

Academic year 2021-2022
4th Year Material
Chapter Six

## Mathematics of Cryptography

Prepared By: Mr. Zana Farhad Doghramachi, M.Tech(CSE)
Zana.softeng@gmail.com

## 

0

- The Positive integers can be divided into three groups: the number 1, primes and composites.
- A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself, it plays a critical role in number theory. A composite is a positive integer with more than two divisors.



## Checking for Primeness

- The next question that comes to mind is this; Given a number n, how can we determine if n is a prime? The answer is that we need to see if the number is divisible by all primes less than $\sqrt{n}$. We know that this method is inefficient, but it is a good start.


## Homework

Q1 Is 97 a prime?
Q2 Is 45 a prime?

## Greatest Common Divisor

" One integer often needed in cryptography is the greatest common divisor of two positive integers. Two positive integers may have many common divisors, but only one greatest common divisor.

- For example, the common divisors of 18 and 60 are 1, 2, 3, and 6 . However, the greatest common divisor is 6 .
- We will use the notation $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ to mean the greatest common divisor of $a$ and $b$.
- The greatest common divisor of two positive integers is the largest integer that can divide both integers.


## The Euclidean Algorithm <br> O

- One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for determining the greatest common divisor of two positive integers.
- Finding the greatest common divisor (gcd) of two positive integers by listing all common divisors is not practical when the two integers are large. Fortunately, more than 2000 years ago a mathematician named Euclid developed an algorithm that can find the greatest common divisor of two positive integers.
- The Euclidean algorithm is based on the following two facts:

1. $\operatorname{gcd}(\mathrm{a}, 0)=\mathrm{a}$
2. $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$

## The Euclidean Algorithm <br> 0

- The Euclidean algorithm makes repeated use of two facts to determine the greatest common divisor. We use a variable, $r$ to hold the changing values during the process of reduction. The steps are continued until $r$ becomes 0 . At this moment, we stop.
- The $\operatorname{gcd}(a, b)$ is $r$.
$\operatorname{EUCLID}(a, b)$

1. $\mathrm{A} \longleftarrow \boldsymbol{a} ; \boldsymbol{B} \longleftarrow \boldsymbol{b}$
2. if $\mathrm{B}=\mathbf{0}$ return $\mathrm{A}=\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$
3. $\mathbf{r}=\mathbf{A} \bmod \mathrm{B}$
4. $\mathbf{A} \longleftarrow \mathbf{B}$
5. $\mathbf{B} \longleftarrow \mathbf{r}$
6. goto 2

## Homework

Q1 Find the greatest common divisor of 25 and 60 ?
Q2 By Using Euclid's Algorithm, find greatest common divisor of 12 and 33 ?

## Extended Euclidean Algorithm

- If $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, then b has a multiplicative inverse modulo a . That is, for positive integer $b<a$, there exists $a b^{-1}<m$ such that $\mathrm{bb}^{-1}=1 \bmod \mathrm{~m}$. The Euclidean algorithm can be extended so that, in addition to finding $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, if the $\operatorname{gcd}$ is 1 , the algorithm returns the multiplicative inverse of $b$.
- EXTENDED EUCLID(a,b)

1. $(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3) \longleftarrow(1,0, \mathrm{a}) ;(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3) \longleftarrow(0,1, \mathrm{~b})$
2. if $\mathrm{B} 3=0 \quad$ return $\mathrm{A} 3=\operatorname{gcd}(\mathrm{m}, \mathrm{b})$; no inverse
3. if $\mathrm{B} 3=1 \quad$ return $\mathrm{B} 3=\operatorname{gcd}(\mathrm{m}, \mathrm{b}) ; \mathrm{B} 2=\mathrm{b}^{-1} \bmod \mathrm{~m}$
4. $\mathrm{Q}=\llcorner\mathrm{A} 3 / \mathrm{B} 3\rfloor$
5. $(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3) \longleftarrow(\mathrm{A} 1-\mathrm{QB} 1, \mathrm{~A} 2-\mathrm{QB} 2, \mathrm{~A} 3-\mathrm{QB} 3)$
6. $(\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3) \longleftarrow(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3)$
7. $(\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3) \longleftarrow$ (T1, T2, T3)goto 2

## Homework

Q1 By Using Extended Euclid's Algorithm, find

1. $28^{-1} \bmod 161$ ?
2. $4^{-1} \bmod 9$ ?

## Modular Arithmetic

○

- The division relationship ( $\mathrm{a}=\mathrm{q} \times \mathrm{n}+\mathrm{r}$ ) has two inputs ( a and n ) and two outputs ( $q$ and $r$ ). In modular arithmetic, we are interested in only one of the outputs, the remainder r . We don't care about the quotient q . In other words, we want to know what is the value of $r$ when we divide a by $n$. This implies that we can change the above relation into a binary operator with two inputs a and n and one output r .
- The binary operator is called the modulo operator and is shown as mod. The second input ( n ) is called the modulus. The output r is called the residue. The modulo operator (mod) takes an integer (a) from the set Z and a positive modulus (n). The operator creates a nonnegative residue $(r)$, we can say a $\bmod n=$ r.


## Modular Arithmetic

0

- The result of the modulo operation with modulus $\mathbf{n}$ is always an integer between $\mathbf{0}$ and $\mathbf{n - 1}$. In other words, the result of $\mathbf{a} \bmod \mathbf{n}$ is always a nonnegative integer less than $\mathbf{n}$.
- We use modular arithmetic in our daily life; for example, we use a clock to measure time. c uses modulo 12 arithmetic. However, instead of a 0 we use the number 12 . So our clock system starts with 0 (or 12) and goes until 11 . Because our days last 24 hours, we navigate around the circle two times and denote the first revolution as A.M and the second as P.M.



## Inverse in Modular Arithm. <br> 0

When we are working in modular arithmetic, we often need to find the inverse of a number relative to an operation. We are normally looking for an additive inverse (relative to an addition operation) or a multiplicative inverse (relative to a multiplication operation).

- Additive Inverse, in Zn, two numbers a and b are additive inverses of each other if $\mathbf{a}+\mathbf{b} \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d }} \mathbf{n})$, and two numbers a and b are the multiplicative inverse of each other if $\mathbf{a} \times \mathbf{b} \equiv \mathbf{1}$ $(\bmod \mathbf{n})$.
- In modular arithmetic, each integer has one additive inverse, the sum of an integer and its additive inverse is congruent to 0 modulo n. And an integer may or may not have a multiplicative inverse.


## Homework

○
Q1 Find the result of the following operations:
a. $\quad 27 \bmod 5$
b. $36 \bmod 12$
c. $-21 \bmod 15$
d. $-7 \bmod 11$

Q2 Find the additive inverse and multiplicative inverse of 3 and 8 in $\mathrm{Z}_{10}$.

Q3 Find all additive and multiplicative inverses in $\mathrm{Z}_{10}$.

## Modular Arithm. Operations <br> ○

- Modular arithmetic exhibits the following properties:

1. $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
2. $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
3. $[(a \bmod n) x(b \bmod n)] \bmod n=(a \times b) \bmod n$

## Properties of Modular Aritinma

1. Commutative laws

- $(w+x) \bmod n=(x+w) \bmod n$
- $(\mathrm{w} * \mathrm{x}) \bmod \mathrm{n}=(\mathrm{x} * \mathrm{w}) \bmod \mathrm{n}$

2. Associative laws

- $[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$
- $[(\mathrm{w} * \mathrm{x}) * \mathrm{y}] \bmod \mathrm{n}=[\mathrm{w} *(\mathrm{x} * \mathrm{y})] \bmod \mathrm{n}$

3. Distributive laws

- $[\mathrm{w} *(\mathrm{x}+\mathrm{y})] \bmod \mathrm{n}=[(\mathrm{w} * \mathrm{x})+(\mathrm{w} * \mathrm{y})] \bmod \mathrm{n}$
- $[w+(x * y)] \bmod n=[(w+x) *(w+y)] \bmod n$

4. Identities

- $(0+w) \bmod n=w \bmod n$
- $(1 * w) \bmod n=w \bmod n$

5. Additive inverse (-w)

- For each w in Zn , there exists a z such that $\mathrm{w}+\mathrm{z} \equiv 0 \bmod \mathrm{n}$


## Euler's Phi Function <br> O

Euler's phi-function, $\varphi(\mathrm{n})$, which is sometimes called the Euler's totient function plays a very important role in cryptography. The function finds the number of integers that are both smaller than n and relatively prime to n , rules to find the value of $\varphi(\mathrm{n})$.

1. $\phi(1)=0$.
2. $\phi(p)=p-1$ if $p$ is a prime.
3. $\phi(m \times n)=\phi(m) \times \phi(n)$ if $m$ and $n$ are relatively prime.
4. $\phi\left(p^{e}\right)=p^{e}-p^{e-1}$ if $p$ is a prime.

- We can combine the above four rules to find the value of $\varphi(\mathrm{n})$.
- It is very important to notice that the value of (n) for large composites can be found only if the number n can be factored into primes. In other words, the difficulty of finding $\varphi(\mathrm{n})$ depends on the difficulty of find the factorization of $n$.


## Homework

Q1 Find the value of $\varphi(13), \varphi(10)$ and $\varphi(49)$.

