Q1/ Defined all the following:-

1) Axiom
2) Coaxial circles
3) Finite geometry
Multilateral figure
4) Model

Q2/A/ Find left and right parallel lines of Hyperbolic line

$$
\begin{equation*}
g: x^{2}+y^{2}-5 x=-6 \text { and point } p(-1,4) \tag{5M}
\end{equation*}
$$

$B /$ Find Elliptic line equation passing through two points $A\left(7,4, \frac{1}{4}\right)$ and $B\left(3,1, \frac{1}{6}\right)$.

Q3/ Find the inverse of the circle $x^{2}+y^{2}=10$ by the inversion circle

$$
\begin{equation*}
W: x^{2}+y^{2}-2 x+6 y=8 \tag{8M}
\end{equation*}
$$

Q4/ A/ State properties of Axiomatic system.
B/ prove that in Fano's geometry, two distinct lines have exactly one point in common.

Q5/A/ Show that in the Euclidean system, how to cut a given finite straight line?
B/ Show that the radical axis of two intersecting circles is an extension of the joint chord of two circles.

Q6/ How Abhary tried to prove E5A in the case the internal angles are obtuse and acute angles? Explain your answer.

Q1/ A/ state all Axioms of Euclidean System.
B/ prove that in Euclidian system if two straight lines cut one another, then they make the vertically opposite angles equal to one another.

Q2/ A/ prove that in four point geometry, have exactly six lines.
$B /$ find the inverse of line $y-x=-3$ by the inversion circle

$$
\begin{equation*}
W: x^{2}+y^{2}-6 x=1 \tag{6M}
\end{equation*}
$$

Q3/ $A /$ find Hyperbolic line equation between two points $A(2,5)$ and $B(2,8)$, after that find Hyperbolic distance AB.

B/ Find Elliptic distance between points $(6,-1)$ and $(3,5)$ on $x y$-plane.

Q4/ Use axioms of connection for the Hilbert system to prove that every two different lines on the plane are associates with a just point or not.

Q5/ State Playfiar's Axiom, and use it to prove E5A.
Q6/ prove that in a quadrilateral if three angles are right angle therefore, the fourth angle is also right angle.

Q1/A/ choose a correct answer.

1) Figure which all sides equal and opposite sides parallel is called \qquad \{parallelogram, rhombus, trapezium, rectangle\}
2) Sector is a fraction of a circle between
\{ chord and arc, chord and 2 radii, arc and 2 radii, chord and diameter\}
3) The sum if interior angles of Decagon figure is -----------.
\{1440, 1620, 1800, 1260\}
4) An Axiomatic system is ---------- if it is impossible to add any axioms or undefined terms. \{ Consistency, Independence, Completeness, Model\}
$B /$ defined the following
5) Axiomatic system
6) Intersecting lines.

Q2/ How Euclid proved this proposition (to cut a given rectilinear angle in half)? (5M)

Q1/ Prove Euclid's fifth Axiom in this way the two internal angles are acute, by Abhary's way?

Q2/ Radical axis of two intersection circles is extension the joint chord for two circles. (5M)
Q3/ show that Elliptic circles intersection with each other. Q1/A/choose a correct answer. (4 m)

1) --------------- Angles that are between parallel lines, but on opposite sides of a transversal.
\{ vertical angles, angle bisector, alternative angles, acute angle\}
2) --------------- is a line segment with both endpoints on the circle.
\{chord, diameter, radius, circumference \}
3) \qquad is a figure with 7 sides, 7 vertices, and 14 diagonals.
\{hexagon, octagon, heptagon, pentagon\}
4) \qquad is the area enclosed by a chord and arc for a circle.
\{sector, tangent, arc, segment
$B /$ show that how to cut a given rectilinear angle in half.

Q3/ find the inverse of line $\mathrm{L}: 3 x-y=5$ by the inversion circle $\mathrm{W}: x^{2}+y^{2}+12 x-8 y=1$. (5M)

Q1/A/ Show that $\boldsymbol{x}(\boldsymbol{y}-\boldsymbol{x})=\boldsymbol{x} \boldsymbol{y}-\boldsymbol{x}^{2}$ by Babylonian's geometry. (4 Marks)

B/ Define each of the following:-
(12 Marks)

1) Axiomatic system,
2) Semi-circle,
3) Coaxial circle,
4) Hyperbolic axiom,
5) Dedekind's axiom,
6) Finite geometry.

Q2/A/ Show that the cross ratio $\{\boldsymbol{A B} . \boldsymbol{D C}\}=\frac{\mathbf{1}}{\{\boldsymbol{A B} . \boldsymbol{C D}\}}$.
(4 Marks)
B/ Show that Hyperbolic circles does not intersects each other.

Q3/ A/ Find the inverse of the line $\boldsymbol{x}-\mathbf{2 y}=\mathbf{1}$ by the inversion circle

$$
\begin{equation*}
W: x^{2}+y^{2}+6 x+4 y=3 . \tag{6Marks}
\end{equation*}
$$

B/ Find all parallel line equations of two Hyperbolic lines $g_{1}: 2 x^{2}+$ $\mathbf{2 y} \boldsymbol{y}^{2}-\mathbf{1 2 x} \mathbf{- 1 4}=\mathbf{0}$ and $g_{2}: \boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\mathbf{2 x}=\mathbf{0}$. (6 Marks)

Q4/ A/ How Euclid proved this proposition (To describe an equilateral triangle on a given finite straight line).
(5 Marks)

B/ Let $\boldsymbol{A B C D}$ be a Khayyam quadrilateral, such that AB forms the base, $\boldsymbol{A D}$ and $\boldsymbol{B C}$ are sides and $\boldsymbol{A D}=\boldsymbol{B C}, \Varangle \boldsymbol{A}=\Varangle \boldsymbol{B}=\mathbf{9 0}$, and the Summit angles are $\Varangle \boldsymbol{C}$ and $\Varangle \boldsymbol{D}$,
prove that $\Varangle \boldsymbol{C}=\Varangle \boldsymbol{D}$.

Q5/A/ Let \boldsymbol{W} be a circle with center \boldsymbol{O} and radius \boldsymbol{K} and a point \boldsymbol{P} different from \boldsymbol{O}, and the point \boldsymbol{P} is the inverse of point \boldsymbol{Q} on the ray $O P$, prove that $\mathbf{O P} . \boldsymbol{O Q}=\boldsymbol{K}^{\mathbf{2}}$.
(6 Marks)
B/ Prove that in Four Point Geometry has exactly six lines. (5 Marks)

