Ministry of Higher Education & Scientific Research

Salahaddin University - Erbil - College of Administration & Economics

Department: Statistics & information

Stage: Three - Second Semester (2022-2023)

Lecturers: Zainab Abdulla M.

Question Bank: (Reliability)

 Q_{1} / If (3000) items are put under the test, and if $Z(t) = 2*10^{-4}$, find:

- 1) Reliability for 300 hours.
- 2) $N_s(t)$ for 300 hours.
- 3) $N_f(t)$ for 300 hours.

 Q_2 / Prove that: if $T \sim exp(\lambda) \rightarrow Z(t)$ is constant

 Q_3 / Five components having reliabilities of (0.73, 0.85, 0.56, 0.91, and 0.62) are connected in parallel. What is the system reliability and system unreliability?

 Q_4 / Define:

- a) Probability of Failure (Failure Density function)
- b) Qualitative Definition of reliability
- c) Hazard function
- d) Mean time between failure (MTBF)
- e) Reliability of System

 Q_5 / The failure rate of a machine electronic is (0.002) failures per hour, and its times to failure are defined by the following function:

$$f(t) = 0.002 e^{-(0.002)t}$$
 , for $t \ge 0$

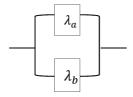
Calculate: 1) F(t) for 200 hours.

- 2) R(t) for 200 hours.
- 3) MTTF.

 Q_6 What are The type of connections in System?

 $Q_7/$ Assume two units are connected in series and failure rates are λ_1 and λ_2 respectively find:

- 1) Reliability of the system.
- 2) Failure rate.
- 3) $f_{ss}(t)$.
- 4) MTBF.


$$Q_{s/}$$
 Prove that: $E(t) = \int_{0}^{\infty} R(t) dt$, (by one side).

 Q_g If λ =0.01 parameter of exponential distribution and R(t)=0.90,

Find: t [the number of hours as a system operated]

 Q_{10} /What it means to say R(t)=0.90 ?

 $Q_{\rm {\it II}}/$ calculate the reliability and MTBF of the system show in figure

$$Q_{12}$$
/ prove that: $E(t) = \int_0^\infty R(t) dt$

$$Q_{13}$$
 / If $Z(t) = 3 * 10^{-5}$ find:

- 1) R(t) for 100 hours.
- 2) What is the reliability equal MTTF?

 Q_{14} / Assume that a system is composed of five independent and identical subsystems in series.

The constant failure rate of each subsystem is (0.0025) failures per hour.

Calculate the reliability of the system for a 50-hour mission and the system mean time to failure.

$$Q_{15}/ \text{ Show that: } R(t) = e^{-\int_{0}^{t} Z(s) ds}$$

 $Q_{\,{\scriptstyle 16}}/$ If the Reliability for (100h) equal to (0.99) find the failure rate.

 Q_{17} / Consider an electronic circuit 4-unit connected in series and each item of the above has exponential failure rate.

$$\lambda_1 = 4 * 10^{-5}$$
 $\lambda_3 = 2 * 10^{-5}$ $\lambda_4 = 2 * 10^{-5}$ $\lambda_4 = 2 * 10^{-5}$

Find: 1) R_{ss} (t)

- 2) Zss(t)
- 3) R_{ss} (t=10), reliability for (10) hours
- 4) MTBF_{ss}

 $Q_{\it 18}/$ Assume two units connected in parallel and have constant failure rates λ_1 and λ_2 respectively find:

1. R_{ps}(t) 2. MTBFps