Ministry of Higher Education & Scientific Research Salahaddin University – Erbil - College of Administration & Economics Department: Statistics & information Stage: Four - First Semester (2023-2024) Lecturers: Zainab Abdulla M.

Question Bank: (Statistical Inference)

 Q_1 / In a r.s.s.n from Exp(1/ θ), let $Y_1 < Y_2 < ... < Y_n$ be the order statistics of this sample. Find: g(y₂), g(y_{n-1}) and when (n = 4) Find g(y₁, y₃).

 Q_2 / In a r.s.s.*n* from normal distⁿ N(θ , σ^2), show that: $S^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$ is consistent estimator for σ^2 . (Using Chebycheve inequality)

 Q_3 / If X be a random variable from Poisson distⁿ., Show that the family of X is complete.

 Q_4 / Show that $\hat{\theta} = Y_n$ is consistent estimator for θ from C.U(0, θ), (by theorem).

 Q_5 / In a rss*n*. Find minimal sufficient estimators for θ from $\Gamma(2, \theta)$.

 Q_{6} / If X be a random variable from Bernoulli distⁿ. ,Show that the family of X is complete.

 Q_7 /In a random sample of size (*n*) from normal distⁿ N(θ , σ^2). Is $S^2 = \frac{1}{n} \sum (X_i - \overline{X})^2$ unbiased in limit estimator for the parameter (σ^2).

 Q_{8} / In a rss*n* from Geometric distⁿ Geo(θ), show that \overline{X} is consistent estimator for the parameter θ . (Using Chebycheve inequality)

 Q_{θ} /In a rss*n* from a dist^{*n*} with p.d.f.: $f(x;\theta) = e^{2\theta - x}$, $x \ge 2\theta$, show that Y_1 is sufficient estimator for the parameter θ . (Using Conditional Method)

 Q_{10} / In a rss*n* from Poisson distⁿ poi(θ). Show that $Y = \sum X_i$ is a complete sufficient estimator for θ . Find the unique continuous function of Y which is the best estimator for θ (M.V.U.E).

 Q_{11} / In a rss*n* from exponential distⁿ Exp(θ), show that: if $T = \overline{X}$ is an efficient estimator for $\phi(\theta) = \theta$.

 Q_{12} / In a rss2 from Bernoulli distⁿ Ber(θ), let $T_1 = X_1$ and $T_2 = \frac{\sum X_i}{n+1}$ be two estimators for parameter θ , show that which of them more efficient.