 

between neutrinos and electrons, vp + e- -+ vp + e - , using neutrinos 

created by accelerator at CERN. No such reactions were detected 
above the background and the confidence limit of measurements was 
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90%. This gives an upper limit to the weak interaction cross section of 



o < 2.6 x 10-42E, cm2/electron. With E, - kT we obtain T < 10' K. 
(b) The energy density of the neutrino gas is p, M aT:, and that of 
the photon gas is p., = aT4. As p, 5 1O-'p, we have T, 5 T/101.5. For 

T N 3 K, we get T, 5 0.1 K. 
(c) At the early age of the universe (when kTkrn,c2) neutrinos 
and other substances such as photons are in thermal equilibrium with 
T, = T7,p,, xa p., and both have energy distributions similar to that of 
black body radiation. Afterwards, the neutrino gas expands freely with the 
universe and its energy density has functional dependence p,(v/T), where 

the frequency v a -, the temperature T a -, R being the "radius" of the 
universe. Hence the neutrino energies always follw the black body spectrum, 
just like the photons. However, because of the formation of photons 
by the annihilation of electron-position pairs, p., > p,, and the temperature 
of the photon gas is slightly higher than that of the neutrino gas. As the 
photon temperature at present is 3 K, we expect T, < 3 K. 
1 1 
R R 
2078 
Imagine the universe to be a spherical cavity, with a radius of lo2' cm 
and impenetrable walls. 
(a) If the temperature inside the cavity is 3K, estimate the total number 
of photons in the universe, and the energy content in these photons. 
(b) If the temperature were 0 K, and the universe contained 10' electrons 
in a Fermi distribution, calculate the Fermi momentum of the electrons. 
( Columbia) 
Solution: 
(a) The number of photons in the angular frequency range from w to 

w + dw is 
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The total number of photons is 
The total energy is 
w 2.6 x ergs , 
(b) The Fermi momentum of the electrons is 
2079 
An n-dimensional universe. 
In our three-dimensional universe, the following are well-known results 
from statistical mechanics and thermodynamics: 
(a) The energy density of black body radiation depends on the temperature 
as TQ, where a = 4. 
(b) In the Debye model of asolid, the specific heat at low temperatures 
(c) The ratio of the specific heat at constant pressure to the specific 

Derive the analogous results (i.e., what are 7, a and /I) in the universe 

depends on the temperature as Tfl, where /I = 3. 
heat at constant volume for a monatomic ideal gas is 7 = 5 / 3 . 
with n dimensions. 
P I T ) 
Solution: 
(a) The energy of black body radiation is 
E = 2 / / - dnpdnq AW 
(2nh)n ehwl2nkT - 1 
For the radiation we have p = A w / c , so 

where x = Aw/kT. Hence Q = n + 1. 



(b) The Debye Model regards solid as an isotropic continuous medium 
with partition function 

nN nN [ i=i 1 j = 1 

Z ( T , V ) = exp - A E w ; / 2 k T n[l- e x p ( - f ~ w i / k T ) ] - l 

The Holmholtz free energy is 
nN h nN 

F = - k T l n Z = - ~ w ; + k T ~ l n [ l - e x p ( - h w ; / k T ) ] . 
i=l i=1 

2 
When N is very large, 
nN 

-+ $ lwD wn-'dw , 
i=l 

where WD is the Debye frequency. So we have 

AWD + (kT)n+i ___ xn-' ln[l- e x p ( - x ) ] d x , 

( fntw2DN) n n2N lXD 
2(n + 1) 

F = - 
where XD = hwD/kT. Hence 

c v = - T a(2~F ) m T n , 

i.e., B = n. 
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(c) The theorem of equipartition of energy gives the constant volume 
1 
specific heat of a molecule as c, = -k where 1 is the number of degrees 2 
of freedom of the molecule. For a monatomic molecule in a space of n 

dimensions, 1 = n. With cp = c, + k, we get 
2080 
(a) Suppose one carries out a measurement of the specific heat at 
constant volume, C, for some solid as a function of temperature, TI and 
obtains the results: 
T C, (arbitrary units) 
lOOOK 20 
500 K 20 
40 K 8 
20 K 1 
Is the solid a conductor or an insulator? Explain. 
(b) If the displacement of an atom about its equilibrium position in a 
harmonic solid is denoted by U , then the average displacement squared is 
given by 
where M is the mass of the atom, g ( E ) is a suitably normalized density of 
energy states and n(c) is the Bose-Einstein occupation factor for phonons 



of energy E. Assuming a Debye model for the density of states: 
g ( E ) = ~ E ~ / ( A W ~ ) ~ 
g ( E ) = 0 

for E < ~ W D, 
for E > h w ,~ 
where WD is the Debye frequency, determine the temperature depeudence 
of (U2) for very high and very low temperatures. Do your results make 
sense? 
( Chica g 0) 
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Solution: 
constant at high temperatures. So it is an insulator. 
(a) For the solid we have C, o( T3 at low temperatures and C, = 
(b) The phonon is a boson. The Bose-Einstein occupation factor for 
1 

ea/kT - 1 ’ 

phonons of energy E is 
n(E) = 
so 

& -.-+-.- LhwD”* er/kT - 1 ds . -- 9h2 1 9A2 

4M AWD M 
If the temperature is high, i.e., kT >> E, 

If the temperature is low, i.e., kT << E. 

These results show that the atoms are in motion at T = 0, and the higher 
the temperature the more intense is the motion. 
2081 
Graphite has a layered crystal structure in which the coupling between 
the carbon atoms in different layers is much weaker than that between the 
atoms in the same layer. Experimentally it is found that the specific heat 
is proportional to T at low temperatures. How can the Debye theory be 
adapted to provide an explanation? 
(SUNY, Buflulo) 
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Solution: 
Graphite is an insulator and its specific heat is contributed entirely by 
the crystal lattice. When the temperature T increases from zero, the vibrational 
modes corresponding to the motion between layers is first excited 
since the coupling between the carbon atoms in different layers is much 
weaker. By the Debye model, we have 
w = c k . 
The number of longitudinal waves in the interval k to k+dk is ( L / 2 ~ ) ~ 2 ~ k d k , 
where L is the length of the graphite crystal. From this, we obtain the 

number of the longitudinal waves in the interval w to w + dw, L2wdw/2xci, 
where C I I is the velocity of longitudinal waves. Similarly, the number of 

transversal waves in the interval w to w + dw is ----, 
L2wdw 
TC? 

Therefore, the Debye frequency spectrum is given by 

w < WD (Debye frequency) . 
where 
hW 

z=- - XD = twD_ , kB being Boltzmann’s constant. 



kBT’ kB T 
At low temperatures, ~ W >D> k BT, i.e., X D >> 1, then, 
O0 x3ez 
dx 
252 
where 
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00 

((3) = c n-3 m 1.2 . 
n= I 

So that the specific heat is proportional to T2 at low temperatures, or more 
precisely, 

C" = . ((3)T2 . 3k38P(Ci2 + 2 c p ) 
7rh2 
2082 
One Dimensional Debye Solid. 
Consider a one dimensional lattice of N identical point particles of mass 
rn, interacting via nearest-neighbor spring-like forces with spring constant 
mu2. Denote the lattice spacing by a. As is easily shown, the normal mode 
eigenfrequencies are given by 
wk = w.\/2(1 - COS ka) 
with k = Z?rn/aN, where the integer n ranges from -N/2 to +N/2 (N >> 
1). Derive an expression for the quantum mechanical specific heat of this 
system in the Debye approximation. In particular, evaluate the leading 
non-zero terms as functions of temperature T for the two limits T + co, 
T -+ 0. 
(Princeton) 
Solution: 
Please refer to Problem 2083. 
2083 
A one dimensional lattice consists of a linear array of N particles (N >> 
1) interacting via spring-like nearest neighbor forces. The normal mode 
frequencies (radians/sec) are given by 

w, = W J 2 ( 1 - cos(Znn/N)) , 
where 6 is a constant and n an integer ranging from -N/2 to +N/2. The 
system is in thermal equilibrium at temperature T. Let c, be the constant 
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uvolume” (length) specific heat. 
(a) Compute c, for the regime T + 00. 

(b) For T + 0 

c, -+ Aw-“Tr , 
where A is a constant that you need not compute. Compute the exponents 
(Y and 7. 
The problem is to be treated quantum mechanically. 
( P r i n c e ton) 
Solution: 
T 1 

= 1 ehw,/kT - 1 ‘ 

n=- iYWhen 
kT >> hw, 

- NkT . u kT c5 C h w n . - - 



hwn 
= Nk. 
dU 
Hence c, = - dT 
(b) When kT << hw, we have 

Y 1 N / 2 

c5 2 C tiune-hWJkT . = c hwn ehw,/kT - 1 

n=-+ n=O 

so 

Notice that as N >> 1 we have approximately 
N / 2 sin2 G e - ( h w / r r k T ) s i n ( n z / N ) N 

cos N 

N . -d (sin y) T TX 
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Because exp(-thw/rkT) decreases rapidly as t -+ 1, we have 
where A = (16Nk2/h) t2exp(-[)dE. 
Hence a = 7 = 1. 
2084 
Given the energy spectrum 

EP = [ ( P c )+~ mc, , 2 4 1 112 + p c as p - + 00. 

(a) Prove that an ultrarelativistic ideal fermion gas satisfies the equation 
of state pV = E/3, where E is the total energy. 
(b) Prove that the entropy of an ideal quantum gas is given by 
S= - k ~ [ n ; l n ( n ; ) i ( l f n ; ) l n ( l + n , ) ] 
a 

where the upper (lower) signs refer to bosons (fermions). 
(SUNY, Buflulo) 
Solution: 

(a) The number of states in the momentum interval p to p + dp is 
87rV 1 
F p 2 d p (taking S = -). From E = cp, we obtain the number of states in 
2 

the energy interval E to E + dE: 
87rV 
c3h3 

N(e)de = -e2de . 
So the total energy is 
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In terms of the thermodynamic potential In Z, 
1 
= - E . 
3 
Note that this equation also applies to an ultrarc.dtivistic boson gas. 
(b) The average number of particles in the quantum state i is given by 

n; = l/(exp(a + PE,) 11, from which we have 
or 
and 
BY 
we have 



256 Problems 8 Solution3 on Thermdpmics 8 Statistical Mechanics 
2085 
Consider an ideal quantum gas of Fermi particles at a temperature T. 
(a) Write the probability p ( n ) that there are n particles in a given 
(b) Find the root-mean-square fluctuation ((n- ( n ) ) z ) ) ' /izn the occupation 
number of a single particle state as a function of the mean occupation 
number (n). Sketch the result. 
single particle state as a function of the mean occupation number, (n). 
(MIT) 
Solution: 
potential. The partition function is 
(a) Let E be the energy of a single particle state, p be the chemcial 

z = exp[n(p- &) /kT]= 1 + exp[(p - &) / kT.] 
n 

The mean occupation number is 
The probability is 
(b) ((n- (n))2)= kT-a (n) -- ( n ) ( l - ( n ) ) 
aP 
So we have ( ( n- ( n ) ) z ) ) ' /=z J(n)(l - (n)) 
The result is shown in Fig. 2.17. 
1 
< ( n - <n>,2>' 
Fig. 2.17. 
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2080 
In a perfect gas of electrons, the mean number of particles occupying 
a single-particle quantum state of energy E, is: 
1 N; = 

.XP[(Ei - p)/kT] + 1 * 

(a) Obtain a formula which could be used to determine p in terms of 
(b) Show that the expression above reduces to the Maxwell-Boltzmann 
distribution in the limit nX3 << 1, where X is the thermal de Broglie wavelength 
. 
the particle density n and various constants. 
(c) Sketch Ni versus E; for T = 0 K and for T = p/5 K. Label 
(UC, Berkeley) 
significant points along both axes. 
Solution: 
(a) The particle number density is 
As 
x 
This formula can be used to determine /I. 
(b) When nX3 << 1, we must have in the above integral 
It follows that 
i.e., it reduces to the Boltzmann distribution. 
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(c) The variation of Ni versus Ei is as shown in Fig. 2.18. 
(a) T = K (b) J = $ - K 
Fig. 2.18. 
2087 
Suppose that in some sample the density of states of the electrons D(E) 
is a constant Do for energy E > 0 ( D ( s ) = 0 for E < 0) and that the total 

number of electrons is equal to N. 
(a) Calculate the Fermi potential po at 0 K. 
(b) For non-zero temperatures, derive the condition that the system is 



non-degenerate. 
(c) Show that the electronic specific heat is proportional to the tem- 
(UC, Berkeley) 
perature, T, when the system is highly degenerate. 
Solution: 
(a) When T = 0 K, all the low lying energy levels are occupied, while 
those levels whose energies E are greater than PO are all vacant. Taking the 
1/2 spin of electrons into consideration, every state can accomodate two 
electrons, and hence 2DopoV = N , or 
N 
Po = -2VD0 ' 
where V is the volume of the sample. 

(b) The non-degeneracy condition requires that exp (fi)<< 1, then 
Statistied Physica 
In this approximation, 
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Tha t is, the non-degeneracy condition is kT >> (8)/2 Do = PO. 

(c) When T = 0 K, the electrons are in the ground state without excitation. 

When T # 0 K, but T << P o l k , only those electrons near the Fermi 
surface are excited, N,H M kTDo, and the specific heat contributed by each 
electron is Co = - k . Therefore, when the system is highly degnerate, the 
specific heat C o( T . 
3 
2 
2088 

Consider a system of N "non-interacting" electrons/cm3, each of which 
can occupy either a bound state with energy E = -Ed or a free-particle 

continuum with E = &. (This could be a semiconductor like Si with N 
shallow donors/cm3.) 
(a) Compute the density of states as a function of E in the continuum. 
(b) Find an expression for the chemical potential in the low tempera- 
(c) Compute the number of free electrons (i.e., electrons in the contin- 
(UC, Berkeley) 
Suppose that each bound state can at most contain a pair of electrons 
N 
with anti-parallel spins, and that the number of bound states is - That 
2 ' 
is, when T = 0 K, all the bound states are filled up with no free electrons. 
When T is quite low, only a few electrons are in the free particle continuum 
so that we can use the approximation of weak-degeneracy. 
ture limit. 
uum) as a function of T in the low temperature limit. 
Solution: 
(a) The density of states in the continuum is 
(b), (c) The number of electrons in the bound states are 
N 
Nb = e - ( E d + p ) / k T + 1 
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The number of electrons in the continuum (weak-degeneracy approximation) 
is 
where 
From (1) and (2), we get 
Substitute (3) in (2), we get 



Nf - kT N Ed p = kTln- - -1n - - - . N, 2 N, 2 
2089 
(a) For a system of electrons, assumed non-interacting, show that the 
probability of finding an electron in a state with energy A above the chemical 
potential p is the same as the probability of finding an electron absent 
from a state with energy A below p at any given temperature T. 
(b) Suppose that the density of states D( E )is given by 

U(& - "p, E > % , 

O < E < E g , 

& < O , 
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as shown in Fig. 2.19, 
Fig. 2.19 

and that at T = 0 all states with E < 0 are occupied while the other states 
are empty. Now for T 3 0, some states with E > 0 will be occupied while 
some states with c < 0 will be empty. If a = b, where is the position of p? 

For a # b, write down the mathematical equation for the determination of 
p and discuss qualitatively where p will be if a > b? a < b? 
(c) If there is an excess of nd electrons per unit volume than can be 
accommodated by the states with E < 0, what is the equation for p for 
T = O? How will p shift as T increases? 

(SUNY, Buflulo) 
Solution: 
pied is 
(a) By the Fermi distribution, the probability for a level E to be occuso 

the probability for finding an electron at E = p + A is 

and the probability for not finding electrons at E = p - A is given by 
1 
1 - .F(p - A) = - eBA+l ' 

The two probabilities have the same value as required. 
(b) When T > 0 K, some electrons with E < 0 will be excited to states 
of E > E ~ T. h at is to say, vacancies are produced in the some states of E < 0 
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while some electrons occupy states of E > E ~ T. h e number of electrons with 
E > E~ is given by 
The number of vacancies for e < 0 is given by 
By n, = np, we have p = cg/2 when a = b. We also obtain the equation to 

determine p when a # b, 
For a > b, we have 

so that B + eg - p > E + p, i.e., p < ~ ~ 1H2en.ce p shifts to lower energies. 

For a < b, p > E~ 12, p shifts to higher energies. 
(c) When T = 0, by 
we obtain 
p shifts to lower energies as T increases. 
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2090 
(a) Calculate the magnitude of the Fermi wavevector for 4.2 x 1021 
(b) Compute the Fermi energy (in eV) for this system. 
(c) If the electrons are replaced by neutrons, compute the magnitude 
(UC, Berkeley) 
electrons confined in a box of volume 1 cm3. 
of the Fermi wavevector and the Fermi energy. 



Solution: 
(a) The total number of particles is 
The Fermi wavelength is 
= 1.25 x 10-gm = 12.5A , 
h 8rV ‘ I 3 

X F = - = (x) 
PF 

(b) The Fermi energy is 
(c) If the electrons are replaced by neutrons, we find that 

= XF = 12.5A , 
m 
m‘ 
and E& = -EF = 5.2 x 10-4eV. 
2091 
Calculate the average energy per particle, E, for a Fermi gas at T = 0, 

(UC, Berkeley) 
given that EF is the Fermi energy. 
Solution: 
We consider two cases separately, non-relativistic and relativistic. 
(a) For a non-relativistic particle, p << mc ( p is the momentum and m 
is the rest mass), it follows that 

P2 & = - . 
2m 
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We have D(E) = fi. const. 
Then 
- l e F & & d a - 

- iEF * 

& = I,” &de 

(b) For p >> mc, we have E = p c , and D(E)= E’. const. Therefore, 
2092 
Derive the density of states D(e) as a function of energy E for a free 
electron gas in one-dimension. (Assume periodic boundary conditions or 
confine the linear chain to some length L.) Then calculate the Fermi energy 
EF at zero temperature for an N electron system. 
( wis co ns in) 
Solution: 
The energy of a particle is E = p2/2m. Thus, 
Taking account of the two states of spin, we have 
or 

a(€=) L (F)’” /. . 

At temperature 0 K, the electrons will occupy all the states whose energy 
is from 0 to the Fermi energy EF. Hence 
266 
giving 
2093 
Consider a Fermi gas at low temperatures kT << p(O), where p(0) 
is the chemical potential at T = 0. Give qualitative arguments for the 



leading value of the exponent of the temperature-dependent term in each 
of the following quantities: (a) energy; (b) heat capacity; (c) entropy; (d) 
Helmholtz free energy; (e) chemical potential. The zero of the energy scale 
is at the lowest orbital. 
(UC, Berkeley) 
Solution: 
At low temperatures, only those particles whose energies fall within a 

thickness - kT near the Fermi surface are thermally excited. The energy 

of each such particle is of the order of magnitude kT. 
E - E(0) a T2. 
(a) E = E(0) +akT.kT, where Q! is a proportionality constant. Hence 

GI 
T (c) From dS = -dT, we have 
T 

S = i $ d T a T . 
(d) From F = E - TS, we have F - F(0) a T2. 

(e) From p = (F + pV)/N and p = 2E/3V, where N is the total 
number of particles, we have p - p(0) a T2. 
2094 
Derive an expression for the chemical potential of a free electron gas 
with a density of N electrons per unit volume at zero temperature (T = 
0 K). Find the chemical potential of the conduction electrons (which can 
be considered as free electrons) in a metal with N = loz2 electrons/cm3 at 
T = O K . 
(UC, Berkeley) 
Solution: 
From the density of states 

D(c)de= 4 ~ ( 2 r n ) ~ / ~ & d ,e / h ~ 
we get 
h2 3N 2f3 

2m (G) Therefore, po = - 

For N = loz2 electrons/cm3 = lo2' electrons/m3, it follows that 

po = 2.7 x lo-'' J = 1.7 eV . 
2095 
D(E) is the density of states in a metal, and EF is the Fermi energy. 

At the Fermi energy D(EF)# 0. 
(a) Give an expression for the total number of electrons in the system 
at temperature T = 0 in terms of EF and D(EF). 
(b) Give an expression of the total number of electrons in the system 

at T # 0 in terms of the chemical potential p and D(E). 
(c) Calculate the temperature dependence of the chemical potential at 
low temperatures, i.e., p >> kT. 
(Chicago) 
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Fig. 2.20. 

Solution: 
The density of states is 
47rV ( 2m)3/2 
h3 
D(E) = 
(a) If T = 0, the total number of electrons is 



2 
3 
EF 

N = l D(E)dE = -D(EF)EF . 

(c) At low temperatures 1.1 >> kT, 

= / , 'D(E)dE + 7-r(2k T)'D'(p) + -7T(4k T)4D"'(p)+ . . . 6 3 60 

Fy 87~V3h(32 rn)~p/3'/ 2 [1+ f I",?( , 
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2096 
For Na metal there are approximately 2.6 x conduction electrons/ 
cm3, which behave approximately as a free electron gas. From these facts, 
(a) give an approximate value (in eV) of the Fermi energy in Na, 
(b) give an approximate value for the electronic specific heat of Na at 
(UC, Berkeley) 
room temperature. 
Solution: 
(a) The Fermi energy is 
h2 312 

EF = - (3r2 F) 2m 

N 
V We substitute h = 6.58 x 
1022/~mi3n to it and obtain EF w 3.2 eV. 
eV.s, m = 0.511 MeV/c2 and - = 2.6 x 
(b) The specific heat is 
where me = 9.11 x kg is the mass of the electron, k = 1.38 x 
J/K is Boltemann’s constant, and kT w - eV at room temperature. 
We substitute EF and the other quantities in the above expression and 
obtain C M 11.8 J/K.g. 
1 
40 
Statistical Physics 269 
2097 
The electrons in a metallic solid may be considered to be a threedimensional 
free electron gas. For this case: 
(a) Obtain the allowed values of k, and sketch the appropriate Fermi 

sphere in k-space. (Use periodic boundary conditions with length L). 
(b) Obtain the maximum value of k for a system of N electrons, and 
hence an expression for the Fermi energy at T = OK. 
(c) Using a simple argument show that the contribution the electrons 
make to the specific heat is proportional to T. 
Solution: 
(a) The periodic condition requires that the length of the container L 
is an integral multiple of the de Broglie wavelength for the possible states 
of motion of the particle, that is, 
( Wisconsin) 



L = In,lX , In,/ = O , l , 2 , . . . . 
Utilizing the relation between the wavelength and the wave vector, k = 
27r/X, and taking into account the two propagating directions for each dimension, 
we obtain the allowed values of k, 
2s 

k, = -Ln , , n, = O , f 1 , * 2 , . . . . 
Similarly we have 
Thus the energies 
p2 h2k2 c = - - - = - 
2m 2m 
are discrete. The Fermi sphere shell is shown in Fig. 2.21. 
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L 
2lr 

(b) dn, = -dk, , 
r L dn, = -dk, , 
dn, = -dk, . 
2T 
L 
2.n 
Thus, in the volume V = L3, the number of quantum states of free 

electrons in the region k, -+ k, + dk,, k, -+ k, + dk,, k, --t k, + dk, is 
(considering the two directions of spin) 

V dn = dn,dn,dn, = 2 dk,dk,dk - -dk,dk,dk, . 
I- 4n-3 
At T = 0 K, the electrons occupy the lowest states. According to the Pauli 
exclusion principle, there is at most one electron in a quantum state. Hence 
so that 
113 

k,,,, = ( 3 ~ ~ ; ) . 
The Fermi energy is 
(c) At T = 0 K, the electrons occupy all the quantum states of energies 
from 0 to E F . When the temperature is increased, some of the electrons 
can be excited into states of higher energies that are not occupied, but they 
must absorb much energy to do so, so that the probability is very small. 
Thus the occupancy situation of most of the states do not change, except 
those with kT near the Fermi energy EF. Therefore, only the electrons in 
such states contribute to the specific heat. Let N,fi denote the number 
of such electrons, we have N,R = kTN/EF. Thus the molar specific heat 
contributed by the electrons is 
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2098 
Sketch the specific heat curve at constant volume, C,, as a function 
of the absolute temperature, T, for a metallic solid. Give an argument 
showing why the contribution to C, from the free electrons is proportional 
to T. 
( wis c 0 ns i n) 

Solution: 
As shown in Fig. 2.22, the specific heat of a metal is 

C, = rT + AT3 
where the first term on the right hand side is the contribution of the free 
electrons and the second term is the contribution of lattice oscillation. 



T2 
Fig. 2.22. 
For a quantitative discussion of the contribution to C, of the free 
electrons see answer to Problem 2097(a). 
2099 
(a) Derive a formula for the maximum kinetic energy of an electron in 
a non-interacting Fermi gas consisting of N electrons in a volume V at zero 
absolute tempcrature. 
(b) Calculate the energy gap between the ground state and first excited 
state for such a Fermi gas consisting of the valence electrons in a 100A cube 
of copper. 
(c) Compare the energy gap with kT at 1 K. 
The mass density and atomic weight of copper are 8.93 g/cm3 and 63.6 
respectively. 
(UC, Berkeley) 
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Solution: 
(a) When T = 0 K, the Fermi distribution is 
The density of quantum states is 
N 47r 

Therefore, -V = sodF ,,(2m)3/2&de, giving 

h2 213 

& F = - (2”m) 87rV , 
i.e., 
(b) As nX/2 = a and p = h/X, the quantum levels of the valence 
electrons in the cube of copper are given by 

where nl, n2, n3 = 0 , 1 , 2 , . . . (not simultaneously 0). The 1st excited state 
of the Fermi gas is such that an electron is excited from the Fermi surface 
to the nearest higher energy state. That is 
Hence 

- 6.0 x J . h2 
8ma2 
A&=-- 
A& 
(c) -Ic = 4.4 x IO-’K 1K. 
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2100 
1 
(a) For a degenerate, spin - non-interacting Fermi gas at zero tem- 
2 ' 
perature, find an expression for the energy of a system of N such particles 
confined to a volume V . Assume the particles are non-relativistic. 
(b) Given such an expression for the internal energy of a general system 
(not necessarily a free gas) at zero temperature, how does one determine 
the pressure? 
(c) Hence calculate the pressure of this gas and show that it agrees 
with the result given by the kinetic theory. 
(d) Cite, and explain briefly, two phenomena which are at least qualitatively 
explained by the Fermi gas model of metals, but are not in accord 
with classical statistical mechanics. Cite one phenomenon for which this 
simple model is inadequate for even a qualitative explanation. 
(UC, Berkeley) 
Solution: 
(a) The density of states is given by 



Hence 
and 
(b) From the thermodynamic relation 

(g) = T (g)" - P 1 

and T = 0 K, we have 

p = - (g)Tv2=E . 
2 74 Problem3 d Solutiow on Thermodylnmics d Statistical Mechanics 

(c) Assume that the velocity distribution is D(v)dv, then the number 
of the molecules which collide with a unit area of the walls of the container 

in a unit time, with velocities between v and v + dv is nv,D(v)dv. The 
force that the unit areas suffers due to the collisions is 
dp = 2mv:nD(v)dv 
Hence the pressure is 
nD(v) .2mvgdv = nD(v) . rnvgdv 

= I,,, 1 2E 

= 2 / nD(v) -mv2dv = -- . 
3 2 3v 
For an electron gas 
(d) The specific heat and the paramagnetic magnetization of metals 
Superconductivity cannot be explained by the Fermi gas model. 
can be qualitatively explained by the Fermi gas model. 
2101 
The free-electron model of the conduction electrons in metals seems 
naive but is often successful. Among other things, it gives a reasonably 
good account of the compressibility for certain metals. This prompts the 
following question. You are given the number density n and the Fermi energy 
e of a non-interacting Fermi gas at zero absolute temperature, T =O K. 
Find the isothermal compressibility 
where V is volume, p is pressure. 
Hint: Recall that pV = - E, where E is the total energy. 
2 
3 
(GUSPEA) 
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Solution: 

p = - (g) , where F is the free energy, F = E - TS. When 

T 

T = 0 K, F = E, and p = - ( g ) T . 
2 
Using pV = -El we have 
3 
or 



p=-(g)T=-a [-.-(fpV)]T=-;[,V (g)T+5 

1 av 3 

Hence K. = -- (-) = - (T = 0 K). 

ap T 5P 
At T = 0 K, 
h2k2 
d3k- 
2E 2 V 

3V 3V ( 2 ~ ) ~ /,,,, 2m 

p= - = - . 2 . - 
we obtain 
For an ideal gas, the energy of a particle is 
h2 k2 
2m 

&(k) = - . 
Thus 
h2 k; 
2m & F = - . 

Therefore, 
2 
5 p = - n . & F , (T= 0 K) , 
and 
3 

K.= - . ( T = O K ) 
2n&F 
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2102 
Fermi gas. Consider an ideal Fermi gas whose atoms have mass m = 

5 x grams, nuclear spin I = i, and nuclear magnetic moment p = 

1 x erg/gauss. At T = 0 K, what is the largest density for which the 
gas can be completely polarized by an external magnetic field of lo5 gauss? 
(Assume no electronic magnetic moment). 
Solution: 
(MZT) 
After the gas is completely polarized by an external magnetic field, the 
Fermi energy is EF = -A(2 6 ~ ~ n ) ~ w/ h~e,re n is the particle density. 
2m 
With EF 5 2pH, we have 
1 4mpH 3i2 

n.&F-) . 
Hence, nmax = = 2 x 10”atoms/cm~ . 
2103 
State and give a brief justification for the leading exponent n in the 
temperature dependence of the following quantities in a highly degenerate 
three-dimensional electron gas: 
(a) the specific heat at constant volume; 
(b) the spin contribution to the magnetic moment M in a fixed magnetic 



field H. 
(MITI 
Solution: 
Let us first consider the integral I: 
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where kTz = -p + E. As p/kT >> 1, we can substitute 00 for the upper 
limit of the second integral in above expression so that 

(a) Let f ( e ) = c312, then the internal energy E - I, C, = - - 
TI i.e., n = 1. In fact, when T = 0 K, because the heat energy is so small, 
only those electrons which lie in the transition band of width about kT on 

the Fermi surface can be excited into energy levels of energies = kT. The 
part of the internal energy directly related to T is then 

(:IV 
- 

NT - T2, i.e., C, - T . 

(b) Let f ( ~ )= d12, then M - I, hence M = Mo(1 -aT2) , i.e., n = 0. 

When T = 0 K, the Fermi surface EF with spin direction parallel to H is 
&Ft = p+pgH (pg is the Bohr magneton) while the Fermi surface EF with 
spin direction opposite to H is EFJ = p - p g H . Therefore, there exists a 

net spin magnetic moment parallel to H. Hence n = 0. 
2104 
electrons in a "box" of volume V = 
1 cm3. The walls of the box are infinitely high potential barriers. Calculate 
the following within a factor of five and show the dependence on the relevant 
physical parameters: 
Take a system of N = 2 x 
(a) the specific heat, C, 

(b) the magnetic susceptibility, x, 
(c) the pressure on the walls of the box, p, 
(d) the average kinetic energy, (Ek). 
( Cham g 0) 

Solution: 
The density of states in k space is given by 
4rk2 
8 6 d k ' 
D(k)dk = ZV . - 
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ii2 

2m 
and the kinetic energy of an electron is E = -k2. Combining, we get 

At T = 0 K, the N electrons fill up the energy levels from zero to EF = 

h" 
-k>, i.e., 
2m 
E F 2 



N = D(&)d&=;D (EF)EF 
Jo 
2m 
(a) The specific heat is 
where kB is Boltzmann's constant. 
(b) The magnetic susceptibility is 
where pB is the Bohr magneton. 
(c), (d) The average kinetic energy is 

2 3 ED(&)&= -D(EF)E; = -NEF , (Ek) = I"' 5 5 

and the pressure on the walls of the box is 
2105 
fermions is confined to a volume V. Calculate 
the zero temperature limit of (a) the chemical potential, (b) the average 
An ideal gas of N spin 
Statidtical Phyaics 2 79 
energy per particle, (c) the pressure, (d) the Pauli spin susceptibility. Show 
that in Gaussian units the susceptibility can be written as 3 p i N/Zp(O)V, 
where p(0) is the chemical potential at zero temperature. Assume each 
fermion has interaction with an external magnetic field of the form 2poHS,, 
where p~ is the Bohr magneton and S, is the z-component of the spin. 
( was co flsifl) 
Solution: 

As the spin of a fermion is $, its z component has two possible directions 

with respect to the magnetic field: up (I) and down (I). These 

correspond to energies 3 = p ~ Hr,e spectively. Thus the energy of a particle 
is 

P2 & = - * pgH . 
2m 
At T = 0 K, the particles considered occupy all the energy levels below 
the Fermi energy p(0). Therefore, the kinetic energies of the particles of 
negative spins distribute between 0 and p(0) - ~ B Hth,os e of positive spins 

distribute between 0 and p( 0 ) + ~ B Hth,e ir numbers being 
(a) The total number of particles is 
With H = 0, we obtain the chemical potential 

p(0) = tL" ( 3 2 ; ) 2/3 . 
2m 
1 1 
2 2 

(b) For particles with z-components of spin, - and --, the Fermi 
momenta are respectively 
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The corresponding total energies are 
Hence the average energy per particle is 
E E++EN 
- N 
-- 
For p(0) PBH, 
E 3 
N 



(c) The pressure is 
2N 2 

T ap(0) av 5v 

(d) For p(0) > ~ B Hth,e magnetization is given by 

M = p g (N- - N+ ) /V = -3PiN H = x H . 
2P(O)V 
3NPi 
2P(O)V * 

Hence x = - 
2106 
Consider a Fermi gas model of nuclei. 
Except for the Pauli principle, the nucleons in a heavy nucleus are 
assumed to move independently in a sphere corresponding to the nuclear 
volume V . They are considered as a completely degenerate Fermi gas. Let 
A = N (the number of neutrons) +Z (the number of protons), assume N = 
2, and compute the kinetic energy per nucleon, Ekin/A, with this model. 
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4s 
3 
The volume of the nucleus is given by V = -RiA, Ro M 1.4 x 
Please give the result in MeV. 
cm. 
(Chicago) 
Solution: 
In the momentum space, 
4v 
h3 dn = -4n-p2dp, 
where n is the number density of neutrons. 
The total number of neutrons is 

A = 1 dn = 16n-V LPF $dP 

where PF is the Fermi momentum. 
The total kinetic energy of the neutrons is 

Hence , 
The volume V can be expressed in two ways: 
V 4n 3 ( 2 ~ )-3~ h = -R3A = - pF A, (putting h z - = 1) 
3 O 16n 27r 

giving p~ = R,' (2) 'I3, and 
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2107 
At low temperatures, a mixture of 3He and 4He atoms form a liquid 
which separates into two phases: a concentrated phase (nearly pure 3He), 
and a dilute phase (roughly 6.5% 3He for T 5 0.1 K). The lighter 3He floats 
on top of the dilute phase, and 3He atoms can cross the phase boundary 
(see Fig. 2.23). 
The superfluid He has negligible excitation, and the thermodynamics 
of the dilute phase can be represented as an ideal degenerate Fermi gas of 
particles with density nd and effective mass m* (m* is larger than m3, the 
mass of the bare 3He atom, due to the presence of the liquid 4He, actually 
m* = 2.4m3). We can crudely represent the concentrated phase by an ideal 



degenerate Fermi gas of density n, and particle mass 7733. 

(a) Calculate the Fermi energies for the two fluids. 
(b) Using simple physical arguments, make an estimate of the very 
low temperature specific heat of the concentrated phase c,(T, T F ~w)hi ch 
explicitly shows its functional dependence on T and TF,( where T Fi~s t he 
Fermi temperature of the concentrated phase, and any constants independent 
of T and TF, need not be determined). Compare the specific heats of 
the dilute and concentrated phases. 
(c) How much heat is required to warm each phase from T = 0 K to 

T? 

I--&-- concentrated phase of 3He 
dilute phase of 3He 
(in superfluid of &He) 
Fig. 2.23. 
(d) Suppose the container in the figure is now connected to external 
plumbing so that 3He atoms can be transferred from the concentrated phase 
to the dilute phase at a rate of N, atoms per second (as in a dilution 
refrigerator). For fixed temperature T, how much power can this system 
absorb? 
(Princeton) 

, we have EF, = -h2 ($)'I3, and 
Solution: 
2m3 
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h2 213 

E F . =2-m- - - ( ~ ) . 
(b) For an ideal degenerate Fermi gas at low temperatures, only those 

particles whose energies are within (EF - kT) and (EF + kT contribute to 
the specific heat. The effective particle number is n,ff = n-, so 

k h 
EF 

T T 
c , c c n e f f ~ - = a - 

EF ‘TF ’ 
where a, is a constant. 
(d) The entropy per particle at low temperature is 
T 
TF 
= A- , where X is a constant. 
The power absorbed is converted to latent heat, being 
2108 
A white-dwarf star is thought to constitute a degenerate electron gas 
system at a uniform temperature much below the Fermi temperature. This 
system is stable against gravitational collapse so long as the electrons are 
non-relativistic. 
(a) Calculate the electron density for which the Fermi momentum is 
one-tenth of the electron rest mass X C . 

(b) Calculate the pressure of the degenerate electron gas under these 
(UC, Berkeley) 
conditions. 
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Solution: 



P<PP 

. . giving n = - = - 

With 
meC 
P F = -10 
we have 
8r m,c 3 

n = 7 (x) = 5.8 x lo3’ /m3 , 

(b) For a strong degenerate Fermi gas (under the approximation of 
zero valence), we get 

- 3 E = -Npo , 5 
and 

p o 2 P; = -n - = 9.5 x Nfm’ . p = -2-E = -2n 

3v 5 5 2m 
2109 
A white dwarf is a star supported by the pressure of degenerate electrons. 
As a simplified model for such an object, consider a sphere of an 
ideal gas consisting of electrons and completely ionized Si28, and of constant 
density throughout the star. (Note that the assumption of a constant 
density is inconsistent with hydrostatic equilibrium, since the pressure is 
then also constant. The assumption that the gas is ideal is also not really 
tenable. These shortcomings of the model are, however, not crucial for the 
issues which we wish to consider.) Let ni denote the density of the silicon 
ions, and let n, = 14n; denote the electron density. (The atomic number 
of silicon is 14). 

(a) Find the relation between the mean kinetic energy E, of the electrons 
and the density n,, assuming that the densities are such that the 
electrons are “extremely relativistic,” i.e., such that the rest energy is negligible 
compared with the total energy. 

(b) Compute E, (in MeV) in the case that the (rest mass) density of 

the gas equals p = lo9 g/cm3. Also compute the mean kinetic energy Ei 
of the silicon ions in the central region of the dwarf, assuming that the 
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temperature is lo8 K and assuming that the ‘ion gas” can be regarded as 

a Maxwell-Boltzmann gas, and hence convince yourself that E, >> Ei. 
(c) If M is the mass of the star, and if R is its radius, then the graviuc 
3GM2 = - 
In the case in which the internal energy is dominated by extremely relativistic 
electrons (as in part (t) above), the virial theorem implies that 
the total internal energy is approximately equal to the gravitational potential 
energy. Assuming equality, and assuming that the electrons do not 
contribute significantly to the mass of the star, show that the stellar mass 
can be expressed in terms of fundamental physical constants alone. Evaluate 
your answer numerically and compare it with the mass of the sun, 
2 x 1030 kg. (It can be shown that this is approximately the maximum 
possible mass of a white dwarf.) 
(UC, Berkeley) 
Solution: 
(a) Use the approximation of strong degenerate electron gas and E = pc. 
From the quantum state density of electrons, it follows 
tational potential energy is given by 
5R ’ 

2 8T 



-dp = -E2ds , h3 h3c3 
then 

n, = /,” %E2ds 

h3c3 
Therefore 
P sr 

(b) When p = lo9 g/cm3, 
n, = 14ni = 3 x 1032~m-3= 3 x 
E, = 5 x 
Ei = -kT = 2 x 

rn-’ , - 
J = 3 MeV , 
3 
2 
- 
J = 1 . 3 ~ 1 0 -M~ e V. 

Obviously, xi << s,. 
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(c) F'rom the virial theorem, we have 

( $R3 n e ) :hc (2')I 2= i3 ~GM 2 . 

we obtain 

M = -!!- . %/$ = 8.5 x lo3' kg = 4.1M, , 
1 2 8 ~ Gm, 
where Ma is the mass of the sun. 
2110 
(a) Given that the mass of the sun is 2 x g, estimate the number 
of electrons in the sun. Assume the sun is largely composed of atomic 
hydrogen. 
(b) In a white dwarf star of one solar mass the atoms are all ionized 
and contained in a sphere of radius 2 x 109 cm. Find the Fermi energy of 
the electrons in eV. 

(c) If the temperature of the white dwarf is lo' K, discuss whether the 
(d) If the above number of electrons were contained in a pulsar of one 
solar mass and of radius 10 km, find the order of magnitude of their Fermi 
energy. 
(Columbia) 
electrons and/or nucleons in the star are degenerate. 
Solution: 
(a) The number of electrons is 

1.2 x lo5' . 2 x 1033 
1.67 x 10-24 

N = 
(b) The Fermi energy of the electrons is 

EJ 4 x lo4 eV . EF'=%h2( GV3 )N 2 J 3 xE( - - ) 9 N 2/3 

2m, 32x2 R3 
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The Fermi energy of the nucleons is 

E F , ~ m e 1 = EFe- = -EFe . m, 1840 



(c) EFc/k = 4 X lo8 K> lo7 K. 

EF,/k << lo' K. 
Therefore, in a white dwarf, the electrons are strongly degenerate while the 
nucleons are weakly degenerate. 
(d) The Fermi energy of the electrons if contained in a pulsar is 
2111 
At what particle density does a gas of free electrons (considered at 
T = 0 K) have enough one-particle kinetic energy (Fermi energy) to permit 
the reaction 

proton + electron + 0.8 MeV -+ neutron 
to proceed from left to right? Using the result above estimate the minimum 
density of a neutron star. 
(UC, Beskeley) 
Solution: 
electron gas are related as follows: 
When T = 0 K, the Fermi energy and the number density of the 
The condition for the reaction to proceed is EF 2 0.8 MeV, then 

nIlliIl= 3.24 x lo3' m-' . 
Hence the minimum mass density of a neutron star is 

pllliIl = m,rn,i, = 5.4 x lo9 kg/m3 . 
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2112 
Assume that a neutron star is a highly degenerate non-relativistic gas 
of neutrons in a spherically symmetric equilibrium configuration. It is held 
together by the gravitational pull of a heavy object with mass M and radius 
ro at the center of the star. Neglect all interactions among the neutrons. 
Calculate the neutron density as a function of the distance from the center, 
r, for r > ro. 
(Chicago) 
Solution: 
For a non-relativistic degenerate gas, the density p o( p3I2, the pressure 
p 0: p5I2, where p is the chemical potential. Therefore, p = ap5I3, where a 
is a constant. Applying it to the equation 

-d p = MGd (i) , 
P 
5 
2 
we find a . -dp2I3 = MGd 

p(r) = [-2 M5aG . -r1 + const]312 . 
As r -+ co,p(r) --+ 0, we find const. = 0. Finally, with r > ro, we have 
2MG 1 3'2 

P ( d = [F ' ;] 
2113 
Consider a degenerate (i.e., T = 0 K) gas of N non-interacting electrons 
in a volume V. 
(a) Find an equation relating pressure, energy and volume of this gas 
for the extreme relativistic case (ignore the electron mass). 
(b) For a gas of real electrons (i.e., of mass m), find the condition on 
N and V for the result of part (a) t o be approximately valid. 



(MITI 
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Solution: 
The energy of a non-interacting degenerate electron gas is: 
PP Ep2 

E=8nVL z d p 
where E is the energy of a single electron, pp is the Fermi momentum, 
p F = ( 3 N / 8 ~ V ) ' / ~ h . 
(a) For the extreme relativistic case, E = cp, so we have energy 

E= -2 scv 4 h3 'F ' 
which gives the equation of state 

- _1-E and pressure p = - 
T=O 

1 
3 
pV= -E 
(b) For a real electron, 
where p is its momentum, giving 

EM2 scV[p; + ( m c p ~ ) ~ ]./ h ~ 

The condition for the result of part (a) to be approximately valid is PF >> 
mc. or 

-N> +)a s mc 3 v 3 
Either N -+ 00 or V -+ 0 will satisfy this condition. 
2114 
Consider a box of volume V containing electron-positron pairs and 
photons in equilibrium at a temperature T = l/kp. Assume that the 
equilibrium is established by the reaction 
7 + + e + + e - . 
290 Problem8 €4 Solutiona on Thermodynamics €4 Statistical Mechanics 
The reaction does not occur in free space, but one may think of it as 
catalyzed by the walls of the box. Ignoring the walls except insofar as they 
allow the reaction to occur, find 
(a) The chemical potentials for the fermions. 
(b) The average number of electron-positron pairs, in the two limits 
kT >> mec2 and kT << mec2. (You may leave your answers in terms of 
dimensionless definite integrals.) 
(c) The neglect of the walls is not strictly permissible if they contain 
a matter-antimatter imbalance. Supposing that this imbalance creates a 

net chemical potential p # 0 for the electrons, what is then the chemical 
potential of the positrons? 
(d) Calculate the net charge of the system in the presence of this 
imbalance in the limit kT >> p >> m,c2. (Again, your answer may be left 
in terms of a dimensionless definite integral.) 
(Chicago) 
Solution: 

(a) For a chemical reaction A +-+ B + C at equilibrium, p~ = pg +pc. 

As the chemical potential of the photon gas p7 = 0, we obtain 

pe+ + pe- = 0 . 
Considering the symmetry between particle and antiparticle, we have 
Hence pe+ = pe- = 0. 
(b) At the limit kT >> mec2, neglecting the electron mass and letting 

E = cp, we obtain 



V (kT)3 O0 x2dx 

7r2 ( h ) 3 ez + 1 - - Ne+ . 
At the limit kT << mec2, the "1" in denominator of the Fermi factor 
1 

[exP(PJ(cP)2 + (meC2)2) + 11 
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can be neglected and we also have 

cp = .\/(cp)2 + (m,c2)2 M m,c2 + p 2 / 2 m . 
Thus 

="( 2 ~m, k T 3 J 2 -m,ca /kT h2 ) 
(c) AS pe+ + pe- = 0, pLe+= -pe- = -p. 

(d) The net charge of the system is q = (-e)(ne- - n,+), where 
87reV O0 x2ex 
2115 
In the very early stages of the universe, it is usually a good approximation 
to neglect particle masses and chemical potential compared with 
kT. 
(a) Write down the average number and energy densities of a gas of 
non-interacting fermions in thermal equilibrium under these conditions. 
(You need not evaluate dimensionless integrals of order 1.) 
(b) If the gas expands adiabatically while remaining in equilibrium, 
how do the average number and energy densities depend on the dimensions 
of the system? 
when T N 10l1 K in parts (c) and (d) below. 
Assume that the fermions are predominantly electrons and positrons 
(c) Is the assumption made in (a) that the particles are non-interacting 
reasonable? Why? [Hint: What is the average coulomb interaction energy? 
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Positron charge = 1 . 6 ~ 1 0 - lc~ou lomb; Bolteniann’s constant k = 1.38 x 
erg/K]. 
(d) If the interaction cross sections in the electron-positron gas are 
typically of order of magnitude of the Thompson cross section UT = 8mg/3 
(classical electron radius 70 = 2.8 x cm), estimate the mean free 
time between collisions of the particles. If the expansion rate in part (b) M 

lo4 sec-’, is the assumption that the gas remains in equilibrium reasonable? 
Why? 
(SUIVY, Buffalo) 
Solution: 
(a) In the stated approximation, we have 
P 
kT 
& = p c , - w o o . 
so 
The average number density is 
The average energy density is 
(b) The quasi-static adiabatic expansion process satisfies the equation 
d(pV) = -pdV. Neglecting the particle mass, we have p = p/3 (analogous 
to a photon gas), then 
-dp - 4 dV 
P 3 v ) 
giving 
from which we obtain T cx V-’l3. 



n cx V-I. 

p cx v-4/3 , 
Hence the particle number density 
(c) The average distance between particles r cx n-’/3. The ratio of the 
Coulomb interaction energy per particle to the particle kinetic energy is 
e2/r e2n1I3 e2 1 
-N- - - N - 

kT kT hc - 137 ‘ 
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This implies that the interaction energy is much less than the kinetic energy, 
which makes the approximation in (a) reasonable. 

(d) The mean free time is t - l / n q v , where the average speed 

kT 

Hence t - (E)-3c7~1 (z) - 10-z3 S. 

The assumption that the gas remains in equilibrium is reasonable for the 
mean free time is much shorter than the expansion time which is of the 
order of 10-4s. 

4. ENSEMBLES (2116 - 2148) 
2116 
Heat Capacity. 
The constant volume heat capacity of a system with average energy 
(E) is given by C,, = 
Use the canonical ensemble' to prove that: C is related to the meansquare 
fluctuation in the energy as follows: 
Solution: 
The partition function is 

Z = exp(-E,/kT) . 
1 

Therefore, ( E )= -z C E,e-EnIkT. Then 
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2117 
(a) Give the thermodynamic definition of the Helmholtz free energy 
F, the classical statistical mechanical definition of the partition function 
Z, and the relationship between these quantities. Define all symbols. 
(b) Using these expressions and thermodynamic arguments show that 
the heat capacity at consant volume c, is given by 
(c) Consider a classical system that has two discrete total energy states 
(SUNY, Buflalo) 
Eo and El. Find Z and c , . 
Solution: 

(a) F = U - TS, Z = exp(-PE(p, q))dw , where U is the internal 

energy, T the absolute temperature, S the entropy, p = l/kT, E(p, q) the 
energy of the system and dw = dpdq an infinitesimal volume element in 
the phase space, p and q being the genera.lized momentum and coordinate 
respectively, and k Boltzmann’s constant. 

The relation between F and Z is 



I 
F = - k T l n Z . 
(b) From dF = -SdT - pdV, we have 

s=-(g) V 

Hence 
-- (El - EOl2 

4kT2cosh2 ( El2 -kT E o ) 
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2118 
Consider the energy and fluctuation in energy of an arbitrary system 
in contact with a heat reservoir at absolute temperature T = l/k,f?. 

(a) Show that the average energy 3 of the system is 

where z = c exp(-PE,) sums over all states of the system. 

n 

- 
(b) Obtain an expression for E2 in terms of the derivatives of lnz. 

(c) Calculate the dispersion of the energy, (AE)2 = E2 - E . 
(d) Show that the standard deviation 
- - -2 

= ((AE)2)1'2 can be expressed 
in terms of the heat capacity of the system and the absolute temperature. 
N _ (e) Use this result to derive an expression for AE/E for an ideal 
(UC, Berkeley) 
monatomic gas. 
(e) For an ideal monatomic gas, 
- 3 3 
E = -NkT, 
2 2 C, = -Nk 
and thus 
E 
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2119 
A useful way to cool He3 is to apply pressure P at sufficiently low 
temperature T to a co-existing liquid-solid mixture. Describe qualitatively 
how this works on the basis of the following assumptions: 
(a) The molar volume of the liquid VL is greater than that of the solid 
Vs at all temperatures. 
(b) The molar liquid entropy is given by 

SL = 7RT with 7 - 4.6 K-' . 
(c) The entropy of the solid Ss comes entirely from the disorder associated 
with the nuclear spins (s = 1/2). 
Note: Include in your answer a semi-quantitative graph of the p-T diagram 
of He3 at low temperatures (derived using the above information). 
(Chicago) 
Solution: 
The Clausius-Clapeyron equation is 
dp AS SL - Ss 
dT AV VL-VS ' 



_ -- -- - 

1 I 

I z 

Tmin T 
Fig. 2.24. 

1 For particles of spin -, SS = kNA In 2. Thus 
2 

dp 7RT-kNAln2 - 7RT-Rln2 _ - - 

dT - VL - vs VL - vs . 
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dP 
dT According to the problem, VL - Vs > 0, thus when T --t 0, - < 0. Hence, 
when 

Tnill In2 In2 - = - K 

7 4.6 ’ 
the pressure reaches the minimum value. This means that at sufficiently 
low temperatures (T < T,,,i,,), applying compression can lead to a decrease 
in temperature of the solid-liquid mixture. 
A semi-quantitative p- T diagram of He3 at low temperatures is shown 
in Fig. 2.24. 
2120 
(a) Describe the third law of thermodynamics. 
(b) Explain the physical meaning of negative absolute temperature. 
Does it violate the third law? Why? 
(c) Suggest one example in which the negative temperature can actually 
be achieved. 
(d) Discuss why the negative temperature does not make sense in classical 
thermodynamics. 
(S VNY, Buflulo) 
Solution: 
can have its absolute temperature reduced to zero. 
(a) The third law or the Nernst heat theorem signifies that no system 
(b) According to the Gibbs distribution, at equilibrium the ratio of the 
particle number of energy level En to that of Em is Nn/Nm = exp[-(En - 
E,)/kT]. Hence, the particle number in the higher energy level is smaller 
than that in the lower energy level for T > 0. If the reverse is the case, i.e., 
under population inversion, the equation requires T < 0 and the system is 
said to be at negative temperature. This does not violate the third law for 
a system at negative temperature is further away from absolute zero than 
a system at positive temperature, from the point of view of energy. 
1 
2 
(c) One such example is a localized system of spin - particles. We 
can introduce a strong magnetic field to align all the spins in the same 
direction as, i.e., parallel to, the direction of the magnetic field. We then 
reverse the magnetic field quickly so that there is no time for most of the 
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spins to change direction. Thus negative temperature is achieved. 
(d) In classical thermodynamics, a negative temperature system is mechanically 
unstable. We divide a substance at rest into several parts. Let 
the internal energy and entropy of part z be U; and S;(V;) respectively. We 
have 
where E; is the total energy of the part, M; is its mass, and p; is its 



momentum with xp, = 0. Mechanical equilibrium requires all p; = 0. 

As we have for a negative temperature system dS;(U;)/dU; = 1/T < 0, 
S, will increase when U, decreases, i.e., p, increases. Thus the entropies 
S;(U,) are maximum when the 1p;I’s reach maximum. This contradicts the 
mechanical equilibrium condition p; = 0. 
a 

2121 
Consider a system of two atoms, each having ony 3 quantum states 
of energies 0, E and 2s. The system is in contact with a heat reservoir at 
temperature T. Write down the partition function Z for the system if the 
particles obey 
(a) Classical statistics and are distinguishable. 
(b) Classical statistics and are indistinguishable. 
(c) Fermi-Dirac statistics. 
(d) Bose-Einstein statistics. 
(SUNY, Buffalo) 
Solution: 

(a) Z1 = A2, where A = 1 + exp(-P&) + exp(-2P&). 

(c) Z3 = Aexp(-pe). 

(d) Z, = A ( l + exp(-ZP&)). 
Statistid Phgaica 299 
2122 
(a) You are given a system of two identical particles which may occupy 
any of the three energy levels 

E, = n ~ , n = O , l , 2, . 
The lowest energy state, EO = 0, is doubly degenerate. The system is 
in thermal equilibrium at temperature T. For each of the following cases 
determine the partition function and the energy and carefully enumerate 
the configurations. 
1) The particles obey Fermi statistics. 
2) The particle obey Bose statistics. 
3) The (now distinguishable) particles obey Boltzmann statistics. 
(b) Discuss the conditions under which Fermions or Bosons may be 
treated as Boltzmann particles. 
(SVNY, Buflalo) 
Solution: 
(a) Considering the systems as a canonical ensemble, the partition 
function is z = ~ w , e x p ( - P E , ) , where w, is the degeneracy of energy 
level n. 
n 

1) The particles obey Fermi statistics. We have 
The configurations are shown in Fig. 2.25(a) 
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a b 

2- - 1- - 

n = o % 1 
E.0 2E 2E 

2- - 
I - - 
a b 



€= 0 0 
Fig. 2.25. 
2) The particles obey Bose statistics. We have 
The configurations are shown in Fig. 2.25(b). 
3) The particles obey Boltzmann statistics. We have 
The configurations are shown in Fig. 2.25(c). 
(b) When the non-degeneracy condition is satisfied, i.e., when. e-a w 
<< 1, the indistinguishability of particles becomes unimport& 
nt and Ferrnions and Bosons can be treated as Boltzmann particles. 
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2123 
(a) Give a definition of the partition function z for a statistical system. 
(b) Find a relation between the heat capacity of a system and - 

a2 Inz 

aa2 ' 
1 

kT where P = -. 
(c) For a system with one excited state at energy A above the ground 
state, find an expression for the heat capacity in terms of A. Sketch the 
dependence on temperature and discuss the limiting behavior for high and 
low temperatures. 
(UC, Berkeley) 
Solution: 
(a) The partition function is the sum of statistical probabilities. 
For quantum statistics, z = x e x p ( - P E , ) , summing over all the 
8 

quantum states. 

For classical statistics, z = 1e xp(-PE)dI'/h7, integrating over the phase-space where 7 is the number of degrees of 

freedom. 

a E = -- In z , 
ap 
- 

1 a - 1 a2 

d T kP2 ap kP2 ap2 E = - - - l n z , aE 
cv = - = 
(c) Assume the two states are non-degenerate, then 
A 

eA/kT + 1 
- 

- Ae-A/kT 

1 + e-AlkT 

E= 
dz eA/kT 

(1 + eAlkT)2 * 

c, = - = k (&) dT 

The variation of specific heat with temperature is shown in Fig. 2.26. 

f cv 
Fig. 2.26. 
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2124 
Consider a collection of N two-level systems in thermal equilibrium at 

a temperature T. Each system has only two states: a ground state of energy 
0 and an excited state of energy E. Find each of the following quantities 
and make a sketch of the temperature dependence. 
(a) The probability that a given system will be found in the excited 
state. 
(b) The entropy of the entire collection. 
(MIT) 
Solution: 
(a) The probability for a system to be in the excited state is P = 
1 

-e-'fkT, where z = 1 + e-'fkT, i.e., 
z 
The relation between probability and temperature is shown in Fig. 2.27. 
Fig. 2.27 

(b) ZN = [1+ e-'fkTIN , F = -kTlnzrJ , 
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The relation between entropy and temperature is shown in Fig. 2.28. 
T 
Fig. 2.28. 
2125 
N weakly coupled particles obeying Maxwell-Boltzmann statistics may 
each exist in one oi the 3 non-degenerate energy levels of energies -E, 0, 
+E. The system is in contact with a thermal reservoir at temperature T. 
(a) What is the entropy of the system at T = 0 K? 
(b) What is the maximum possible entropy of the system? 
(c) What is the minimum possible energy of the system? 
(d) What is the partition function of the system? 
(e) What is the most probable energy of the system? 

( f ) If C(T) is the heat capacity of the system, what is the value of Irn C(T)dT? 

o T 
(UC, Berkeley) 
Solution: 
(a) At T = 0 K, the entropy of the system is S(0) = 0. 
(b) The maximum entropy of the system is 

S,,,,, = klnn,,,,, = kln3N = Nkln3 . 
(c) The minimum energy of the system is -NE. 
(d) The partition function of the system is 

= ( p / k T + 1 + ,-EIkT)N . 
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(e) When N >> 1, the most probable energy is the average energy 
NE, M NE 

2NEsinh -- - (s) 
1 + 2 C O S ~ (g) ’ 
where a = exp(E/kT). 

(f) J m m d T = l m d S = S(o0) - S(0) = Nkln3 . 



o T 
2126 
Find the pressure, entropy, and specific heat at constant volume of an 
ideal Boltzmann gas of indistinguishable particles in the extreme relativistic 
limit, in which the energy of a particle is related to its momentum by E = cp. 
Express your answer as functions of the volume V, temperature T, and 
number of particle N. 
(Princeton) 
Solution: 
Let z denote the partition function of a single particle, Z the total 
partition function, p the pressure, S the entropy, U the internal energy, 
and c the specific heat. We have 
81rV 
N 
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a 
ap u = -- 1nZ = 3NkT 
c = 3 N k . 
2127 
A vessel of volume V contains N molecules of an ideal gas held at 
temperature T and pressure PI. The energy of a molecule may be written 
in the form 
where &k denotes the energy levels corresponding to the internal states of 
the molecules of the gas. 
(a) Evaluate the free energy F = -kTlnZ, where Z is the partition 
function and k is Boltzmann’s constant. Explicitly display the dependence 
on the volume Vl. 
Now consider another vessel, also at temperature T, containing the 
same number of molecules of an identical gas held at pressure PZ. 
(b) Give an expression for the total entropy of the two gases in terms 

of Pi , P2, T, N. 
(c) The vessels are then connected to permit the gases to mix without 
doing work. Evaluate explicitly the change in entropy of the system. Check 
whether your answer makes sense by considering the special case Vl = 

V2 (z.e.,Pl = Pz). 
(Princeton) 
Solution: 
(a) The partition function of a single particle is 
where zo = xexp(-Cn/kT) refers to the internal energy levels. Taking 
account of the indistinguishability of the particles, the partition function of 
n 
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the N particle system is 
so 
F = -kTlnZ 
Thus 

SI = Nk ($+;3I n (y+ :+)So) , 

where a 
aP So = lnzo - P- lnzo 
The total entropy is 

s = s1 + s, 



= 2Nk [ ln-~ N+ ~ 2 l n ( ~ ) + ~ +. S o 1 

(c) After mixing, the temperature of the ideal gas is the same as before, 
so that 

S' = 2Nk [h + -3I n (2rmkT 7+ 5 +S)o] , 2N 2 
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When Vl = V2, AS = 0 as expected. 
2128 
(a) Calculate the partition function z of one spinless atom of mass M 
moving freely in a cube of volume V = L3. Express your result in terms of 
the quantum concentration 
MkT 3/2 

n,=(.> * 

Explain the physical meaning of n,. 

(b) An ideal gas of N spinless atoms occupies a volume V at temperature 
T. Each atom has only two energy levels separated by an energy 
A. Find the chemical potential, free energy, entropy, pressure and heat 
capacity at constant pressure. 
Solution: 
(SVNY, Buflulo) 
(a) The energy eigenvalues are given by 
h2 
2mL2 
2M 

s = -(n2 + np + n;) , 
2 1 2 2 - P = - (P: + Py + P,) - 2M 9 

where n,,ny,nl = O , f l , ... . 
The energy levels can be thought of as quasi-continuous, so that the 
number of quantum states in the range p -+ p + dp is --p2dp, whence the 

number of states in the energy interval E + E + ds is - ( 2 M ) 3 / 2 f i d e . 
Hence 
4sv 
h3 
2sv 
h3 
is the average number of quantum states in unit 

MkT 3/2 where n, = (7) 
volume. 
(b) The classical ideal gas satisfies the non-degeneracy condition. The 

partition function of a sub-system is z = exp(-PsI) + exp(-Ps2), e2 = 
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~1 + A. Hence the partition function of the system is 
The free energy is 

F = -kTlnZ = -NkTln ( e - p ' l + e--Bea) 

The chemical potential is 
The pressure is 
The entropy is 
- k l n N ! = N k 



N(&le-@'l + ~ 2 e - P ' ~ ) 

+ T ( e - P c 1 + e-0'2) 

The heat capacity at constant pressure is 

a 
- N A 2 - N A 2 

2kT2 (1 + cosh k) 4kT2 cash (&) * 

2129 
(a) Consider an ideal gas of N particles of mass rn confined to a volume 
V at a temperature T. Using the classical approximation for the partition 
function and assuming the particles are indistinguishable, calculate 
the chemical potential p of the gas. 
(b) A gas of N particles, also of mass rn, is absorbed on a surface 
of area A, forming a two-dimensional ideal gas at temperature T on the 
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surface. The energy of an absorbed particle is E = lpI2/2m - EO, where 
p = (pz,pv)a nd €0 is the surface binding energy per particle. Using the 
same approximations and assumptions as in part (a), calculate the chemical 
potential p of the absorbed gas. 
(c) At temperature T, the particles on the surface and in the surrounding 
three-dimensional gas are in equilibrium. This implies a relationship 
between the respective chemical potentials. Use this condition to find the 
mean number n of molecules absorbed per unit area when the mean pressure 
of the surrounding three-dimensional gas is p. (The total number of 
particles in absorbed gas plus surrounding vapor is No) . 
(Princeton) 
Solution: 
(a) The classical partition function is 
N! 
Thus 

G = F + pV = -kT In z + NkT 

= i V k T l n ~ - ~ l n ( ~ ,) ] 

p = -kT [,nx + %In (y.) ] 
(b) The classical partition function for the two-dimensional ideal gas 
is 

z = - AN ( ~ 2T;kT) . eNco/kT . 
N! 
Thus 

G = F + p A = - N k T [ In-+ln ; (2T;kT) ~ +%I 1 

(c) The chemical potential of the three-dimensional gas is equal to that 
of the two-dimensional gas. Note that in the expression of the chemical 
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V kT 

N v potential for the three-dimensional gas, - = -, and in that for the two- 
A 1 



N n 

dimensional gas, - = -. Since the two chemical potentials have the same 
value, one obtains 
2130 
A simple harmonic one-dimensional oscillator has energy levels En = 

(n + 1/2)Aw, where w is the characteristic oscillator (angular) frequency 

a n d n = 0 , 1 , 2 , ... . 
(a) Suppose the oscillator is in thermal contact with a heat reservoir 
at temperature T, with - << 1. Find the mean energy of the oscillator as 
a function of the temperature T. 
kT 
AW 

(b) For a two-dimensional oscillator, n = n, + ny, where 

n, = 0 , 1 , 2 , . . . and ny = 0 , 1 , 2 , . . . , what is the partition function for 
this case for any value of temperature? Reduce it to the degenerate case 
w, = wy. 

(c) If a one-dimensional classical anharmonic oscillator has potential 
energy V(z) = cx2 - gz3, where gx3 << cz2, at equilibrium temperature T, 
carry out the calculations as far as you can and give expressions as functions 
of temperature for 
1) the heat capacity per oscillator and 
2) the mean value of the position z of the oscillator. 
(UC, Berkeley) 
tw 
(a) Putting a = - = Awp, one has 
kT 
Solution: 
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(b) There is no difference between a two-dimensional oscillator and two 
independent one-dimensional oscillators, then the partition function is 
eaz/2 eay/2 z=-.- 
eaz - 1 
When w, = wy, a, = ay = a, we have 
eau - 1 * 

ea 
2 = 

(en - 1)2 * 

(c) 1) We calculate the partition function 

z = / exp[-(cx2 - gz3)/kT]dx . 
(Note that the kinetic energy term has not been included in the expression, 
this is done by adding - in the heat capacity later.) The non-harmonic 
term (exp(gs3/kT) - 11 is a small quantity in the region of motion. Using 
Taylor’s expansion retaining only the lowest order terms, we get 
k 
2 
The mean value of the potential energy is 
The heat capacity per oscillator is 
2) In the first-order approximation, the mean value of the position x 
of the oscillator is 
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2131 
Consider a dilute diatomic gas whose molecules consist of non-identical 



pairs of atoms. The moment of inertia about an axis through the molecular 
center of mass perpendicular to the line connecting the two atoms is I. Calculate 
the rotational contributions to the specific heat and to the absolute 
entropy per mole at temperature T for the following limiting cases: 
(a) kT >> h2/I, 
(b) kT << h2/I. 
Make your calculations sufficiently exact to obtain the lowest order 
(CUSPEA) 
non-zero contributions to the specific heat and entropy. 
Solution: 
The contribution of rotation to the partition function is 
z$. = (zR)N 1 

where N is the total number of the molecules in one mole of gas, and 
The contribution to energy is 
The contribution to specific heat is 
The contribution to entropy is 
(a) kT >> h 2 / I , i.e., ph2/21 << 1. We have 

ER = NkT , 
CR = Nk . 
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(b) kT << h2/I. We have 

ZR = 1 + 3e- a( h' / 4 n a I ) + . , . + 3 e - h 1 ~ 4 n 2 k ~ ~ 
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-"e - h 2 1 4 n 2 1 k T 

I 3Nh2 e-h'14n21kT 

En = 3N 1+ 3 e - h a / 4 n 2 1 k T -I 
CR = -3N'4 e - h 2 / 4 n a I k T PkT2 

Nh2 - h' / 4 n 2 IkT S, = kN ln(1 + 3e-ha/4n21kT 

h 2 / 4 n a I k T 3Nh2e - h 2 / 4 n 2 1 k T IT 
2132 
1 
2 
An assembly of N fixed particles with spin - and magnetic moment 
/.LO is in a static uniform applied magnetic field. The spins interact with the 
applied field but are otherwise essentially free. 
(a) Express the energy of the system as a function of its total magnetic 
(b) Find the total magnetic moment and the energy, assuming that 
(c) Find the heat capacity and the entropy of the system under these 
(UC, Berkeley) 
moment and the applied field. 
the system is in thermal equilibrium at temperature T. 
same conditions. 
Solution: 
(a) E = -MH. 
(b) Assume that ii is the average magnetic moment per particle under 
the influence of the external field when equilibrium is reached, then M = 

NjZ and 
e ~ o H / k T- e - P oH/ k T 

P = p o e ~ o H / k T+ e -@oH/ k T = /.Lo 
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Thus E = --NpOH tanli(poH/kT). 
The partition function of the system is 

z = (a + l / a ) N with a = exp(poH/kT) . 


