## 80 Problems in Engineering Mechanics

1- Determine the angle $\theta$ of the 200 N force shown in the figure so that it produces a maximum moment about point $O$. Also, compute this maximum moment.


2- If the resultant of the two forces shown in the figure has a magnitude of 2000 N , Determine the angle $\theta$ and the direction of the resultant force measured counterclockwise from the positive $x$ axis by using parallelogram law.


3- Determine the magnitude and coordinate direction angles of $\mathbf{F}_{2}$ shown in the figure so that the resultant of the two forces acts along the positive $x$ axis and has a magnitude of 500 N .


4- If the resultant of the two forces and couple moment is 53 N and passes through point $B$, determine the direction of the resultant force, the angle $\beta$ and the magnitude of the couple moment $M$.


5- Determine the magnitude of the reactions at the pin A and the roller B of the Beam shown.


6- The tower truss is subjected to the loads shown. Determine the force in member CF , and state if the member is in tension or compression. The left side ABCD stands vertical.


7- Determine the horizontal and vertical components of force that the pins at A and B exert on their connecting members in the frame.


8- Locate the centroid $y$ of the shaded area.


9- Three cables attached to a disk exert on it the forces shown. Determine the magnitude and direction of the resultant force and specify where its line of action intersects a line drawn through points $A$ and $D$.

10 - Let $\mathbf{R}$ refer to the resultant of the three forces shown. Given that $\mathbf{R}=\{-1320.5 \mathbf{i}+867.2 \mathbf{j}+430.4 \mathbf{k}\} \mathrm{N}$. Determine the magnitudes of the three forces $\boldsymbol{P}_{1}, \boldsymbol{P}_{\mathbf{2}}$ and $\boldsymbol{P}_{\mathbf{3}}$.

11- Two cylinders of diameters 60 mm are placed as shown in the figure. The weight of each cylinder is 160 N . Assuming that all the contact surfaces to be smooth, find the reactions at A, B and C .


13- For the shaded area shown:
1- Locate the centroid $y$.
2- Determine radius of gyration $k_{x}$.
Note: The dimensions are in mm .


14- The mass of blocks $A$ and $C$ are 2.4 kg and 6 kg , respectively. Knowing that $\mu_{s}=0.5$ between block $A$ and the incline surface and $\mu_{s}$ $=0.3$ between block $C$ and the horizontal surface. Determine the largest value of the mass of block $B$ for which the blocks are in equilibrium.


15- Three forces and a couple act on crank ABC. The magnitude and direction of the resultant force is 1.47 kN and $\theta=55.6^{\circ}$ measured counter clockwise from the positive x -axis. Find the magnitude of the force P and the angle $\alpha$. Locate the point where the line of action of the resultant force intersects a line drawn through points B and C .


16- The resultant of the two forces $F_{1}$ and $F_{2}$ is $\mathbf{R}=\{260.5 \mathbf{i}$ $+320.3 \mathbf{j}+635.7 \mathbf{k}\} \mathrm{N}$. Determine the magnitudes of $\mathrm{F}_{2}, \theta_{1}$ and $\theta_{2}$.


17- A block of weight W is suspended from a cord AC and two springs of which the unstretched lengths are 22.5 cm . knowing that $\mathrm{kAB}=9 \mathrm{~N} / \mathrm{cm}$ and $\mathrm{kAD}=3 \mathrm{~N} / \mathrm{cm}$. Determine the tension force in the cord and the weight of the block.

18-For the frame shown in the figure determine support reactions at A and C.
 -


19- For the shaded area shown:
1- Locate the centroid ( $x, y$ ).
2- Determine moment of inertia $I_{x}$ about $x$ axis.
Note: The dimensions are in mm.


20- The 50 kg uniform cylinder and the 30 kg block are connected by the bar $A B$. The coefficient of static friction is 0.2 under both the cylinder and the block. Determine the smallest clockwise couple $\boldsymbol{M}$ which will cause motion to impend. Neglect the weight of the bar


21-If the resultant of the two forces and couple $M$ shown in the figure is passes through point $A$, determine the magnitude and direction of the resultant force and the couple $M$.


22- The two forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ acting at $A$ have a resultant force of $\mathbf{F}_{\mathrm{R}}=\{-$ $100 \mathbf{k}\}$ N. Determine the magnitude and coordinate direction angles of $\mathrm{F}_{2}$.


23-For the frame shown in the figure, determine the horizontal and vertical components of force for the pins at $B$ and $C$.


24- Locate the centroid $x$ of the shaded area shown in the figure.


25- The ring shown in the figure is subjected to two forces $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$. If it is required that the resultant force have a magnitude of 1500 N and be directed vertically upward, determine the magnitude of $\mathrm{F}_{1}$ and $\mathrm{F}_{2}$ if $\mathrm{F}_{2}$ is to be a minimum.


26- Determine the support reactions at A and B .


27- Determine the force in member $B D$ of the truss shown. Indicate whether the member is in tension or compression.


28- Locate the centroid ( $\mathrm{x}, \mathrm{y}$ ) of the shaded area.


29- The resultant of the force system shown passes through point $A$. The magnitude of the resultant force is equal to 95 N . Determine the magnitudes of the force $F_{2}$, the couple moment $M$ and the direction of the resultant force.


30- The three concurrent forces $\boldsymbol{F}_{1}, \boldsymbol{F}_{\mathbf{2}}$ and $\boldsymbol{F}_{\mathbf{3}}$ have a resultant force of $\mathbf{F}_{\mathrm{R}}=\left\{660 \mathbf{i}+710 \mathbf{j}+\mathrm{F}_{\mathrm{R} Z} \mathbf{k}\right\} \mathrm{N}$. Determine the magnitudes of the forces $\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$ and $F_{\mathrm{R} Z}$.


31- The collar $A$ shown in the figure can slide on a frictionless vertical rod and is attached as shown to a spring. The constant of the spring is $k=660 \mathrm{~N} / \mathrm{m}$, and the spring is unstretched when $h=300 \mathrm{~mm}$. Knowing that the system is in equilibrium when $h=400 \mathrm{~mm}$, determine the weight of the collar.


32-Determine the support reactions at $E, A$ and $D$. The suspended cylinder has a weight of 82 kg .


33-For the shaded area shown:
1- Locate the centroid ( $x, y$ ).
2- Determine $I_{x}$ and $I_{x y}$.
Note: The dimensions are in mm.


34- The uniform bar $A B$ weighs 225 kg , and the weight of block $C$ is 135 kg . The contact surface at $A$ is smooth, and the coefficient of static friction is $\mu_{s}=$ 0.4 at the other two contact surfaces. Are the system in static equilibrium?


35-Replace the loading on the triangle by a single resultant force. Specify where its line of action intersects the side AC, measured from C.


36- The circular plate is acted on by three parallel forces. If the line of action of the resultant force intersects the plate at $x=$ -0.62 m and $y=-1.24 \mathrm{~m}$, determine the magnitudes of the forces $F_{1}$ and $F_{2}$.


37- A T-shaped bracket supports a concentrated and distributed load as shown. Determine the reactions at $A$ and $C$.


38- Determine the force in member $B E$ of the truss shown in the figure and state if the member is in tension or compression.


39- For the shaded area shown:
1- Locate the centroid ( $x, y$ ).
2- Determine $I_{y}$ and $I_{x y}$.


40-Blocks $A$ and $B$ have a mass of 7 kg and 10 kg ,respectively. Using the coefficient of static friction indicated, determine the largest force $P$ which can be applied to the cord without causing motion. There are pulleys at $C$ and $D$.


41- In the bracket shown in the figure, if the resultant of forcecouple system is vertically upward at a distance 45 mm right of B and has a magnitude of 280 N . Determine the magnitudes of the force F , the angle $\theta$ and the distance d .


42- Two spheres, each of weight 1000 N and of radius 30 cm rest in a horizontal channel of width 100 cm . Assuming that all the contact surfaces to be smooth, find the reaction on the points of contact A, B and C.


43-For the frame shown, determine the support reactions at A and E .


44- Determine the coordinates of the centroid ( $x, y$ ) of the shaded area.


45- Determine the required length of cord AC so that the 8 kg block is suspended in the position shown. The undeformed length of spring AB is equal to 0.4 m .


46- Determine the force in members DE and AE of the truss. State if these members are in tension or compression.


47- In the frame shown the pin attached to member AE, passes through a smooth slot in member BD.
Determine the horizontal and vertical components of reaction at B .


48- The gravity wall is made of concrete. Determine the location of the centroid $x$.


49- In the concurrent coplanar force system, determine the magnitudes of the resultant force and $\mathrm{F}_{3}$ so that the resultant force is directed along negative $x^{\prime}$-axis.


$$
\mathrm{F}_{1}=55 \mathrm{~N}
$$

50- Two forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ act on the bolt. If the resultant force $\mathbf{F}_{\mathbf{R}}$ has a magnitude of $\quad 50 \mathrm{~N}$ and coordinate direction angles as shown in the figure, determine the magnitude of $\mathbf{F}_{2}$ and its coordinate direction angles.


51-Replace the loading on the bent bar by a single resultant force. Specify where its line of action intersects the portion AB , measured from A .


52- If the resultant of the parallel force system passes through point O (point O is the center of the table), determine the magnitude of the force F and the distance d .


53-Determine the magnitude and coordinate direction angles of the resultant force.


54- Determine the horizontal and vertical components of force at the pin A and the reaction at the rocker B of the curved beam.


55- The two-member structure is connected at C by a pin, which is fixed to BDE and passes through the smooth slot in member AC. Determine the horizontal and vertical components of reaction at supports.


56-Resolve the force shown in the figure into components acting along members $A B$ and $A C$, and determine the magnitude of each component.


57- The bracket in the figure (2) is subjected to the two forces $\mathbf{F}_{1}$ and $\mathbf{F}_{2}$. If the resultant force $\mathbf{F}_{\mathbf{R}}=\left\{\mathrm{F}_{\mathrm{Rx}} \mathrm{i}+468 \mathrm{j}+56.6 \mathrm{k}\right\} \mathrm{N}$, determine the magnitude of the resultant force .


58- The two forces and couple moment shown in the figure (3) can be replaced by an equivalent resultant force $F_{R}$ that has a line of action passing through point $A$. Determine the magnitude of $F_{R}$ and the distance $d$.


Figure (3)

59- Determine the resultant of the parallel force system that acts on the quarter-circular plate, as shown in the figure (4). Specify the location of the resultant force.


Figure (4)
60-Determine the force in member $C F$ of the truss shown. Indicate whether the member is in tension or compression.


61-Determine all forces acting on members $D E F$ of the frame shown.


62-Locate the centroid $x$ of the curve shown.


63-Determine the moment of inertia of the shaded area about the $x$ axis.


64- The resultant of the force system shown passes through point $O$. The magnitude and direction of the resultant force is 20 N and $30^{\circ}$ measured counter clockwise with positive x-axis. Determine the magnitudes of the force $F_{1}, F_{2}$ and the angle $\theta$.


66- The sphere has a mass of 6 kg and is suspended in the position shown. Determine the unstretched length of the spring.


67- Determine the horizontal and vertical components of force at pins $B, D$, and $C$.


68- For the shaded area shown:
1- Locate the centroid $y$.
2- Determine $I_{x}$ and $I_{x y}$.


69- The uniform $\log A B$ weighs 135 kg . Determinethe largest tension in the cable for which the log remains at rest. The coefficient of static friction between the log and the plane is $\mu_{s}=0.4$.


70- In the force system shown, if the magnitude and direction of the resultant force is 66 N and $40^{\circ}$ measured counter clockwise from positive x -axis. Determine the magnitude of the force F , the angle $\beta$ and specify where the resultant's line of action intersects member $B C$, measured from point $B$.


71- The plate is acted on by four parallel forces. If the resultant force is 250 N vertically upward and its line of action intersects the plate at $x=0.3 \mathrm{~m}$ and $\mathrm{y}=3.6 \mathrm{~m}$. Determine the magnitude of the force F and specify its location.


72- Determine the support reactions for the frame shown in the figure.


73-For the shaded area shown in the figure (4) determine the centroid $y$ and the moment of inertia about $x$-axis.

74- The Force F acting on the frame shown has a magnitude of 500 N and is to be resolved into two components acting along members AB and AC . Determine the angle $\theta$, so that the component $\mathrm{F}_{\mathrm{AC}}$ is directed from A toward C and has a magnitude of 400 N .


75-Determine the force in member DF of the truss and state if the member is in tension or compression.


76- Replace the force and couple moment system acting on the frame by an equivalent resultant force and specify where the resultant's line of action intersects member AB , measured from point A.


77- A disabled automobile is pulled by two tension forces. The resultant force is inclined by an angle $12^{\circ}$ measured counter clockwise from positive $x$-axis. Determine the magnitude of the resultant force if $F_{2}$ to be a minimum.


78-Replace the force and couple system by an equivalent resultant force and specify where the resultant's line of action intersects line $A C$ measured from $A$.


79- The two forces act on the hook. Determine the magnitude of the force $F_{2}$ so that the resultant force $\mathbf{F r}_{\mathrm{r}}$ acts along the positive $y$ axis and has a magnitude of 800 N .


80- The 1200 kg car shown in the figure (4) is being lowered slowly on to the dock using the hoist $A$ and winch $C$. Determine the forces in cables $B A$ and $B C$ for the position shown.


