Q1/ Defined all the following:-	(10 M)	
 Axiom Coaxial circles Finite geometry Multilateral figure Model 		4)
Q2/A/ Find left and right parallel lines of Hyperbolic line		
$g: x^2 + y^2 - 5x = -6$ and point $p(-1,4)$.	(5M)	
B/ Find Elliptic line equation passing through two points $A(7,4,\frac{1}{4})$		
and $B(3,1,\frac{1}{6})$.	(5M)	
Q3/ Find the inverse of the circle $x^2 + y^2 = 10$ by the inversion circle		
$W: x^2 + y^2 - 2x + 6y = 8.$	(8M)	
Q4/ A/ State properties of Axiomatic system.	(6M)	
B/ prove that in Fano's geometry, two distinct lines have exactly one		
point in common.	(6M)	
Q5/A/ Show that in the Euclidean system, how to cut a given finite straight line?	9 (6M)	
B/ Show that the radical axis of two intersecting circles is an extension		
of the joint chord of two circles.	(6M)	
Q6/ How Abhary tried to prove E5A in the case the internal angles are		
obtuse and acute angles? Explain your answer.	(8M)	
Q1/A/ state all Axioms of Euclidean System.	(5M)
B/ prove that in Euclidian system if two straight lines cut one another, then they make the vertically opposite angles equal to one another. (5M)		

Q2/ A/ prove that in **four point** geometry, have exactly six lines. (6M) B/ find the inverse of line y - x = -3 by the inversion circle $W: x^2 + y^2 - 6x = 1$ (6M) Q3/ A/ find **Hyperbolic** line equation between two points A(2,5) and B(2,8), after that find **Hyperbolic** distance AB. (8M) B/ Find **Elliptic** distance between points (6,-1) and (3,5) on xy-plane. (7M) Q4/ Use axioms of **connection** for the **Hilbert** system to prove that every two different lines on the plane are associates with a just point or not. (6M) Q5/ State **Playfiar's** Axiom, and use it to prove **E5A**. (7M)

Q6/ prove that in a **quadrilateral** if three angles are right angle therefore, the fourth angle is also right angle. (10M)

Q1/ A/ choose a correct answer. (4 M) 1) Figure which all sides equal and opposite sides parallel is called ------. {parallelogram, rhombus, trapezium, rectangle} 2) Sector is a fraction of a circle between ------. { chord and arc, chord and 2 radii, arc and 2 radii, chord and diameter} 3) The sum if interior angles of **Decagon** figure is ------. 1620, 1800, {1440, 1260} 4) An Axiomatic system is ------ if it is impossible to add any axioms or undefined terms. { Consistency, Independence, Completeness, Model} B/ defined the following (2 M)

1) Axiomatic system

2) Intersecting lines.

Q2/ How Euclid proved this proposition (to cut a given rectilinear angle in half)? (5M)

Q1/ Prove Euclid's fifth Axiom in this way **the two internal angles are acute**, by **Abhary's** way? (5M)

Q2/ Radical axis of two intersection circles is extension the joint chord for two circles. (5M)

Q3/ show that Elliptic circles intersection with each other. Q1/ A/ choose a correct answer. (4 m)

1) ----- Angles that are between parallel lines, but on opposite sides of a transversal.

{ vertical angles, angle bisector, alternative angles, acute angle}

2) ----- is a line segment with both endpoints on the circle.

{ chord, diameter, radius, circumference }

3) ------ is a figure with 7 sides, 7 vertices, and 14 diagonals.

{ hexagon, octagon, heptagon, pentagon}

4) ----- is the area enclosed by a chord and arc for a circle.

{ sector , tangent, arc, segment}

B/ show that how to cut a given rectilinear angle in half. (6 m)

Q3/ find the inverse of line L: 3x - y = 5 by the inversion circle W: $x^2 + y^2 + 12x - 8y = 1$. (5M)

Q1/A/ Show that $x(y - x) = xy - x^2$ by Babylonian's geometry. (4 Marks)

B/ Define each of the following:- (12 Marks)
1) Axiomatic system, 2) Semi-circle, 3) Coaxial circle,
4) Hyperbolic axiom, 5) Dedekind's axiom, 6) Finite geometry.

Q2/A/ Show that the cross ratio $\{AB, DC\} = \frac{1}{\{AB, CD\}}$.	(4 Marks)	
B/ Show that Hyperbolic circles does not intersects each other. (6	with Marks)	
Q3/ A/ Find the inverse of the line $x - 2y = 1$ by the inversion $W: x^2 + y^2 + 6x + 4y = 3.$ (6 Ma	circle arks)	
B / Find all parallel line equations of two Hyperbolic lines $2y^2 - 12x - 14 = 0$ and $g_2: x^2 + y^2 + 2x = 0$. (6 Marks	$g_1: 2x^2 +$ s)	
Q4/ A/ How Euclid proved this proposition (To describe an triangle on a given finite straight line). (5 Marks)	equilateral	

B/ Let *ABCD* be a Khayyam quadrilateral, such that AB formsthebase, *AD* and *BC* are sides and AD = BC, < A = < B = 90,and the Summit angles are < C and < D,provethat < C = < D.(6 Marks)

Q5/A/ Let *W* be a circle with center *O* and radius *K* and a point *P* different from *O*, and the point *P* is the inverse of point *Q* on the ray *OP*, prove that $OP.OQ = K^2$. (6 Marks)

B/ Prove that in Four Point Geometry has exactly six lines. (5 Marks)